
Microarchitectural Resource Management Issues on Multicore
NUMA Systems

Jongmoo Choi∗

Dankook University, Gyeonggi-do, Republic of Korea
choijm@dankook.ac.kr

Abstract

Modern computer systems make use of multiple cores and NUMA (Non Uniform Memory Access)
architecture. Since multiple cores share various microarchitectural resources such as LLC (Last
Level Cache), memory interface and interconnect, contentions on these resources become a serious
performance bottleneck. In this paper, we explore research issues how to manage these resources
to mitigate such contentions. We first examine the internal structure of a multicore NUMA system
and investigate interference among cores during memory accesses. Then, we discuss several existing
microarchitectural resource management schemes such as cache partitioning, page placement, task
scheduling and virtual machine migration. In addition, we inspect diverse application classification
techniques including animal, color, and application slowdown model that analyze the interactions
among applications on microarchitectural resources. Finally, we present our observations about how
an application affects or being affected by other applications in terms of influentiality and sensitivity.

Keywords: Multicore, NUMA, Microarchitectural resource, Contention, Application Characteris-
tics

1 Introduction

Recent computing paradigms such as bigdata analysis, deep learning and virtualization require high
performance computing capability. To meet this requirement, multiple cores are employed prevalently,
becoming the fundamental platform for modern computer systems. For instance, an AMD Bulldozer
is equipped with four Opteron processors where each processor has 16 cores [15]. An IBM x3850
system has eight Intel Xeon processors, each with eight cores (with a total of 128 cores when we enable
hyperthreading) [17]. A lot of smartphones utilize ARM’s Big.Little architecture that combines Cortex-
A15 cores (big) and Cortex-A7 cores (little) [3]. These trends make it feasible to configure a system with
tens, hundreds, or even thousands of cores [18].

The increment of cores demands a scalable memory architecture. Hence, most computer systems
adopt NUMA (Non Uniform Memory Access) architecture where each processor has its own memory
connected directly through memory interface (e.g. IMC (Integrated Memory Controller)) while access-
ing other processor’s memory through interconnect (e.g. Intel’s QPI (Quick Path Interconnect) or AMD’s
HyperTransport) [2, 22, 14]. With the viewpoint of a processor, memory subsystem is organized hierar-
chically as local memory and remote memory. The access latency for local memory is faster than that of
remote memory, this is why it is called as NUMA.

In a multicore NUMA system, when a core in a processor wants to access data in memory, it uses
various shared resources such as LLC (Last Level Cache), memory interface and interconnect. We refer
to these resources as microarchitectural resources [10]. Since they are shared by multiple cores, con-
current usage of these resources incurs contentions, leading to performance degradation. For instance,

IT CoNvergence PRActice (INPRA), volume: 4, number: 1 (March 2016), pp. 18-29
∗Corresponding author: 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Korea Tel: +82-1899-3700

18



Issues on Manycore NUMA Jongmoo Choi

doubling of cores in a processor results in the average LLC size available to a core being reduced to
half. As an another example, requests from a processor can interfere with requests triggered by another
processor on memory interface or interconnect. As the number of cores increases, the contentions on
these shared microarchitectural resources also increase, becoming a critical point of performance degra-
dation [7, 9, 17, 22, 25, 30].

In this paper, we discuss several existing schemes to mitigate the contentions of microarchitectural
resources. The schemes can be grouped into three categories. The first one is partitioning LLC dy-
namically according to the core’s access behavior [28, 29, 21, 11]. The second category is exploiting
task scheduling and/or page placement not only to reduce the contentions but also to enhance memory
parallelism [30, 7, 15, 14]. The third category is applying virtual machine migration to alleviate the
interference on microarchitectural resources [17, 22, 25].

The effectiveness of the schemes heavily depends on the characteristics of applications. For instance,
to avoid cache pollution in LLC, we need to identify applications that access LLC with low locality and
isolate them from other applications. Also, it is preferable to schedule memory aggressive applications
into different processors since scheduling them into a same processor may cause considerable memory
interference. This paper examines several techniques, namely color, animal and application slowdown
model that classify applications based on their characteristics [27, 16, 24].

