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Abstract

Cloud computing grows as an important keyword to accelerate IT businesses. A feature of cloud
computing is distributed architecture based on unfixed nodes, and security risks have been high-
lighted for cloud computing services. In this paper, we present a novel approach for solving the
essential issue of cloud computing: how to protect a program running in an untrusted cloud comput-
ing environment. We apply a separation technique to the program and divide it into two pieces: a user
program and a protected program. Our security analysis shows that both internal and external attacks
require exponential computational costs; that is, our scheme is computationally secure against these
attacks.

1 Introduction

Cloud computing is an important key phrase in accelerating IT businesses. A feature of cloud computing
is distributed architecture based on unfixed nodes. Cloud computing reduces the total cost of a service
by sharing all computational resources with other services. Platform-as-a-Service (PaaS) is the service
model of cloud computing, and it provides a program-executable environment for service providers.
PaaS facilitates deployment of programs without the cost and complexity of buying and managing the
underlying hardware and software layers. However, some security risks have been highlighted for cloud
computing services. It is impossible for users to verify the trustworthiness of all cloud computing en-
vironments, and the concern is that operations in cloud computing may be carried out without trusted
environments. The dynamic and fluid nature of the environments will make it difficult to maintain the
consistency of security and ensure the ability to audit records. Thus, moving critical programs and sen-
sitive data to a public and shared cloud computing environment is a major concern for service providers
[19].

In this paper, we focus on the main issue: how to protect service programs against a malicious cloud
platform provider. The malicious cloud platform provider may analyze the inside of a service program
and steal important information.

We present a novel approach for solving the essential issue of cloud computing: how to protect a
program running in an untrusted cloud computing environment. We apply a separation technique to
the program and divide it into two pieces: a user program and a protected program. The user program
executes in a trusted environment and transforms the input and output. The protected program runs in
the untrusted environment and deals only with transformed data. We define two types of attacks and
analyzed the computational costs of the attacks for the scheme. We evaluate the performance of our
scheme using a theoretical analysis. The rest of the paper is organized as follows: section 2 provides
related work about our separation approach. Section 3 explains security issues handled in the paper. Our
methodologies are presented in section 4. Section 5 provides security and performance analyses. The
paper concludes with section 6.
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2 Related Work

Existing software protection schemes fall into three categories: software-based, hardware-based, and
combined hardware and software based.

SOFTWARE-BASED SCHEME. License checking using an activation code is a common function of
copy protection software. Software obfuscation schemes transform the original program into an obfus-
cated program that is difficult to analyze, while preserving its function. Some of the obfuscation schemes
focus on obscuring the data structures in a program [5, 22, 10], and some focus on obscuring the control
flow [12, 24, 3]. Software watermarking schemes embed auxiliary information for identification into
a program [4, 17, 6]. The drawback of watermarking is that it cannot prevent or detect unauthorized
copying in real time.

Online schemes use an external server to check the user license [16, 8] or to execute essential parts of
a program [27, 18]. The drawbacks of these schemes are that the program manufacturer must deploy and
manage a server, and program execution requires network access between the server and user terminal.

There is the same security issue on mobile agent [7, 13]: how to protect execution code against a
malicious execution environment. Sander and Tschudin proposed a solution [20] using a homomorphic
encryption scheme. In their scheme, all operations are executed for encrypted data; thus, only limited
operations can be implemented, and heavy computations are required for the operations.

HARDWARE-BASED SCHEME. Hardware-based schemes execute a whole program on a special
hardware device, such as a secure processor [11, 14, 25, 23, 21]. These schemes are expensive solutions
since tamper-proof, high-performance hardware is needed to execute an entire program in a protected
domain on the hardware.

COMBINED HARDWARE AND SOFTWARE SCHEME. Combined hardware and software schemes
reduce the deployment cost of hardware-based schemes. A program is executed on an unprotected device
and only the important functions are executed on resource-constrained hardware. Atallah and Li [2]
proposed a license management scheme for smart cards. In this scheme, the program is unprotected
on the device. Mana and Pimentel [15] and Zhang and Gupta [26] presented schemes where only the
essential parts of the program are executed on secure hardware. Their schemes require the development
of distinct functions on each piece of hardware.

Anderson [1] studied the theoretical aspects of the combined schemes based on complexity theory.
A program can execute securely in conjunction with a partnering oracle on a secure device. The oracle
collaborates with any program by changing the parameters, since the function of the oracle is common
to all programs. Anderson proved that Turing machines are secure under the assumption that a secure
device can be used.

