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Abstract

The programmability has long been used as a tool to prove security of schemes in the random oracle
model (ROM) even in the cases where schemes do not seem to have a security proof in the standard
model [3, 8, 10]. On the other hand, it seems that a similar property has never been studied in the
generic models, i.e., the generic ring and group models, respectively the GRM and the GGM. This
work introduces this study. We start by proposing the use of the GRM and the GGM in simulation-
based security proofs, instead of the classical two-step approach: (1) find an efficient reduction R
from a problem P to an adversary breaking the scheme in some sense, and (2) use the GRM/GGM
to find a lower bound in the complexity of solving P. We observe that in such a model the simulator
can choose the outputs for the generic operation oracle in a similar fashion as the programmability
property of the ROM. We introduce four models named programmable and non-programmable for
the GGM and analogously for the GRM. We show that in the programmable generic models it is
possible to turn around the negative result by Nielsen [21], regarding the non-committing encryption
in the presence of an adversary who corrupts the receiver. We illustrate our idea by proving that the
Goldwasser-Micali encryption scheme is a non-committing encryption scheme regarding corruption
of the receiver in the programmable GRM. Whereas, for the programmable GGM, we show that the
popular ElGamal encryption scheme is also non-committing despite the corruptions of the receiver
and the sender. In both schemes the attack exposes the secret key.

Keywords: Non-committing, programmability, generic ring model, generic group model

1 Introduction

Before giving details of our contribution and motivation, we start by giving a short introduction of the
evolution of generic models and a description of how the property of programmability has arisen origi-
nally in security proofs based on the random oracle model.

1.1 Background

In the cryptographic literature the following models appear very often: (1) the random oracle model
(ROM), and (2) the generic group model (GGM) and, its generalization, the generic ring model (GRM).

The GGM, formally introduced by Shoup [23] and Nechaev [20], captures the situation that no
property of the representation of the groups are available to be exploited. The only available features
are the group operation and the equality test between two members of the group. Both features are
modeled as a generic operation oracle. The generalized notion of GRM models all the ring operations,
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i.e., {+,−,×,/}, and tests for equality and existence of the inverse of the members of the ring. Both
GGM and GRM have been used along the years to provide evidence for intractability of computational
problems and to investigate relations between problems, e.g., [1, 18, 23]. One of the most famous use of
the GGM is in provable security, precisely in the two-step security proofs. Namely, (1) find a reduction,
say B, from a problem P to a successful adversary, and (2) show that the P is intractable in GGM.

Since its introduction in the Nineties, it has been used to argue about the assumed hardness of com-
putational problems, i.e., computing discrete logarithms, the computational Diffie-Hellman problem, the
decisional Diffie-Hellman problem and etc. Maurer introduced a different formulation [18], which Jager
and Schwenk showed to be equivalent to Shoup’s formulations [15] in a work which studies the models
themselves. In 2008, the GGM was generalized to the GRM by Aggarwal and Maurer [1] using ideas
already proposed by Boneh and Venkatesan [4]. Based on [1], Jager and Schwenk [16] improved once
more the formulation of the GRM and showed that there are problems that can be solved efficiently in
practice, however in the GRM they are equivalent to factoring the modulus N = p ·q.

More recently, the study of problems in the generic models has been improved by the introduction
of a new model named the semi-generic group model by Jager and Rupp [14]. This new model aims to
cover the recently increased number of problems specially after the advent of pairing cryptography.

1.2 Related Work

A main goal in cryptography is to implement adaptively secure protocols. So far only statically secure
implementation from the information theoretical model1 are known. The idea is to implement them in
the cryptographic model without erasure2. This approach is based on Canetti’s observation in [5, 6] that
any CCA (chosen ciphertext attack) secure encryption scheme would work as a secure implementation
as long as it has the non-committing3 property [6], and includes in the message two identification strings
in order to protect against retransmission of the message by an attacker: one for the message (idm) and
the other for the sender (idSEN).

NON-COMMITTING ENCRYPTION AND PROGRAMMABILITY IN ROM. A particular result about
the ROM was discovered by Nielsen in [21]. He was the first to observe that a specific property of
the ROM is required to prove security for an entire class of encryption algorithms, i.e., non-interactive
and non-committing encryption (NINCE). The property name was coined the programmability of the
ROM. Briefly, programmability is the power that B has to choose the output of the random oracle when
interacting with the adversary (e.g., B chooses y arbitrarily and sets h(x) = y). That, ultimately, may help
B in solving P, giving the security proof. This result essentially means that there is no NINCE protocol
in the standard model, since no hash function is known to exist with the programmability feature required
by actual security proofs despite the efforts to construct this kind of primitives [13].

1.3 Motivation

The study of programmability in the generic models does not seem to have been proposed yet, although
the idea of “programming the oracle” is not new, and even similarities, as gaps between the models and
real situations, have been observed in the ROM and the GGM, e.g., Canetti, Goldreich and Halevi [7]
and Dent [9]. Hence from a theoretical viewpoint, this work partially fills a gap regarding generic models
in the current status of the research as shown in Table 1.