Finally, we present our observations conducted on a real multicore NUMA system. Our experimen-
tal system has two Intel Xeon x3650 processors and each processor has four cores, 32GB main mem-
ory and 8MB shared LLC. In this system, we execute applications selected from 3 benchmarks, SPEC
CPU2006 [23], PARSEC [1] and NAS Parallel Benchmark [20]. Our experiments reveal that applica-
tions have quite different usage behaviors on microarchitectural resources in terms of influentiality and
sensitivity. We also find out that, using PMU (Performance Monitoring Unit) supported most modern
processors [6, 8], application characteristics can be monitored online without without a priori knowledge.

The remainder of this paper is organized as follows. In Section 2, we examine the microarchitectural
resources in a multicore NUMA system and discuss how cores contend for the resources. The existing
contention-aware resource management schemes and application classification techniques are explained
in Section 3. Our observations about influentiality and sensitivity of applications are elaborated in Sec-
tion 4. Finally, we describe the conclusion and directions for future work in Section 5.

2 Background

In this section, we first explain the internal structure of a multicore NUMA system, focusing on mi-
croarchitectural resources. Then, we discuss various types of contentions occurred in microarchitectural
resources and how they differ according to the application characteristics.

2.1 Microarchitectural Resources

Figure 1 displays the internal structure of a multicore NUMA system. It consists of multiple processors
(4 processors in this figure, labelled processor 0 to 3) which are connected through interconnect such
as Intel’s QPI (Quick Path Interconnect) and AMD’s HyperTransport. Each processor (also known as
socket and node) has multiple cores (4 cores per a processor in this figure, labelled C0 to C15) and
microarchitectural resources such as LLC (Last Level Cache), IMC (Integrated Memory Controller),
QPI and GQ(Global Queues). Microarchitectural resources are also called as uncore resources since
they are out of a core and shared by cores in a processor [12, 5].

Each processor has its own memory connected directly through IMC. The directly connected memory
is called as local memory. Also, each processor can access other processor’s local memory through

19



Issues on Manycore NUMA Jongmoo Choi

Figure 1: Internal Structure of a Multicore NUMA system

interconnect, which is called as remote memory. In the figure, with the viewpoint of the processor 0,
the left upper memory modules become local memory, while other modules are remote memory. The
access latency of local memory is faster than that of remote memory (e.g. 255 cycles for local memory
vs. 273∼327 cycles for remote memory [4]). Furthermore, as the number of processors increases and
interconnect becomes complex, remote memory is further divided into near and far remote memory [15].

When a core in a processor wants to access data in memory, it sends a request to GQ. Then, GQ first
checks LLC. If the requested data is already in LLC (hit case), it is served here. Otherwise (miss case),
the request is transferred to IMC or QPI based on the address mapping mechanism. Specifically, if a
page related to the requested data is mapped into local memory, the request is transferred to IMC and
served in local memory. Otherwise, the request is transferred to QPI, being delivered to a processor who
has the mapped page through interconnect and eventually served in remote memory.

2.2 Contentions on Microarchitectural Resources

As shown in Figure 1, a core is not an independent unit but rather a part of a larger processor, sharing
microarchitectural resources with other cores. Hence, when two or more cores access data in memory
at the same time, contentions occur on the shared microarchitectural resources. There are three types of
contentions, LLC, memory interface, and interconnect. LLC is contended by cores in a same processor
while memory interface is contended by cores that have pages mapped into a same memory module.
Finally, interconnect is contended by all cores who reference remote memory. Such contentions combine
in complex ways, resulting in overall performance degradation.

The simplest way to mitigate these contentions is scheduling applications into different processors
while allocating pages from local memory only. However, when the number of applications is larger than
that of processors, it is unavoidable to schedule two or more applications into a same processor. Such a
co-scheduling causes the LLC and memory interface contention. To reduce the LLC contention, we can
co-schedule applications that do not use LLC aggressively. However, it may incur the underutilization of
LLC or contention on other processor’s LLC.

To reduce the memory interface contention, we can allocate some pages from local memory and
others from remote memory. However, allocating remote memory incurs the interconnect contention,
leading to a longer remote memory latency. In other words, there is a tradeoff between memory paral-
lelism and latency. Task migration for the load balancing purpose also affects these contentions, issuing
a tradeoff between core utilization and memory efficiency.