Fukushima et al. [9] proposed a practical software protection scheme that transforms a general pro-
gram into a protected program. The protected program handles encoded data on an unprotected device;
then, the TPM decodes the execution result. Two open issues exist: (1) how to protect against dynamic
attacks where the attacker can eavesdrop or tamper with the communication between the program and the
hardware, and (2) how to apply the scheme to other variables besides integer variables. Another software
protection issue is how to provide quantitative analysis of security.

3 Threats on the Cloud Computing

First, we consider adversary model for the cloud computing. Figure 1 shows typical architecture of
cloud computing. In PaaS services, the platform provider supplies a software development kit (SDK) and
service providers develop service programs for the platform. Users can access the services by executing
these programs from a user terminal via the Internet. This paper focuses how to establish a secure
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Figure 1: System Architecture

program execution platform for PaaS services.
It is assumed that three kinds of entities try to attack the cloud computing. External attackers can

eavesdrop or modify Internet communications between a user terminal and service program. Malicious
users try to attack other users to steal secret information or using a service without the correct permission.
Furthermore, we have to consider malicious platform providers. However, if the ability of the malicious
platform provider is unlimited, we have to assume all possible attacks by the provider, which is a very
difficult task to realize secure cloud computing. Thus, we consider a reasonable adversary model as
follows;
Curious Platform Provider. The platform provider honestly executes user requests and cannot obtain any
information from the execution environment such as physical memory. However, the platform provider
may try to use the user’s program maliciously or to obtain information from data storage. This model is
a reasonable model where we consider the system manager of the platform as an attacker.

We should consider the following threats for secure cloud computing.

• Malicious users or malicious platform providers may access a service program and execute it on
the platform.

• Malicious users or malicious platform provider may steal user’s information stored into the service
program.

• External attacker may modify a communication between a user terminal and the platform, or steal
user’s information from communication data.
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4 Software Protection Scheme for Cloud Computing

Section 4.1 gives an overview of our scheme. A program transformation procedure and its extension are
shown in Section 4.2 and Section 4.3. We explain the execution sequence in Section 4.4.

4.1 Overview

Our scheme transforms a target program into a protected program and a user program. The protected
program is executed on the platform and only handles encoded data. The program receives encoded
input and sends back the encoded output to the user program. The user program is executed on the
user terminal. This function encodes the input by the user and sends it to the protected program. After
receiving the encoded output, the user program checks the validity of the output. If it is valid, the
function returns the decoded execution result to the user. Figure 2 shows the execution process of the
whole program. The user program encodes the input using encoding rules and checks the validity of the
data received from the protected program using a non-trivial relation. Finally, it decodes the execution
result of the whole program using a decoding rule. The encoding rules, non-trivial relation, and decoding
rule are defined in the program transform procedure in Section 4.2.

Throughout this paper, the following assumptions are used:

• The target program returns the execution result as a numerical value.

• No attack against the user program on the user terminal is possible.

4.2 Program Transformation Procedure

The procedure encodes multiple variables with the same bit-lengths l. The limitation on the length of
variables is eliminated by the extension in Section 4.3. We denote a left bit-rotation operator by ≪ and
a bitwise exclusive-or operator by ⊕.
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Step 1. Select Target Variables We select n variables whose values are to be encoded. Note that the
variable that stores the execution result must be selected — we call the variable x1. The variables storing
user input also must be selected. Let these target variables be x1, x2, . . . , xn. Then, we select rotation
amounts s1, s2, . . . , sn (0≤ si < l) for each target variable. The target variable xi is bit-rotated by si bits
in accordance with the encoding rules.

Step 2. Define Encoded Variables We define m encoded variables y1, y2, . . . , ym to save the encoded
values of the target variables. The number of encoded variables m must be greater than the target variables
n. We then select rotation amounts t1, t2, . . . , tm (0 ≤ t j < l) for each encoded variable. The encoded
variable y j is bit-rotated by t j bits in accordance with the encoding rules.

Step 3. Construct Encoding/Decoding Rules and Non-trivial Relations We select an m×n Boolean
matrix A with rank n and an m-dimensional vector b. Each element of the matrix must be 0 or 1, and
each element of the vector must be an l-bit constant. Next, make a relational equation using matrix A,
vector b, and rotation amounts s1, s2, . . . , sn, t1, t2, . . . , tm as follows:

y1 ≪ t1
y2 ≪ t2

...
ym ≪ tm

= A


x1 ≪ s1
x2 ≪ s2

...
xn ≪ sn

⊕b.