The work of Nielsen confirms the intuition that proofs which rely on the programmability of the
model are indeed more powerful, in the sense that more schemes can be proved secure. Therefore, from

1Where secure channels are assumed to exist.
2Where there are no secure channels and the parties are not trusted to erase their computation.
3Briefly, the encryption scheme that has the property of generating ciphertexts which can be opened to two different plaintexts.
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ROM GGM GRM
Gap [7, 19] [9, 11, 17] [16]

Programmability [12, 21, 24] [This work] [This work]

Table 1: Research on gaps and programmability for the ROM, the GGM and the GRM.

a more practical viewpoint our approach of using the programmability of the generic operation oracle
is interesting because it offers a new observation and an alternative to the reduction-centric two-step
security proofs in the generic models.

1.4 Our Contribution

In this paper we introduce the use of the programmability in the generic models. The intuition of our
models comes from the two-step approach for security proofs. Recall that the lower bound in the com-
plexity in the GRM and the GGM only applies for algorithms in these models. Therefore, although the
reduction B can be general, i.e., for all classes of algorithms, the security may not be carried from the
generic models. Implicitly, these proofs assume that every party has access to the generic group (or
ring) operation oracle. Our models explicitly capture this feature by using the G-hybrid model from the
universal composable (UC) framework [5] for the GGM (and R-hybrid model for the GRM). This makes
our programmable models equivalent to the regular GGM [23, 20] and GRM [1, 16].

The difference between the two models we propose is analogous to the Nielsen’s programmable and
non-programmable ROM. For example, in the case of the GGM, we make G widely available in the
non-programmable GGM while not in the programmable counterpart.

Recall that the generic operation oracle collects the operations as steps, formally as a tuple (i, j,◦),
where ◦ is one of the group operations (or ring operations) and i and j are pointers for previously com-
puted steps. We propose the use of these steps to “program” the generic operation oracle similarly to
the random oracle model. That is, when the simulator, in a simulation-based proof of security, needs
to simulate the ciphertext between the parties without knowing the message m, it delivers steps with no
computation associated with it as the ciphertext. This approach allows the simulator, after learning m, to
associate a suitable computation consistent with m, therefore creating a non-committing ciphertext. Our
main goal in this work is to study whether non-committing schemes are possible in generic models.

We present our four models in Section 3. They are the programmable and the non-programmable
GGM, and the GRM versions: the programmable and the non-programmable GRM.

In Section 4.2, we illustrate our proof technique using the programmability by analyzing the ElGamal
encryption scheme in the programmable GGM. Briefly, the proof gives a construction for a simulator and
uses the Schwartz Lemma [22, 23] to find a lower bound in the distinguishing game. Thereby showing
that ElGamal encryption scheme is non-committing under corruption of the sender and the receiver.

In Section 5.2, we rely on the formulation and machinery for the GRM by Jager and Schwenk [16]
to show that the Goldwasser-Micali (GM) is also a non-committing encryption scheme regarding only
receiver corruptions in the programmable GRM. This result does not rule out the possibility of a non-
committing encryption scheme considering also sender corruptions, however it is sufficient to circumvent
the result in [21] in the computational setting.

We point out that in both cases it is possible to prove despite the fact that the secret-key is exposed
when the receiver is corrupted4, which has been avoided in other schemes [2, Section 1.2 and 1.3]. In
the case of the non-programmable GGM and GRM, the result in [21] rules out the existence of non-
committing schemes.

4Which is a crucial step in the Nielsen’s information-theoretic argument in the ROM without programmability.
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One should have in mind that our proofs are in generic model, i.e., they provide the same caveats as
the regular proofs in the ROM [7, 19] and generic model. In particular, those discussed in [16], regarding
multiplicative groups of finite fields [14] and proofs which rely on programmability [12]. On the other
hand, there are certain elliptic curve groups that seem to fit into the GGM, because not many properties
are known out of the group operations. For those cases, our result in the programmable GGM shows that
non-committing encryption are possible in such a model.

1.5 Comparing ROM and Generic Models

We observe that while the ROM is a more accepted model to base the security of cryptographic schemes,
some skepticism is levered against generic models [9, 11]. However, in the case of the GGM, some
researchers claim that the issues raised along the years are in fact due to proofs given in the models and
not from weaknesses of the GGM, e.g., [17, Section 5], thus the model is as worth study as the ROM.

We recall that in the ROM, it is hopeless to use the model to try to justify the security of a system
when a broken hash function is considered as a substitute for the random oracle (think, for example, the
already broken MD5 hash function for signature schemes). Analogously, for the case of the GGM, it is
hopeless to use the model to prove the security of schemes when the concrete instantiation of the group
is a “bad” choice. Consider, for example, as “bad” choice the groups that are known to be susceptible to
the use of the index calculus algorithm, that gives a much faster and potential alternative for adversaries
which does not fit in the GGM.

Another common concern about proofs in generic models is that it applies to a restricted class of
generic adversaries, i.e., adversaries that do not receive a description of the concrete group being consid-
ered. We emphasize that the same is true for proofs in the ROM. Recall, that the adversary in ROM does
not receive the description of a hash function, whereas in an implemented system, i.e., when a good hash
function is used instead of the random oracle, the security analysis must assume that the description of
the hash function is widely available.