20



Issues on Manycore NUMA Jongmoo Choi

0%

20%

40%

60%

80%

100%

lbm
libquantum

lu.B
ua.B

stream
cluster

canneal

P
e

r
fo

r
m

a
n

c
e

sp.B

0%

20%

40%

60%

80%

100%

lbm
libquantum

lu.B
ua.B

stream
cluster

canneal

P
e

r
fo

r
m

a
n

c
e

omnetpp

Figure 2: Performance degradation due to contention

Figure 2 presents one of our experimental results regarding the performance degradation due to the
contentions. In this experiment, we execute two applications, namely sp.B and omnetpp chosen from the
three benchmarks [23, 1, 20]. The left graph is the results of sp.B while the right one is the results of
omnetpp. The bottom line of each graph shows six applications, namely lbm, libquantum, lu.B, ua.B,
streamcluster and canneal, also chosen from the benchmarks.

When we execute sp.B (or omnetpp) in a core, we also execute one of the six applications in another
core in a same processor. For instance, the first bar of the left graph is the result when we execute sp.B
in C0 (core 0) and lbm in C1 (core 1) in Figure 1 . The y-axis is the performance degradation of sp.B (or
omnetpp) due to the contention with the co-scheduled application.

From the results, we can make the following observations. First, performance is actually degraded
due to the contentions. Degradation of sp.B is ranging from 23% to 2% while omnetpp suffers from
40%∼5% degradation. It implies that interference at the shared microarchitectural resources such as
LLC and memory slows down an application running on a different core. The second observation is that
each application shows different degradation. In this experiment, omnetpp shows bigger performance
degradation than sp.B for all cases. The third observation is that applications listed in the bottom line af-
fects other applications differently. Specifically, lbm affects sp.B (or omnetpp) the most. On the contrary,
canneal give the least degradation on the two applications. It reveals that contentions on microarchitec-
tural resources have a strong relation with application characteristics.

3 Research Issues

This section presents various microarchitectural resource management schemes. Then, we examine ap-
plication characteristics and techniques that classify applications based on their impact on microarchi-
tectural resources.

3.1 Microarchitectural Resource Management Schemes

A variety of schemes have been proposed to reduce the contentions on microarchitectural resources.
According to the mechanisms they exploit, we group these schemes into three categories: cache parti-
tioning, task scheduling and/or page placement, and virtual machine migration, summarized in Table 1.
We visit each category in sequence, exploring research issues and key ideas.

21



Issues on Manycore NUMA Jongmoo Choi

Table 1: Microarchitectural Resource Management Schemes

Category Scheme Description

Cache partitioning

UCP [21] Utility (benefit) based dynamic LLC partitioning

PIPP [28]
Control insertion and promotion position
adaptively

Page coloring [29]
Allocating different colored pages into
applications

NightWatch [11]
Restrictive mapping for the weak locality data to
limit cache pollution

Task scheduling
and/or

Page placement

DI and DINO [30, 2]
Distribute applications across caches to balance
miss rates and eliminate superfluous migrations

Carrefour [7]
Apply page co-location, interleaving, replication
and thread clustering adaptively to manage
memory traffic

AsymSched [15]
A thread and memory placement with the
consideration of the bandwidth asymmetry of
interconnect

Shoal [13]
A runtime library with an NUMA-aware array
abstraction

Virtual machine
migration

A-DRM [25]
A cost-benefit model to assess the interference
among VMs

BRM [22]
Migrate a VM based on the uncore memory
access penalty

VM memory
mgmt. [17]

Leverage NUMA overhead awareness in
hypervisor’s memory management

As discussed in Section 2, LLC is shared by cores in a processor, being contended when cores access
data in memory. To mitigate this contention, Qureshi and Patt design a scheme, called UCP (Utility-based
Cache Partitioning) that partitions LLC among cores depending on the reduction in cache misses [21].
They define utility as benefit that can be achieved by allocating more cache space into an application. To
monitor utility efficiently, UCP introduces a hardware circuit called UMON. In addition, UCP devises
a lookahead algorithm to evaluate partitioning decisions when there are a large number of applications
sharing cache.

Y. Xie and G. Loh suggest a novel shared cache management policy, called PIPP(Promotion/Insertion
Pseudo-Partitioning). When a newly referenced data is inserted in cache (miss case), the traditional LRU
policy places it on the MRU (Most Recently Used) position. On the contrary, PIPP places it on the
dynamically selected insertion position. Also, when a data is re-referenced in cache (hit case), PIPP
promotes it not the MRU position but the promotion position (e.g. promoted by one). By adaptively
configuring the insertion and promotion position according to application’s cache access behavior, PIPP
gives an implicit pseudo-partitioning effect.