The encoding rules (E1,E2, . . . ,Em) are obtained by solving this equation for encoded variables y1, y2,
. . . , ym:

y1 = E1(x1,x2, . . . ,xn),

y2 = E2(x1,x2, . . . ,xn),

...

ym = Em(x1,x2, . . . ,xn).

The user program on the user terminal stores all the encoding rules to encode the input given by a user.
Then, we solve the above equation for the target variables x1, x2, . . . , xn. We have decoding rules

(D1,D2, . . . ,Dn) such that

x1 = D1(y1,y2, . . . ,ym),

x2 = D2(y1,y2, . . . ,ym),

...

xn = Dn(y1,y2, . . . ,ym).

n out of m encoded rules are used to find the decoding rules. The user program stores decoding rule D1
to decode the execution result stored in variable x1.

Non-trivial relations (R1,R2, . . . ,Rm−n) such that

R1(y1,y2, . . . ,ym) = 0,

R2(y1,y2, . . . ,ym) = 0,
...

Rm−n(y1,y2, . . . ,ym) = 0,
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are obtained by replacing target variables xi with Di(y1,y2, . . . ,ym) in the unused m− n rules. Encoded
variables y1, y2, . . . , ym satisfy these relational equations. Thus, we can use a relational equation to check
the validity of the output from the protected program in the platform. Recall that a query consists of the
values of the encoded variables. Using these non-trivial relations, a decoding rule can be expressed in
2m−n ways. For example, D1⊕R1 or D1⊕R2⊕R3 is another expression for decoding rule D1. Note that
we define exclusive-or of two functions F1⊕F2(y1,y2, . . . ,ym) by F1(y1,y2, . . . ,ym)⊕F2(y1,y2, . . . ,ym).

Step 4. Encode Target Variables in Program This step substitutes all the variables x1, x2, . . . , xn

used in the program with the encoded variables y1, y2, . . . , ym. We replace the target variables with the
assigned values, and then we replace the variables whose values are referenced. Note that variable x1 in
the instruction that returns the execution result is not replaced in this step.

First, we encode the variables to be assigned. We replace the assignment instructions for variables
x1, x2, . . . , xn with assignment instructions for the encoded variables y1, y2, . . . , ym. Generally, the
assignment instruction xi← v is replaced with the following instruction:

y1
y2
...

ym

←


E1(x1,x2, . . . ,v, . . . ,xn)
E2(x1,x2, . . . ,v, . . . ,xn)

...
Em(x1,x2, . . . ,v, . . . ,xn)

 .

Encoding rules in which variable xi is replaced with v appear on the right side of the instruction. Encoded
variables y1, y2, . . . , ym are simultaneously updated when this instruction is executed.

Next, we encode the variables to be referenced. We replace target variables x1, x2, . . . , xn with the
decoding rules D1, D2, . . . , Dn, respectively. The instruction obtained in the previous step is changed to
the following instruction: 

y1
y2
...

ym

←


E1(D1,D2, . . . ,v, . . . ,Dn)
E2(D1,D2, . . . ,v, . . . ,Dn)

...
Em(D1,D2, . . . ,v, . . . ,Dn)

 .

Step 5. Modify Program We modify the protected program so that it executes in conjunction with the
user program in the user terminal. This step consists of three parts: (1) adding declarations, (2) replacing
assignment instructions, and (3) adding communication instructions.

First, we add the declaration of encoded variables y1, y2, . . . , ym, and temporary variables z1, z2, . . . ,
zm. Temporary variables are used to save the values of the encoded variables.

Next, we replace the simultaneous assignment instructions introduced in Step 4 with instructions
for one variable that can be implemented in a typical program. For example, the above assignment
instruction is decomposed into the following instructions:

z1 ← y1,z2← y2, . . . ,zm← ym,

y1 ← E1(D′1,D
′
2, . . . ,v, . . . ,D

′
n),

y2 ← E2(D′1,D
′
2, . . . ,v, . . . ,D

′
n),

...

ym ← Em(D′1,D
′
2, . . . ,v, . . . ,D

′
n).