To strengthen our analogy, in this work, we see the ROM as a “generic hash function model”. That
is, a model where the adversary treats the hash function as a black box, much in the same way as for the
generic group oracle used in the GGM. Thus, if the proofs that rely on the programmability of the ROM
are accepted as reliable security guarantees for a family of good hash functions, then we believe the same
should be true for the case of “good” cyclic groups. Where “good” means groups that properties beyond
the group laws are not known to exist (certain elliptic curves groups, for example).

In comparison to the GGM, not too many schemes are known to have security proofs exclusively in
the GRM. Our result shows that a similar technique applies to the GRM, although the model has been
showed not to be soundness [16]. Our results in the GGM and the GRM, likewise those in the ROM, show
that if security proofs in these models are the only guarantee of security of a scheme, then it might be
possible to show that such a scheme is also non-committing through similar use of the programmability.

2 Preliminaries

For the rest of the paper, consider k as the security parameter. While lm(k), lr(k) and q(k), respectively
the number of bits of the message, the randomness and the number of the queries to the generic oracle,
are polynomials of k.

Similarly, consider that negligible functions are negligible with respect to k, i.e., negl(k), if for any
c,d ∈ N there exists k0 ∈ N such that for all k > k0 and for all x ∈ {0,1}kd

, it holds that f (x,k) < k−c.
Furthermore, gcd stands for the greatest common divisor. Finally, consider that x is uniform randomly
chosen from some set X when it is written x U← X .

60



Programmability in the Generic Ring and Group Models Larangeira and Tanaka

We start by reviewing the definitions for GGM, then we continue with a review of the GRM and a
few lemmas for straight line programs. This section ends with a brief review of the universal composable
framework and the non-committing functionality.

2.1 The Schwartz Lemma and the Generic Group Algorithms

Lemma 2.1 (Schwartz Lemma [22, 23]). Let p be prime and L(X1, . . . ,Xℓ) an arbitrary non-zero poly-
nomial on the random variables X1, . . . , Xℓ ∈ Zp with total degree d for ℓ ∈ N. Then Pr[L(x1, . . . ,xℓ) =
0]≤ d

p for a uniformly random assignment Xi← xi ∈ Zp, 1≤ i≤ ℓ.

A generic group algorithm A is allowed to submit operation and equality queries to the generic group
operation oracle G. The queries are tuples (i, j,◦) for ◦ ∈ {=,×}, where × is the group operation.

Definition 2.2 (Generic Group Oracle G [18, 23]). The oracle G initializes by receiving a value x ∈ Z∗p
and keeping a list of polynomials Lr, 1≤ r ≤ q(k) associated with every submitted operation (ir, jr,◦r),
with additional convention that L−1 := 1 and L0 := x. The adversary submits queries (ir, jr,◦r) and G
runs the operation procedure:

operation(ir, jr,◦r):
1. It takes a tuple
(ir, jr,◦r) ∈ {−1, . . . ,r−1} × {−1, . . . ,r−1}×{=,×}
2. If ◦r ̸= {=} then

If ∃r′ ̸= r : Lr′ = Lir ×L jr then return r′

Else
Lr := Lir ×L jr
return r

Else
If Lir = L jr then return true
Else return f alse

The complexity of A is measured as the number of oracle queries.

2.2 Straight Line Programs and Generic Ring Algorithms

From here, assume that N = p ·q for primes p and q, where |Z∗N |= ϕ(N) = (p−1) · (q−1) is the Euler
totient function.

We adapted the next definitions and lemmas from [16, Lemmas 2, 3 (Appendix C) and 4 (Appendix
D), respectively] and ideas from [1]. The main change is that now we consider the tuples X and Y
defined as X = (x1, . . . ,xℓ) and Y = (y1, . . . ,yℓ) where ℓ ∈ N and xi and yi are sampled independently.
The originals are defined over single values. We skip the proofs of the lemmas, therefore we refer the
reader both works for more details.

Definition 2.3 (Straight Line Programs (SLP) [16, 4] ). A straight line program P of length m over ZN

is a sequence of tuples P = ((i1, j1,◦1), . . . ,(im, jm,◦m)), where −ℓ≤ ik, jk < k and ◦r ∈ {+,−,×,/} for
r ∈ {1, . . . ,m}, with the additional convention P0(X) = 1, P−1(X) = x1, . . . ,P−ℓ(X) = xℓ for all xi ∈ ZN ,
where 1≤ i≤ ℓ.

The triple (i, j,◦) ∈ P is an SLP-step. We denote by Pk the SLP defined by the first k SLP-steps of P
and Pk ⊑ P to denote that the SLP Pk means the first k SLP-steps of P.

The output P(X) of an SLP P is computed as follows.
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1. For 1≤ i≤ ℓ, initialize L−i := xi ∈ ZN and L0 := 1 .

2. For k from 1 to m do:

• If ◦k = / and L jk /∈ Z∗N then return ⊥;

• else set Lk := Lik ◦k L jk .

3. Return P(x) = Lm.

Lemma 2.4. Suppose there exist a straight line program P such that for X ,X ′ ∈ (Z∗N)ℓ it holds that
P(X ′) ̸=⊥ and P(X) =⊥. Then there exists Pj ⊑ P such that Pj(X ′) ∈ Z∗N and Pj(X) /∈ Z∗N .