To control cache partitioning, an operating system based approach, called page coloring, is proposed
by X. Zhang et al. [29]. It assigns the same color to memory pages that map to the same cache blocks.
Then, by allocating different colored pages into applications, the scheme can govern the portion of cache
used by each application. In addition, to reduce the coloring overhead, the authors devise a hot-page

22



Issues on Manycore NUMA Jongmoo Choi

coloring mechanism that enforces coloring only a small set of frequently accessed pages. Hot-pages are
identified by scanning page table entries on-the-fly while leveraging the spatial locality.

R. Guo et al. design NightWatch, a cache management scheme that provides general, transparent
and low overhead pollution control [11]. By applying dual-mapping, restrictive mapping for the weak
locality data and open mapping for the strong locality data, it can limit cache polluters to evict valuable
data from cache. Besides, it makes use of the Intra-chunk locality similarity and Inter-chunk locality
similarity to infer the weak or strong locality with low overhead.

Now let us discuss schemes that make use of task scheduling and/or page placement to alleviate the
contentions of microarchitectural resources. S. Zhuravlev et al. give an outstanding paper that addresses
shared resource contentions in a multicore system via scheduling [30]. They examine various factors
causing contentions including LLC, memory controller, memory bus, and prefetching hardware and an-
alyze how much each factor contributes on the total degradation. Then, they propose a novel scheduling
algorithm, called DI (Distributed Intensity), that distribute applications across caches such that the miss
rates are distributed as evenly as possible. They extend DI for NUMA, called DINO (Distributed Intensity
NUMA Online), that considers not only cache miss rates but also remote memory access overhead [2].
The key idea of DINO is eliminating superfluous application migrations across processors and migrating
pages selectively based on a metric, called SRA (Saved Remote Accesses).

Dashti et al. propose Carrefour, an memory management scheme for NUMA [7]. It makes use of
various mechanisms including page co-location, page interleaving, page replication and thread clustering
for reducing memory traffic. It shows that each mechanism affects differently on applications, some ob-
tain performance gains from co-location while others from page-interleaving. It applies each mechanism
adaptively using performance monitor hardware such as MC-IMB (Memory controller imbalance) and
MAPTU(Memory accesses per time unit). The authors also propose AsymSched, a thread and memory
placement algorithm that takes into account the bandwidth asymmetry of NUMA systems [15].

Shoal is a runtime library for parallel programs on NUMA machines, designed by Kaestle et al. [13].
It provides a new memory abstraction using arrays that can be automatically replicated, distributed, or
partitioned across memory modules based on annotating memory allocation statements or compiler’s
hints on access patterns. It also supports rich memory allocation interfaces and utilizes additional hard-
ware such as programmable DMA copy engines to further improve parallel program performance.

Kim et al. analyze the tradeoff among LLC, memory parallelism and remote memory access over-
head in a multicore NUMA system [14]. Using PMU (Performance Monitor Unit) [26], they monitor
various events including LLC misses, number of local and remote memory accesses, and observe that
microarchitectural resources affect differently on applications. Some applications are affected greatly by
the remote memory latency while others by the memory parallelism. Z. Majo and T. Gross report similar
observations that it may be more advantageous to allocate data on remote memory than to store data of
all threads in local memory due to the overload of the on-chip memory controller [19].

Now let us turn our attention to the virtual technology. Hypervisor (also known as Virtual ma-
chine monitor) is another good layer to manage microarchitectural resources. H. Wang et al. propose
A-DRM (Architectural-aware Distributed Resource Management) for a virtual cluster where multiple
VMs(Virtual Machines) run concurrently on multicore NUMA systems [25]. The conventional DRM
scheme makes use of CPU utilization and memory capacity demand for VM allocation or migration de-
cision. However, the authors find out that many applications exhibit different memory bandwidth and/or
LLC usage behavior even though they have similar CPU utilization and memory capacity demand. A-
DRM devise a cost-benefit model using LLC misses and memory bandwidth to assess the interference
among VMs and gives better VM allocation decisions.

M. Liu and T. Li investigate four different sources of microarchitectural resource contentions on
server virtualization and workload consolidation environments [17]. The four sources are LLC con-
tention, remote memory access, memory controller conflict and Interconnect congestion. They design

23



Issues on Manycore NUMA Jongmoo Choi

three optimization techniques, namely estimation memory access overhead, a NUMA-aware buddy al-
locator and a P2M swap FIFO, and incorporate them into the hypervisor’s virtual machine memory
allocation and page fault handling routines.