The values of variables y1, y2, . . . , yn are saved to temporary variables z1, z2, . . . , zm; then, the updated
value of each variable is sequentially calculated. D′1, D′2, . . . , D′n denote the decoding rules where the
encoded variable y j is replaced with temporary variable z j.
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Finally, we insert the instruction for collaboration between the protected program and user terminal.
The instruction sends values v1, v2, . . . , vm of encoded variables y1, y2, . . . , ym to the user program of the
user terminal. This instruction is inserted into the end of the protected program and the instruction that
outputs the value of x1 as the execution result.

4.3 Extension for Arbitrary Length Variables

The bit lengths of all the variables were assumed to be l in the program transfer procedure. However,
actual programs contain character, integer, and double data types. Generally, each data type has a distinct
data length; thus, the program transformation procedure cannot be applied without some modification.
This subsection addresses how to encode variables longer or shorter than l bits.

We divide long data into multiple l-bit data. For example, a union data type is available in the C/C++
language. We can assign nl-bit data to n l-bit variables and encode these variables according to the
program transformation procedure. A l-bit variable can store shorter data with no loss of bits. Thus, we
can assign the shorter data to an l-bit variable and encode the variables.

4.4 Execution

We show the execution sequence of the whole program. The user program on the user terminal stores
all the encoding rules E1, E2, . . . , Em decoding rule D1, and non-trivial relation R1. The non-trivial
relation checks the validity of the response from the protected program, and the decoding rule decodes
the execution result. (There is no special reason to select R1 for checking. We can use other non-trivial
relations R2, R3, . . . , Rm−n instead of R1.)

1. The user provides input to the user program on the user terminal.

2. The user program set the input to the corresponding target variables. Random values are set to the
remaining target variables as dummy input.

3. The user program encodes the input.

4. The user program sends the encoded input as a query to the protected program on the platform.

5. The protected program processes the encoded input.

6. The protected program returns the encoded output.

7. The protected program sends back the encoded output as a response to the user program.

8. The user program checks the validity of the response in order to eliminate modified responses
from an attacker. The user program calculates the value of R1(v1,v2, . . . ,vm) from the response. If
R1(v1,v2, . . . ,vm) = 0 holds, the user program decides the response is valid. Otherwise, it decides
that the query is modified.

9. The user program decodes the value of x1 if the response from the protected program is valid. The
user program uses decoding rule D1, i.e., x1 = D1(v1,v2, . . . ,vm).

10. The user program returns the value of x1 to the user. If the response from the protected program is
invalid it returns ⊥.
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Figure 3: Our Attack Model

5 Analysis

We show the analyses of security and the performance for our scheme in this section.

5.1 Security Analysis

We quantitatively evaluate the computational cost of attacks against the protected program.

5.1.1 Attack Model and Security Definition

We use the following attack models for the security analysis. There are two attack models: an internal
attack and an external attack. An internal attack can be executed by as malicious platform provider
and malicious users who can access the protected program on the platform. An external attack can be
executed by an outside attacker who can only access the communication between the user terminal and
the platform. Figure 3 shows our attack model. The security definition is provided as follows:
Definition. A cloud computing architecture is secure if the architecture can prevent an internal attack
and an external attack.

5.1.2 Security against Internal Attack

The goal of an attacker is to use the protected program or obtain user information stored in the program.
An internal attack can be categorized as a brute force attack and an algebraic attack. A brute force attack
and an algebraic attack try to derive the encoding rules. After obtaining all the encoding rules, the attacker
can use the protected program by transforming its input and output or decode the user information in
the program. We do not consider dynamic attacks since a curious platform provider cannot access the
execution environment (see our definition in Section 3).

In a brute force attack, the attacker must guess all the elements of matrix A and vector b; and rotation
amounts s1, s2, . . . , sn, t1, t2, . . . , tm. The number of possible m×n matrices with rank n is greater than
2mn−2 [10], and the number of possible vector b is 2l . The number of possible combinations of rotations
is lm+n. Thus, the computational cost of a brute force attack is 2mn−2lm+n2l = Ω(exp(mn)).