Lemma 2.5. For every SLP P,

Pr[gcd(P(Y ),N) /∈ {1,N} | Y U← (Z∗N)ℓ]≥ Pr[P(X) /∈ Z∗N and P(X ′) ∈ Z∗N | X ,X ′ U← (Z∗N)ℓ].

Lemma 2.6. For every two SLP P and Q,

Pr[gcd(P(Y )−Q(Y ),N) /∈ {1,N} | Y U← (Z∗N)ℓ]

≥ Pr[P(X) ̸=N Q(X) and P(X ′)≡N Q(X ′)|X ,X ′ U← (Z∗N)ℓ].

A generic ring algorithm A is allowed to submit SLP-steps (i, j,◦) to the generic ring operation oracle
R.

Definition 2.7 (Generic Ring Oracle R [16] ). The oracle R is initialized by keeping a SLP P initially
empty except for P−1(x) = x and P0(x) = 1 and the received value x ∈ ZN . The checking procedures
are done by implementing the routines test and equal. The algorithm A submits SLP-steps (i, j,◦) to
perform computation. For every tuple (i, j,◦), R executes the procedure operation:

test( j,◦): equal( j, i):
1. It takes a tuple 1. It takes a tuple
( j,◦) ∈ {−1, . . . , |P|} × {+,−,×,/,=} ( j, i) ∈ {−1, . . . , |P|} × {−1, . . . , |P|}
2. If ◦= / and Pj(x) /∈ Z∗N then 2. If Pi(x)≡ Pj(x) mod n then

Return false Return true
Else Else

Return true Return false

operation(i, j,◦):
1. It takes a tuple (i, j,◦)
2. If ◦ ̸= {=} then

If test( j,◦)→false then
Return ⊥

Else add (i, j,◦) to P
Else

Return equal(i, j)
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The complexity of A is measured as the number of oracle queries.

Remark 2.8. In order to program the oracles we need an additional convention. For a member x of
the ring or group, [x] means the pointer which G, or R, give to A, so the adversary can carry out the
computation.

We review the universal composable framework, in particular the hybrid extension of the framework.
We refer the reader to [5] for more details.

2.3 The Universal Composable Framework and the Non-committing Functionality

In the framework all the parties are probabilistic polynomial time (PPT) interactive Turing machines5.
Giving the sender and receiver parties, SEN and REC, the protocol π = (SEN,REC) performs a REAL
execution of the protocol when SEN and REC run the code of π in the presence of the adversary A.
Moreover, A can see and schedule the messages between the parties. On the other hand, there is the
IDEAL execution which is defined by the functionality F, the simulator S, and the parties S̃EN and R̃EC.
The parties in the IDEAL execution only deliver its inputs to F and passes the outputs of F without
performing any computation. Both executions are driven by the environment Z, which plays the role of
the distinguisher and controls the inputs of the parties as well as the actions of A.

THE HYBRID MODEL. In addition with the previous model, the hybrid model is the extension where
all parties have secure access to a special machine G named also functionality. At the beginning, the
environment receives the security parameter k and an auxiliary input z ∈ {0,1}∗. Let HYBG

π,A,Z(k,z) be
the random variable describing the output of Z in the hybrid execution. Whereas HYBG

π̃,S,Z(k,z) is for
the ideal execution. Let HYBG

π̃,S,Z(k,z) = IDEALF,S,Z(k,z).
It is said that π securely realizes F in the G-hybrid model, when for any adversary A there exists an

ideal adversary S such that for any environment Z,

|Pr[IDEALF,S,Z(k,z) = 1]−Pr [HYBG
π,A,Z(k,z) = 1] |< negl(k).

3 Our Models for GGM/GRM and the Non-Commiting Protocol

Here we introduce the programmable and non-programmable models of GRM and GGM.
As in [21], the technical difference is as follows: In the programmable setting, Z does not have

access to the generic functionality, whereas it does in the non-programmable setting. Moreover, let the
functionality G execute the routines described in Definition 2.2 for GGM (resp. R and in Definition 2.7
for GRM).

3.1 Our Models

We now formalize the models.
PROGRAMMABLE-GGM (RESP. GRM). This is the regular GGM (resp. GRM). All parties of

protocol π have access to the generic group oracle G (resp. R), and we say that π securely realizes some
functionality F in the programmable GGM (resp. GRM), if π securely realizes F in the G-hybrid model
(resp. R-hybrid model).

5Which are Turing machines equipped with three extra tapes: (1) The input tape, (2) the communication tape, and (3) the
subroutine output tape.

63



Programmability in the Generic Ring and Group Models Larangeira and Tanaka

NON-PROGRAMMABLE-GGM (RESP. GRM) In this variant, the environment Z has access to the
generic operation oracle G (resp. R). Thus, any computation made by the parties of π can be car-
ried out by the environment itself. It is said that π securely realizes some functionality F in the non-
programmable-GGM (resp. non-programmable-GRM).