BRM (Bias Random vCPU Migration) is suggested by J. Rao et al. [22]. It is a novel virtual ma-
chine scheduling algorithm that dynamically migrates vCPUs to minimize the system-wide resources
contentions. The authors observe that the penalty of referencing the uncore memory subsystem is a
good runtime metric of application performance. Hence, BRM selects a biased processor who has the
minimum penalty as the migration destination. In addition, it employs randomness to produce more pre-
dictable system performance for dynamic workloads and to avoid expensive synchronization on multiple
independent cores.

3.2 Analysis of Application Characteristics

In a multicore NUMA system, applications co-scheduled at a same processor affect each other due to the
sharing of microarchitectural resources. Some applications suffer from performance degradation when
co-scheduled applications contend for shared resources in a destructive manner. On the contrary, other
applications do not experience such degradation when co-scheduled applications scarcely utilize shared
resources.

Hence, application characteristics such as working set size, cache utilization and memory access
rate give a significant impact on shared resources usage, eventually leading to different performance
degradation. Several techniques have been proposed to classify applications for determining how they
affect each other when competing for shared resources. The classification can be used effectively for
identifying which applications should and should not be scheduled together.

Xie and Loh propose an interesting classification technique for identifying the personalities of ap-
plications with respect to their cache sharing behaviors [27]. Their technique is referred to as an animal
classification since they classify applications into four animals, turtle, sheep, rabbit and devils. In the
technique, when an application does not access LLC a lot (specifically, less than 1000 during one million
cycles), it is classified as turtle. Among other applications, if its miss rate is high (> 10%) or the total
number of misses is high (> 4,000), it is classified as devil. Next, an application that requires at least
half of LLC size to achieve more than 95% hit rate is classified as rabbit. The remaining applications
become sheep.

The rationale behind this classification is as follows. An application classified as turtle usually has
a small working set that completely fits within the L1/L2 cache of a core and therefore rarely accesses
LLC. On the contrary, an application classified as devil accesses LLC very frequently, but still have very
high miss rate. The authors mention that devil applications do not play well with other applications.
Both sheep and rabbit applications access LLC frequently and have high hit rate. But, rabbit requires
large LLC size for high hit rate while sheep does not sensitive to the size, achieving a high hit rate
with a small LLC size. The authors verify the effectiveness of their classification using dynamic cache
partitioning (e.g., cache partitioning by catching devils) and scheduling (e.g., co-schedule rabbit-sheep
and turtle-devil pairing instead of rabbit-devil and turtle-sheep pairing)

Lin et al. design a classification technique that classifies applications into 4 different colors, namely
red, yellow, green and black [16]. They compare application’s performance under the two cases; running
with 1MB and running with 4MB LLC. Any program with greater than 20% slowdown was classified as
red while 5%∼20% slowdown as yellow. Out of the remaining applications (less than 5%), an application
whose cache misses per thousand cycles is larger than 14 is classified as green, otherwise as black.
It implies that an application classified as red suffers from the cache reduction the most. A yellow
application suffers less while a green or black application the least. A black application not only shows
small performance degradation but also hardly uses LLC. This classification suggests that we can reap

24



Issues on Manycore NUMA Jongmoo Choi

the most benefits when a red application is co-scheduled with a green or black one.
The pain classification is proposed by Zhuravlev et al. [30]. The technique is based on two new

concepts: cache sensitivity and intensity. The sensitivity is a measure of how much an application will
suffer when cache space is taken away from it due to contention, while the intensity is a measure of how
much an application will hurt others by taking away their space in a shared cache. Then, the pain of A
due to B is calculated as the intensity of B multiplied by the sensitivity of A. Finally, the performance
degradation of co-scheduling A and B together is the sum of the Pain of A due to B and the Pain of B
due to A.

Subramanian et al. devise an interesting model, called application slowdown model that accurately
estimates application slowdowns due to interference at both the shared cache and main memory [24]. The
slowdown is assessed by comparing the co-scheduled performance with the alone performance. The for-
mer is measured on-the-fly while the latter is measured periodically in an aggregate manner by giving the
application’s requests the highest priority at the memory controller for minimizing memory interference
to the measured application. The authors also suggest three use cases of their model: slowdown-aware
cache partitioning, slowdown-aware memory bandwidth partitioning and soft slowdown guarantees.