In an algebraic attack, an attacker collects m decoding rules and solves the equations for the target
variables x1, x2, . . . , xn. The attacker must guess the correspondence between m decoding rules and
n target variables. Recall that there are 2m−n expressions for each decoding rule, thus distinct rules
may decode the same target variables. The guess requires nm = Ω(exp(m logn)) computational cost.
If an attacker derives all the non-trivial relations, the number of equations required for the analysis is
reduced to n. Non-trivial relations need to be identified by a brute force attack. The attacker must
guess the presence or absence of each encoded variable y j; then, the attacker must guess the rotation
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amount t j if y j exists. The attacker also guesses the l-bit constant in the relation. Thus, the guessing
of non-trivial relations requires (l + 1)m · 2l/l = Ω(exp(m log l)) computational cost. Note that there
are l valid expressions for a non-trivial relation. We have another expression for a non-trivial relation
by bit-rotating both sides of the relation by i bits (1 ≤ i ≤ l− 1). Finally, the total computational cost
of this attack is Ω(exp(m log l))nn = Ω(exp(m log l + n logn)). We conclude that internal attacks re-
quire Ω(exp(min{m logn,m log l + n logn})) computational cost, considering the costs for the attacks
discussed above.

5.1.3 Security against External Attack

The goal of an attacker is to decrypt or tamper the communication between a user terminal and the
platform without accessing the protected program. An external attack can be categorized as a decrypting
attack and a tampering attack.

In a decrypting attack, an attacker tries to obtain user input or output by decrypting communications.
The attacker cannot access the protected program in the platform, and one has to derive all the encoding
rules by brute force. Thus, the computational cost of a decrypting attack is 2mn−2lm+n2l = Ω(exp(mn))
from the above analysis.

In a tampering attack, an attacker has to derive the decoding rule D1 in order to bypass the verifica-
tion by the user program. The total number of possible candidates for decoding rule D1 is (l + 1)m · 2l

considering the presence of each variable, rotation amounts, and constants. There are 2m−n valid expres-
sions for decoding rule D1. A tampering attack requires (l + 1)m · 2l/2m−n = Ω(exp(m(log l− 1)+ n))
computational cost.

We conclude that external attacks require Ω(exp(m(log l−1)+n)) computational cost. Furthermore,
an external attacker cannot determine the identity of encoded input. Note that random numbers are set to
target variables (see section 4.4).

5.2 Performance Analysis

The number of instructions increases in Step 4 of the program transformation procedure. The first proce-
dure replaces variables to be assigned with encoded variables. An assignment instruction is replaced with
m instructions for each encoded variable. This instruction also contains at most m bit-rotation operations
and exclusive-or operations. The number of instructions increases with O(m2).

The second procedure of Step 4 replaces variables to be referenced with encoded variables. A target
variable is replaced with the corresponding decoding rule. A decoding rule contains at most m bit-
rotation operations and exclusive-or operations; thus, the number of instructions increases with O(m).
The protected program needs O(m3) times instructions as the original program. However, we can prevent
the increase in the number of instructions by simultaneously encoding independent instructions.

A protected program contains many bit-rotation operations, but the C/C++ language does not provide
bit-rotation operations as a standard function. In contrast, some processors support bit-rotation opera-
tions as processor instructions. In such cases, we may reduce the program execution time by using this
instruction. In-line-assembly techniques are available to embed processor instructions into the source
code.

The user program encodes the input and decodes the output of the protected program. Thus, two
round-trip communications between a user terminal and the platform are required for every execution.
The user program has to store all the encoding rules E1, E2, . . . , Em, decoding rule D1 and non-trivial
relation R1. The total number of possible decoding rules or non-trivial relations is (l + 1)m · 2l; that is,
lg((l + 1)m · 2l) bits of data are needed to identify D1 or R1. Thus, the user program consume at most
(m+2)[m(lg l +1)+ l]-bits of storage of a user terminal. E1, E2, . . . , Em, D1 and R1 contain at most m
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bit-rotation operations and m exclusive-or operations. Thus, our scheme imposes O(m2) computational
cost on the user terminal.

6 Conclusion

In this paper, we presented a possible solution for security issues in cloud computing environments. Our
scheme divides an execution code into two pieces and protects the whole program against malicious
environments. We quantitatively analyzed the security of our scheme. Our results show that our scheme
achieves computational security against both internal and external attacks.
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A Toy Example

This section shows a toy example. Figure 4 shows the source code of the original program that calculates
the i-th term of the Fibonacci sequence. Figure 5 shows the source code of user program and Fig. 6
shows the source code of the protected program.