3.2 The Non-Committing Encryption Protocol

We define the non-committing protocol π by adding an identification header in the ciphertexts. That is
three unique strings idm, idSEN and idREC. Let π be defined as follows:

send: On input (send, idm, idREC,m), SEN computes c = encG(pk, idm||idSEN ||idREC||m) and sends
(idm,c) to REC.

receive: If REC receives (idm,c), it computes decG(sk,c)= idm||idSEN ||idREC||m and outputs (receive,
idm, idSEN ,m).

Let lh(k) be the size in bits of idm||idSEN ||idREC, while lm(k) is the size of m in bits regarding the secu-
rity parameter k. The negative result from [21] is related to non-committing schemes that are modeled
through the functionality Fnce, and which we now review.

3.3 The Non-Committing Encryption Functionality Fnce

The functionality can be described for the protocol π̃ = (S̃EN, R̃EC) in the IDEAL execution as follows:

1. Fnce sends (send, idm, idSEN , idREC, lh(k)+ lm(k)) to S, whenever S̃EN inputs (send, idm, idREC,m)
to Fnce.

2. Fnce waits S schedule the delivery of (receive, idm, idSEN ,m) from Fnce to R̃EC.

3. When S allows it, Fnce sends (receive, idm, idSEN ,m) to R̃EC.

4 The ElGamal Encryption Scheme in the Programmable GGM

Here we review the ElGamal encryption scheme and study its security in the programmable GGM.

4.1 The ElGamal Encryption Scheme

Let [mG] be the pointer to the group element mG ∈ G in the simulation of G, where G is a group of
k-bit long prime order p generated by g, both outputted by a generation algorithm gen. There is no need
to specify the size of the message |mG| because it is known that in the ElGamal’s case the message is
encoded as a group member. Therefore, we assume the existence of an encoding function e : {0,1}log2 p→
G.

Note that in GGM the computation eG(idm||idSEN ||idREC||m) gives the pointer [mG], where 1 < mG ≤
p−1. Moreover, mG does not depend on the secret key, and [mG] must have been delivered by G.

The scheme is described in Table 2.
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gen(1k) enc(pk,mG) dec(sk,c)
(g, p)← gen(1k) (g,gx)← pk (g,x)← sk

x U← Z∗p r U← Z∗p y← (c1)
x

pk← (g,gx) c1← gr mG← c2 · y−1

sk← (g,x) c2← (gx)r ·mG return mG
return(pk,sk) c← (c1,c2)

return c

Table 2: The ElGamal encryption scheme.

4.2 The Security of the ElGamal Encryption Scheme in the Programmable GGM

We show that our protocol π based on the ElGamal encryption scheme is non-committing in the pro-
grammable GGM in the presence of the adversary who corrupts the receiver and the sender and expose
the secret key sk.

Theorem 4.1. Let k be the security parameter and p a k-bit long prime. Given the protocol π =
(REC,SEN) which allows every party to send n(k) messages, there is a simulator S such that for ev-
ery environment Z, and every adversary A which can corrupt REC and SEN and makes q(k) queries to
the generic group operation oracle G, then

|Pr[IDEALF,SG,ZG(k,z) = 1]−Pr[HYBG
π,A,Z(k,z) = 1]| ≤ q(k)2 · (n(k)+1)

p
+negl(k),

for the probabilities taken over the random choices of the environment Z in the programmable GGM.

Proof.
Overview. We construct a simulator S which simulates the ideal execution for the adversary A including
the generic group operation oracle GPRO. In comparison to G from Definition 2.2, GPRO does not have a
fixed challenge value x. Instead, it leaves as random variable X unless the adversary corrupts the receiver.
Upon this event, GPRO fixes X with a random x. We show that the probability of Z in distinguishing the
hybrid and the ideal executions.

First, consider that the correctness of the scheme gives

Pr[HYBG
π,A,Z(k,z) = 1] = 1−negl(k),

for the random choices of the environment Z.
We now construct a simulator S for the ideal execution IDEALF,SG,ZG(k,z). The simulator S must

handle two situations: (1) when Fnce sends (send, idm, idSEN , idREC) and (2) when SEN sends (idm, [c])
to REC in the simulation of the hybrid execution.

Send: (1) S must deliver to A (idm, [c]) whenever it receives (send, idm, idSEN , idREC) from Fnce.

• If R̃EC is corrupted:

– S allows (receive, idm, idSEN ,mG) to be sent to R̃EC.

– Since R̃EC is corrupted, S learns mG. Then it computes c = encGPRO(pk, [mG]) and
delivers (idm, [c]) to A.

• If R̃EC is honest:
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– S does not know [mG], therefore it adds to its simulation of GPRO (as in Definition 2.2)
two random variables Lc1 and Lc2 both sampled from Z∗p .

– S gives A the pointers [Lc1 ] and [Lc2 ], as it would normally do if it knew the values for
Lc1 and Lc2 .

– S continues simulating GPRO, now with X , Lc1 and Lc2 as unknowns.

If at a later moment SEN or REC is corrupted:
– If SEN was corrupted
∗ S corrupts S̃EN and learns [mG], and therefore mG.
∗ S partially commits to the ciphertext by choosing uniformly at random 1≤ r < p−1.