4 Observation

As discussed in Section 3, applications affect microarchitectural resources in a different way which even-
tually leads to distinctive performance degradation. To analyze these effects quantitatively, we choose
11 applications from SPEC CPU2006 [23], PARSEC [1] and NAS Parallel Benchmark [20] and execute
them on our experimental system that have two processors, four cores in each processor, 32GB main
memory and 8MB shared LLC. Each core has 32KB Instruction/Data L1 Cache and 256KB L2 Cache.

In this experiment, we compare two scenarios; one is the single execution scenario and the other is
the concurrent execution one. In the single execution scenario, we run an application alone in a processor
and measure its execution time. In contrast, in the concurrent execution scenario, we run two applica-
tions simultaneously within a same processor. Note that, in the singe scenario, all microarchitectural
resources are utilized by the application. On the contrary, in the concurrent scenario, the utilization of
the microarchitectural resources is interfered by the co-scheduled application. Hence, we think that the
performance differences between the single and concurrent scenario are mainly due to the contention of
the microarchitectural resources.

30%

40%

50%

60%

70%

80%

90%

100%

lbm
libquantum

lu.B
sp.B

ua.B
sphinx

om
netpp

stream
cluster

canneal

ferret

grom
acs

P
e
rf

o
rm

a
n
c
e

lbm
libquantum
lu.B
sp.B
ua.B
sphinx
omnetpp
streamcluster
canneal
ferret
gromacs

Figure 3: Impact of an application on others

Figure 3 presents our experimental results. In the figure, the x-axis represents the applications where

25



Issues on Manycore NUMA Jongmoo Choi

each application has 10 bars (each application has 10 cases for the concurrent scenario since there are
11 applications). The y-axis is the performance of the concurrent scenario relative to the single scenario.
From the results, we can make the following three observations. First, each application gives different
impact on other applications. Some influence strongly while others are not. For instance, libquantum
drops the performance of lbm to 35% (the first bar of the lbm graph) while gromacs drops lbm’s perfor-
mance to 97% (the last bar of the lbm graph).

The second observation is that some applications are more sensitive than others. Specifically, libquan-
tum’s performance degradation is quite sensitive to the co-scheduled application, ranging from 51% (the
first bar of the libquantum graph where it is co-scheduled with lbm) to 96% (the last bar of libquan-
tum when libquantum is co-scheduled with gromacs). On the contrary, gromacs is less sensitive to the
co-scheduled application whose degradation ranges from 94% to 97%,

The final observation is that each application shows some consistent influence patterns on other ap-
plications. For instance, lbm and libquantum affect other applications strongly for all applications. In the
animal classification taxonomy, they can be classified as devil [27]. On the contrary, ferret and gromacs
influence the least, like turtle in the animal classification. In the legend of Figure 3, we intentionally
place applications according to their influentiality. Then, all bars in each graph have a tendency to the
rising pattern.

Our observations provide useful hints for application allocation decisions. For instance, allocating
lbm and libquantum into a same processor incurs considerable performance degradation for both appli-
cations. Hence, we need to schedule these applications into different processors. On the contrary, ferret
and gromacs are good candidates for co-scheduling with lbm or libquantum since they are insensitive to
co-scheduled applications. In some cases, especially when there is a serious contention on microarchi-
tectural resources, an admission control that delayes an application dispatching is a better choice even
though there is an available core.

5 Conclusion

In this paper, we explain various types of contentions on microarchitectural resources. Then, we explore
the existing schemes such as LLC partitioning, task scheduling, page placement and virtual machine
migration that are proposed to mitigate the contentions. In addition, we examine the application analysis
techniques to provide useful heuristics for the schemes and discuss several tradeoffs between memory
parallelism and remote memory latency and between core-level load balancing and microarchitectural
interference. Finally, we describes our observations about the influentiality and sensitivity among appli-
cations in a multicore NUMA system.

We will extend our study into two directions. The first one is designing a novel scheduling scheme
that exploits hints discussed in Figure 3. It considers both application characteristics and the microar-
chitectural resource utilizations for application allocation/migration decision. The second direction is
estimating application characteristics on-line without a priori knowledge. We are currently analyzing
several PMU (Performance Monitoring Unit) events such as LLC misses, memory requests per time
unit, and local/remote memory access to correlate these events with application characteristics.