We use these encoding rules

y1 = b ≪ 28⊕ i ≪ 4⊕−315671005,

y2 = i ≪ 14⊕a ≪ 22⊕1966373211,

y3 = a ≪ 3⊕b ≪ 19⊕−1857746742,

y4 = a ≪ 28⊕b ≪ 12⊕ i ≪ 20⊕824205888

to encode variables a, b and i in the target program. Decoding rules are as follows:

a = y1 ≪ 20⊕ y4 ≪ 4⊕−315671005,

b = y2 ≪ 26⊕ y4 ≪ 20⊕−1751883256,

i = y3 ≪ 5⊕ y4 ≪ 12⊕−983868959.

The encoded variables y1, y2, y3 and y4 satisfy the non-trivial relation

R1(y1,y2,y3,y4) = y1 ≪ 9⊕ y2 ≪ 31⊕ y3 ≪ 12⊕−942915997 = 0.
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int main(void){
int a, b, cnt, tmp, i;

a = 0;

b = 1;

printf("Input i: ");

scanf("%d", &i);

for(cnt = i; cnt > 0; cnt--){
tmp = a;

a = b;

b = tmp + b;

}
printf("Fibonacci(%d) = %d\", i, a);

return 0;

}

Figure 4: Source code of target program

int UserProgram(void){
int a, b, i, y1, y2, y3, y4;

int ary[4];

printf("Input i: ");

scanf("%d", &i);

a = rand(); b = rand();

y1 = rotl(b,28)^rotl(i, 4)^-315671005;

y2 = rotl(i,14)^rotl(a,22)^1966373211;

y3 = rotl(a, 3)^rotl(b,19)^-1857746742;

y4 = rotl(a,28)^rotl(b,12)^rotl(i,20)^188669860;

ary[0] = y1; ary[1] = y2; ary[2] = y3; ary[3] = y4;

ProtectedProgram(ary);

y1 = ary[0]; y2 = ary[1]; y3 = ary[2]; y4 = ary[3];

if ((rotl(y1, 9)^rotl(y2,31)^rotl(y3,18)^-942915997) == 0){
printf("Fibonacci(%d) = %d\n", i, rotl(y1,20)^rotl(y4, 4)^1372793011);

}
else {
printf("Verification Error !\n");
}

return 0;

}

Figure 5: Source code of user program
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int ProtectedProgram(int *ary){
int y1, y2, y3, y4, z1, z2, z3, z4, cnt, tmp;

y1 = ary[0]; y2 = ary[1]; y3 = ary[2]; y4 = ary[3];

// a = 0 ;

// b = 1 ;

z1 = y1; z2 = y2; z3 = y3; z4 = y4;

y1 = rotl(z3, 9)^rotl(z4,16)^-1466261441;

y2 = rotl(z3,19)^rotl(z4,26)^-1555298291;

y3 = -1857222454;

y4 = rotl(z3, 25)^z4^-1792894447;

// for (cnt = i; cnt > 0; cnt--){
for (cnt = rotl(y3, 5)^rotl(y4,12)^-983868959; cnt > 0; cnt--){

// tmp = a;

tmp = rotl(y2,10)^rotl(y3,29)^rotl(y4, 4)^807417485;

// a = b;

z1 = y1; z2 = y2; z3 = y3; z4 = y4;

y1 = rotl(z2,22)^rotl(z3, 9)^837019167;

y2 = rotl(z3,19)^rotl(z4,26)^rotl(z2,16)^rotl(z4,10)^560590101;

y3 = rotl(z2,29)^rotl(z4,23)^rotl(z2,13)^rotl(z4,7)^1034069037;

y4 = rotl(z2,22)^rotl(z4,16)^rotl(z2,6)^rotl(z3,25)^1518028104;

// b = tmp + b;

z1 = y1; z2 = y2; z3 = y3; z4 = y4;

y1 = rotl(tmp + (rotl(z2,26)^rotl(z4,20)^-1751883256),28)^rotl(z3, 9)

^rotl(z4,16)^-1197825985;

y2 = rotl(z3,19)^rotl(z4,26)^rotl(z1,10)^rotl(z4,26)^-1885831993;

y3 = rotl(z1,23)^rotl(z4, 7)^rotl(tmp + (rotl(z2,26)^rotl(z4,20)

^-1751883256),19)^534531408;

y4 = rotl(z1,16)^rotl(tmp + (rotl(z2,26)^rotl(z4,20)^-1751883256),12)

^rotl(z3,25)^-1606436710;

}

ary[0] = y1; ary[1] = y2; ary[2] = y3; ary[3] = y4;

return 0;

}

Figure 6: Source code of protected program
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