If there is some i such that Li = r, then S sets Lc1 ← Li. Otherwise S sets Lc1 ← r.
Therefore the partially committed ciphertext [c] = ([Lc1 ], [Lc2 ]) is

Lc1 ← r,Lc2 ← r ·X +mG,

with X still as an unknown.
∗ S delivers r and [mG] to A as its internal view of SEN.

– If REC was corrupted
∗ S corrupts R̃EC and learns [mG] and therefore mG.
∗ S chooses the secret key x uniformly at random from Z∗p.
∗ Then S commits to the correct ciphertext by choosing uniformly at random 1≤ r <

p−1 and fixing X ← x and mG,

Lc1 ← r,Lc2 ← r · x+mG.

∗ S aborts if the simulation was not perfect. Let this event be denoted by abort.
∗ If S did not abort, it delivers x and [mG] to A as its internal view of REC.

Receive: (2) S must make Fnce output (receive, idm, idSEN , [mG]) to R̃EC, whenever SEN sends
(idm, [c]) to REC.

• If SEN is honest
Then (idm, [c]) was sent by S in response to what happen in the ideal world. Then, S must
have received (send, idm, idSEN , idREC) from Fnce. Therefore, S allows (receive, idm, idSEN ,
[mG]) to be sent to R̃EC in the ideal execution.

• If SEN is corrupted

– S looks for [Lc1 ] and [Lc2 ] such that [c] = ([Lc1 ], [Lc2 ]) and it must find two polynomials
Lc1 and Lc2 on X .

– S creates a pointer [mG] associated with the polynomial Lc2−Lc1 ·X (as in the decrypting
algorithm). Note that the addition of [mG] adds one degree in the polynomials carried by
GPRO every time SEN sends a new pair (idm, [c]). Therefore, the degree can be at most
n(k)+1, where n(k) is the number of messages a single party sends.

– S inputs (idm, idREC, [mG]) in S̃EN, since S̃EN is also corrupted.
– S allows Fnce to send (receive, idm, idSEN , [mG]) to R̃EC.
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It remains to analyze the abort probability of S. If the simulation does not abort the views of the
hybrid and ideal executions are indistinguishable. Therefore, let us assume for the sake of contradiction
that the simulation aborts on event abort. This event occurs when some polynomial in the simulation
are different, however they evaluate to the same value after fixing Lc1 and Lc2 with x chosen uniformly at
random.

Recall that on the event abort the simulated oracle GPRO has at most q(k) polynomials: L1, . . . ,Lq(k).
Lemma 2.1 gives that the polynomial defined as Li−L j, for 1≤ i, j ≤ q(k), i ̸= j, has Pr[(Li−L j)(x) =
0] ≤ n(k)+1

p for uniformly random choices of x← Zp. Since the total degree of (Li−L j) can be at most
n(x)+1, therefore,

Pr[abort] = Pr
1≤i, j≤q(k)

i̸= j

[(Li−L j)(x) = 0|x U← Zp]

= q(k) · (q(k)−1) ·Pr[L(x) = 0|x U← Zp]

Lemma2.1

≤ q(k) · (q(x)−1) · n(k)+1
p

≤ q(k)2 · (n(k)+1)
p

,

where L is a polynomial with total degree n(k)+1 and probabilities are taken over the choices of x. That
is

Pr[IDEALF,SG,ZG(k,z) = 1]≤ 1− q(k)2 · (n(k)+1)
p

,

thereby giving the theorem.

5 The Goldwasser-Micali Encryption Scheme in the Programmable GRM

Here we review the Goldwasser-Micali (GM) encryption scheme and study its security in the pro-
grammable GRM.

5.1 The Goldwasser-Micali Encryption Scheme

First, let the algorithm gen denote the generation algorithm which gives two large prime numbers p and
q, and their product N. Let QRN denote the set of the quadratic residue modulo N, while QNRN denote
the set of non-residues. Moreover, let QNR+

N denote the set of the quadratic non-residues which the
Jacobi symbol modulo N gives +1. That is, given x ∈ QNRN , JN(x) = +1.

For the scheme, consider that mi, 1 ≤ i ≤ lm(k), are the bits of the message m, while ci ∈ ZN and
ri ∈ {0,1}lr(k) are respectively the ciphertexts and the randomness for each bit.

The scheme is described in Table 3.

Remark 5.1. The ciphertext c = (c1, . . . ,clm(k)) of a message m ∈ {0,1}lm(k) is composed by ci which
are members of the ring. Therefore they are represented in the model as SLP-steps. The public key pk is
the SLP’s P0(x) and P−1(x) as in Definition 2.3.

5.2 The Security of the GM Encryption Scheme in the Programmable GRM

We show that our protocol π for GM is non-committing in the programmable GRM even in the presence
of the adversary who corrupts the receiver and expose the secret key sk.
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gen(1k) enc(pk,m) dec(sk,c)
(p,q,N)← gen(1k) (N,x)← pk (p,q)← sk

x U← QNR+
N For i = 1 to lm(k) For i = 1 to lm(k)

pk← (N,x) ri
U← Z∗N If Jp(ci) = +1

sk← (p,q) ci← r2
i · xmi and Jq(ci) = +1

return (pk,sk) return c mi← 0
Else mi← 1
return m

Table 3: The operations are modulo N

Theorem 5.2. Let k be the security parameter. Given the protocol π = (REC,SEN) there is a simulator
S such that for every environment Z, and every adversary A which can corrupt the receiver party REC
and makes at most q(k) queries to the generic ring operation oracle R, then

|Pr[IDEALF,SG,ZG(k,z) = 1]−Pr[HYBG
π,A,Z(k,z) = 1]| ≤ 2q(k) · (q(k)2 +5q(k)+3) · εFACT

and probability εFACT of finding a factor of N in the programmable GRM.