Acknowledgments

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea
government(MSIP) (No. 2015R1A2A2A01007764) and also supported by the research fund of Dankook
University (BK21 Plus) in 2014.

26



Issues on Manycore NUMA Jongmoo Choi

References

[1] Princeton Application Repository for Shared-Memory Computers. PARSEC. http://parsec.cs.princeton.edu/.
[2] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra Fedorova. A case for numa-aware

contention management on multicore systems. In Proc. of the 2015 USENIX Annual Technical Conference
(USENIX’11), Portland, Oregon, USA, pages 1–1. USENIX, June 2011.

[3] Shekhar Bojkar. Composite cores: Pushing heterogeneity into a core. In Proc. of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’12), Vancouver, BC, Canada, pages 317–328. ACM
Press, December 2012.

[4] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek, Robert Morris, Aleksey
Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang, and Zheng Zhang. Corey: an operating system
for many cores. In Proc. of the 8th USENIX conference on Operating systems design and implementation
(OSDI’08), San Diego, California, USA, pages 43–57. USENIX, December 2008.

[5] Hsiang-Yun Cheng, Jia Zhan, Jishen Zhao, Yuan Xie, Jack Sampson, and Mary Jane Irwin. Core vs. uncore:
the heart of darkness. In Proc. of the 52th ACM/EDAC/IEEE Design Automation Conference (DAC’15), San
Francisco, California, USA, pages 1–6. ACM Press, June 2015.

[6] D. Levinthal. Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon 5500 Processor.
https://software.intel.com/, 2009.

[7] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers,
Vivien Quema, and Mark Roth. Traffic management: a holistic approach to memory placement on numa
systems. In Proc. of the 18th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’13), Houston, Texas, USA, pages 381–394. ACM Press, March 2013.

[8] John Demme and Simha Sethumadhavan. Rapid identification of architectural bottlenecks via precise event
counting. In Proc. of the 38th International Symposium on Computer Architecture (ISCA’11), San Jose,
California, USA, pages 353–364. ACM Press, June 2011.

[9] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik Hagersten. Bandwidth bandit: Quantitative
characterization of memory contention. In Proc. of the 11th Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO’13), Shenzhen, China, pages 1–10. IEEE, February 2013.

[10] Antonio Gonzalez, Fernando Latorre, and Grigorios Magklis. Processor Microarchitecture: An Implementa-
tion Perspective. Morgan and Claypool, 2010.

[11] Rentong Guo, Xiaofei Liao, Hai Jin, Jianhui Yue, and Guang Tan. Nightwatch: Integrating lightweight and
transparent cache pollution control into dynamic memory allocation systems. In Proc. of the 2015 USENIX
Annual Technical Conference (USENIX’15), Santa Clara, California, USA, pages 307–318. USENIX, July
2015.

[12] Vishal Gupta, Paul Brett, David Koufaty, Dheeraj Reddy, Scott Hahn, Karsten Schwan, and Ganapati Srini-
vasa. The forgotten ‘uncore’: On the energy-efficiency of heterogeneous cores. In Proc. of the USENIX
Annual Technical Conference (USENIX’12), Boston, MA, USA, pages 1–12. USENIX, June 2012.

[13] Stefan Kaestle, Reto Achermann, Timothy Roscoe, and Tim Harris. Shoal: smart allocation and replication
of memory for parallel programs. In Proc. of the 2015 USENIX Annual Technical Conference (USENIX’15),
Santa Clara, California, USA, pages 263–276. USENIX, July 2015.

[14] Haecheon Kim, Seungmin Lim, Junkee Yoon, Seungjae Baek, Jongmoo Choi, and Cho Seong-je. Analysis
of micro-architecture resources interference on multicore numa systems. In Proc. of the 31st Annual ACM
Symposium on Applied Computing (SAC’16), Pisa, Italy, pages 1871–1876. ACM Press, April 2016.

[15] Baptiste Lepers, Vivien Quema, and Alexandra Fedorova. Thread and memory placement on NUMA sys-
tems: Asymmetry matters. In Proc. of the 2015 USENIX Annual Technical Conference (USENIX’15), Santa
Clara, California, USA, pages 277–289. USENIX, July 2015.

[16] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sadayappan. Gaining insights
into multicore cache partitioning: Bridging the gap between simulation and real systems. In Proc. of the 14th
International Symposium on High Performance Computer Architecture (HPCA’08), Salt Lake city, Utah,
USA, pages 367–378. IEEE, February 2008.

[17] Ming Liu and Tao Li. Optimizing virtual machine consolidation performance on numa server architecture for

27



Issues on Manycore NUMA Jongmoo Choi

cloud workloads. In Proc. of the 41st annual international symposium on Computer architecuture (ISCA’14),
Minneapolis, Minnesota, USA, pages 325–336. IEEE, June 2014.

[18] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M. Sleiman, Ronald Dreslinski, Thomas F.
Wenisch, and Scott Mahlke. Thousand core chips: A technology perspective. In Proc. of the 44th
ACM/EDAC/IEEE Design Automation Conference (DAC’07), San Diego, California, USA, pages 746–749.
ACM Press, June 2007.

[19] Zoltan Majo and Thomas R. Gross. Memory system performance in a numa multicore multiprocessor. In
Proc. of the 4th Annual International Systems and Storage Conference (SYSTOR’11), Haifa, Israel, pages
1–10. ACM Press, May-June 2011.

[20] NAS ADVANCED SUPERCOMPUTING DIVISION. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/publications/npb.html.

[21] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In Proc. of the 39th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO’06), Orlando, Florida, USA, pages 423–432. IEEE, December 2006.

[22] Jia Rao, Kun Wang, Xiaobo Zhou, and Cheng-Zhong Xu. Optimizing virtual machine scheduling in numa
multicore systems. In Proc. of the 19th International Symposium on High Performance Computer Architec-
ture (HPCA’13), Shenzhen, China, pages 1–12. IEEE, February 2013.

[23] Standard Performance Evaluation Corporation. SPEC CPU2006. https://www.spec.org/cpu2006/.
[24] Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur Mutlu. The application slow-

down model: Quantifying and controlling the impact of inter-application interference at shared caches and
main memory. In Proc. of the 48th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’15), waikiki, Hawaii, USA, pages 62–75. ACM Press, December 2015.

[25] Hui Wang, Canturk Isci, , Lavanya Subramanian, Jongmoo Choi, Depei Qian, and Onur Mutlu. A-drm:
Architecture-aware distributed resource management of virtualized clusters. In Proc. of the 11th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE’15), Istanbul, Turkey,
pages 1–14. ACM Press, March 2015.

[26] Vincent M. Weaver. Linux perf event features and overhead. In Proc. of the 2nd International Workshop
on Performance Analysis of Workload Optimized Systems (FASTPATH’13), Austin, Texas, USA, pages 1–7,
April 2013.

[27] Yuejian Xie and Gabriel H. Loh. Dynamic classification of program memory behaviors in cmps. In Proc. of
the 1 In the 2nd Workshop on CMP Memory Systems and Interconnects (CMP-MSI’08), Phoenix, Arizona,
USA, pages 1–9, June 2008.

[28] Yuejian Xie and Gabriel H. Loh. Pipp: promotion/insertion pseudo-partitioning of multi-core shared caches.
In Proc. of the 36th annual international symposium on Computer architecture (ISCA’09), Austin, Texas,
USA, pages 174–183. ACM Press, June 2009.

[29] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page coloring-based multi-core cache
management. In Proc. of the 4th ACM SIGOPS/EuroSys European Conference on Computer Systems (EU-
ROSYS’09), Nuremberg, Germany, pages 89–102. ACM Press, April 2009.

[30] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared resource contention in
multicore processors via scheduling. In Proc. of the 15th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’10), Pittsburgh, PA, USA, pages 129–142.
ACM Press, March 2010.

——————————————————————————

28



Issues on Manycore NUMA Jongmoo Choi

Author Biography

Jongmoo Choi received the BS degree in oceanography from Seoul National Univer-
sity, Korea, in 1993, and the MS and PhD degrees in computer engineering from Seoul
National University in 1995 and 2001, respectively. He is a professor in the Depart-
ment of Software, Dankook University, Korea. Previously, he was a senior engineer
at Ubiquix Company, Korea. He held a visiting faculty position at the University of
California, Santa Cruz, from 2005 to 2006, and at the Carnegie Melon University,
Pittsburgh, from 2014 to 2015. His research interests include system software, file

systems, mobile storage, and virtualization.

29


	Introduction
	Background
	Microarchitectural Resources
	Contentions on Microarchitectural Resources

	Research Issues
	Microarchitectural Resource Management Schemes
	Analysis of Application Characteristics

	Observation
	Conclusion