Proof.
Overview. We construct a simulator S which simultaneously tries to factor the modulus N and simulates
R and interacts with the ideal execution with Fnce. The simulator generates SLP-steps P(mi)(x) as the
ciphertext, and provides A with the pointers [P(mi)(x)] to them until learning the message m.

The simulator provides A with the simulation of the operation oracle RPRO when simulating the
ciphertexts. After receiving m, S commits to the given SLP-steps with the message m, and instead of
RPRO simulates again R. We show that the probability of S in simulating the ideal execution is upper
bounded by the probability of factoring N.

A challenger runs gen(1k)→ (p,q,N), and gives S the value N. The simulator S is allowed to
give up the value, and then receives (p,q) and loses the game. It wins if outputs a value y such that
gcd(y,N) ̸= {N,1}. Denote the success probability in the game εFACT.

We need to define a simulated oracle RPRO. The simulated oracle RPRO is the same as R, however
instead of implementing test and equal, RPRO implements testpro and equalpro, which are defined in
Table 4.

We present the construction for S. Initially it receives the modulus N and picks x U←QNR+
N and runs

R as in Definition 2.7 with P−1(x) = x and P0(x) = 1. The simulator must handle two situations: (1)
when Fnce sends (send, idm, idSEN , idREC, lh(k)+ lm(k)) and (2) when SEN sends (idm, [c]) to REC in the
simulation of the hybrid execution.

Send: (1) S receives (send, idm, idSEN , idREC, lh(k)+ lm(k)) from Fnce.

• If R̃EC is corrupted:

– S allows (receive, idm, idSEN , [m]) to be sent to R̃EC.

– Since R̃EC is corrupted, S learns m. Then it computes c= encR(pk, idm||idSEN ||idREC||m)
and delivers (idm, [c]) to A, where [c] are the pointers to the ciphertexts ci.

• If R̃EC is honest:

– S adds to the sequence P of its simulation of RPRO with P(mi)(x) = Rlh(k)+i and 1 ≤ i ≤
lm(k), where Rlh(k)+i are random variables sampled uniformly at random from Z∗N .

68



Programmability in the Generic Ring and Group Models Larangeira and Tanaka

testpro( j,◦): equalpro( j, i):
1. It takes a tuple 1. It takes a tuple
( j,◦) ∈ {−1, . . . , |P|} × {+,−,×,/} ( j, i) ∈ {−1, . . . , |P|} × {−1, . . . , |P|}
2. Pick xr

U← Z∗N and 2. Pick xr
U← Z∗N and

3. If lm(k) is known, then 3. If lm(k) is known, then

pick Rlh(k)+r
U← Z∗N ,1≤ r ≤ lm(k) pick Rlh(k)+r

U← Z∗N ,1≤ r ≤ lm(k)
4. If ◦= { / } and 4. If Pj(xr,Rlh(k)+1, . . . ,Rlh(k)+lm(k))≡N

Pj(xr,Rlh(k)+1, . . . ,Rlh(k)+lm(k)) /∈ Z∗N , Pi(xr,Rlh(k)+1, . . . ,Rlh(k)+lm(k)) then
then return true
return false Else

Else return false
return true

Table 4: Definition of the routines testpro and equalpro for the size of the heading lh(k) for protocol π
and the simulated ciphertexts Rlh(k)+r.

– S computes encG(pk, idm||idSEN ||idREC) = (c1, . . . ,clh(k)).
– S gives A the access to the pointers of the simulated ciphertext, i.e., [c] = [c1], . . . , [clh(k)],

[P(m1)(x)], . . . , [P(mlm(k))(x)] through its simulation of RPRO.

If at a later moment REC is corrupted:
– If REC was corrupted
∗ S corrupts R̃EC and learns m = (m1, . . . ,mlm(k)).

∗ S commits to the correct ciphertext by computing Rlh(x)+i← r2
lh(k)+i ·x

mi , for rlh(k)+i
U←

Z∗N and 1≤ i≤ lm(k).
∗ S aborts if the simulation was not perfect. Let this event be denoted as abort.
∗ If S did not abort, then it sends a give up request on N to its challenger in the

factoring game, and receives p and q.
∗ S uses its simulation of RPRO and P0(x) = 1 to compile p and q as SLP’s. In other

words, S defines P(p)(x) := p and P(q)(x) := q and adds both to the sequence P.
∗ S gives A the access to the pointers to the SLP-steps associated with p and q, i.e.,

[P(p)(x)] and [P(q)(x)], as the secret key sk.

If S does not abort, then it continues simulating RPRO, however with the fixed values P(mi)(x)=
r2

lh(k)+i · x
mi .

Receive: (2) S must make Fnce output (receive, idm, idSEN , [m]) to R̃EC, when SEN sends (idm, [c]) to
REC.

• If SEN is honest
Then (idm, [c]) was sent by S in response to what happen in the ideal world. Then, S must have
received (send, idm, idSEN , idREC, lh(k)+ lm(k)) from Fnce. Therefore, S allows (receive,
idm, idSEN , [m]) to be sent to R̃EC in the ideal execution.

Since we are not considering corruption of the receiver, this construction is enough.
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If the simulation does not abort, then it is indistinguishable from the real case. Therefore, let us as-
sume for the sake of contradiction that the simulation aborts. The event abort occurs when the simulated
oracle RPRO does not behave like R. That is, whenever either one of the two following events happens:

1. when testpro does not behave as test, or

2. when equalpro does not behave as equal.

This translates in
Pr[abort]≤ Pr[aborttest ]+Pr[abortequal], (1)

where aborttest and abortequal are the events (1) and (2) respectively.

We estimate the probabilities Pr[aborttest ] and Pr[abortequal] separately6. From this point, for con-
venience of the reader, assume that X are the values sampled by RPRO on every operation. That is
X = (xr,Rlh(k)+1, . . . ,Rlh(k)+lm(k)).

Using the Lemma 2.4, a fixed SLP Pi and the committed values Xc = (x,r2
lh(k)+1 · x

m1 , . . . , r2
lh(k)+lm(k)

·
xmlm(k)), we have

Pr[aborttest ] ≤ Pr[(Pi(Xr) /∈ Z∗N and Pi(Xc) ∈ Z∗N) or

(Pi(Xc) /∈ Z∗N and Pi(Xr) ∈ Z∗N)|X1, . . . ,Xq(k)
U← (Z∗N)lm(k)+1]

≤ 2q(k) ·Pr[Pi(X) /∈ Z∗N and Pi(X ′) ∈ Z∗N | X ,X ′ U← (Z∗N)lm(k)+1].

For, 1≤ i≤ q(x), that is, for any Pi ⊑ P, we have

Pr[aborttest ] ≤ 2q(k) ·
q(k)

∑
i=0

Pr[Pi(X) /∈ Z∗N and Pi(X ′) ∈ Z∗N |X ,X ′ U← (Z∗N)lm(k)+1]

≤ 2q(k) · (q(k)+1) · max 0≤i≤q(k){Pr[Pi(X) /∈ Z∗N and

Pi(X ′) ∈ Z∗N | X ,X ′ U← (Z∗N)lm(k)+1}. (2)

Similarly with probability Pr[abortequal], we have

Pr[abortequal] ≤ 2q(k) · (q(k)2 +3q(k)+1) ·max−1≤i≤ j≤q(k){Pr[Pi(X)≡N Pj(X) and

Pi(X ′) ̸≡N Pj(X ′) | X ,X ′ U← (Z∗N)lm(k)+1]}+Pr[aborttest ]. (3)

Equation 3 relates to the similar test from Lemma 2.5, that is a test which can be made sampling randomly
from Z∗N . Similarly, Equation 2 relates to Lemma 2.6. Both tests are used in the factoring algorithm to
be presented next.

We now construct the factoring algorithm.
Let FACTOR be the factoring algorithm. The algorithm evaluates every SLP in the sequence P kept

by RPRO. FACTOR will run both tests from Lemmas 2.5 and 2.6, that is

1. Whenever RPRO receives the r-th query operation (i, j,◦) with ◦ ∈ {+,−,×,/}, FACTOR samples
Y = (y1, . . . ,ylm(k)+1)

U← (Z∗N)lm(k)+1 and computes gcd(Pn(Y ),N) for 0≤ n≤ r (Lemma 2.5).

2. Whenever RPRO receives the r-th equality test (i, j,◦) with ◦ ∈ {=}, FACTOR samples Y =

(y1, . . . ,ylm(k)+1)
U← (Z∗N)lm(k)+1 and computes gcd(Pi(Y )−Pj(Y ),N) for −1 ≤ i < j ≤ r (Lemma

2.6).
6These probabilities for single values x are estimated in detail in [16].
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Assume that γ is the maximum value between the following two probabilities from Equations 3 and 2:

max0≤i≤q(k){Pr[Pi(X) /∈ Z∗N and Pi(X ′) ∈ Z∗N | X ,X ′ U← (Z∗N)lm(k)+1}
and

max−1≤i≤ j≤q(k){Pr[Pi(X)≡N Pj(X) and Pi(X ′) ̸=N Pj(X ′) | X ,X ′ U← (Z∗N)lm(k)+1]}.
Then, the algorithm FACTOR, and the Lemmas 2.5 and 2.6 give γ ≤ εFACT.

The maximum value γ upper bounds the failure probability

Pr[abort] ≤ 4q(k) · (q(k)+1) · γ +2q(k) · (q(k)2 +3q(k)+1) · γ
≤ 2q(k) · (q(k)2 +5q(k)+3) · γ,

and Equation 1 upper bounds the probability of the event abort

Pr[abort]≤ 2q(k) · (q(k)2 +5q(k)+3) · εFACT,

and this gives the end of the proof.
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