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Abstract

In this paper, we discuss the strong attack model security for public key encryption scheme and dig-
ital signature scheme. Recently, Barbosa and Farshim introduced strong chosen ciphertext attack
(SCCA) which is stronger than chosen ciphertext attack. The main motivation of this paper is to find
an essential mechanism of secure schemes under strong attack model. So, we prove several impos-
sibility results under SCCA model. For the purpose, we classify two types of public key encryption
schemes: First model is Π = (Gen,Enc,Dec) which we call the setup-free model, second model is
Π = (Setup,Gen,Enc,Dec) which we call the setup model. We prove that it is impossible to reduce
indistinguishability under strong chosen ciphertext attack (IND-SCCA) security to any other weaker
security notion under black-box analysis in the standard model. Second, when a public key encryp-
tion scheme is modeled as Π = (Setup,Gen,Enc,Dec), we show that it is impossible that the security
of SCCA is proven if the reduction is setup-preserving black-box reductions which we define in this
paper. From the similar discussion, we prove impossibilities for digital signature schemes. Finally,
we discuss the essential mechanism to construct IND-SCCA secure public key encryption scheme in
the standard model.

Keywords: public key cryptsystems, attack models, encryptions

1 Introduction

1.1 Background

The security notion of cryptographic primitives can be formalized by the combination of an adversar-
ial goal (GOAL) and an attack model (ATK). Moreover, the securities of schemes are analyzed from the
view point of security notion, with or without random oracle, and computational assumptions. For public
key encryption scheme, indistinguishability under chosen ciphertext attack is the most common security
notions. For achieving chosen ciphertext attack security, there are many researches. Recently, in [2, 3],
Barbosa and Farshim introduced strong chosen ciphertext attack in order to show the relationship among
various notions of complete non-malleability which is introduced in [10]. Since an adversary can obtain
a plaintext of a ciphertext under an arbitrarily chosen public key in this attack model, this attack model
is the more powerful than standard chosen ciphertext attack model and multi-user setting attack model
[5, 13]. In [2], Barbosa and Farshim proposed the efficient scheme which satisfies indistinguishability
against strong chosen ciphertext attack in the standard model. This scheme is based on the construction
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of [20, 7] and efficient construction. However, an essential mechanism that a scheme is secure under
strong chosen ciphertext attack is not very clear (e.g. it is not known whether previous proposed chosen
ciphertext secure public key encryption scheme is secure under strong chosen ciphertext attack ). There-
fore, the further evaluation of (im)possibility of strong attack model security for public key encryption
schemes is considered to be beneficial.

1.2 Our Contributions

In this paper, we discuss the strong attack model security for a public key encryption scheme and a digital
signature scheme. In the strong chosen ciphertext attack model (SCCA) which is introduced in [2], an
adversary access to an oracle that encrypted plaintext under arbitrary public key which the adversary
chooses. Since a practical attack under strong attack model might be happened in the real-world, strong
attack model should be investigated in this field. The main motivation of this paper is to find an essential
property of secure schemes under strong attack model for public key encryption schemes and digital
signature schemes.

We introduce strong chosen message attack for digital signature schemes. In this attack model, an
adversary access to an oracle that signs messages of the adversary’s choice with respect to an arbitrary
public key. First, in order to discuss the security under strong attack models rigorously, in this paper,
we classify two types of public key encryption schemes; (1) Setup-free model, and (2) Setup model.
Setup-free model is ordinary model, that is a triple of algorithms, Πf = (Gen,Enc,Dec). Here, Gen is
public and secret key generation algorithm, Enc is an encryption algorithm, and Dec is a decryption
algorithm. Setup model is a slightly different model from setup-free model, is a fourth of algorithms,
Πs = (Setup,Gen,Enc,Dec). Here, Setup is the probabilistic setup algorithm which takes as input the
security parameter and returns the common parameter I. The scheme which was proposed in [2] is the
setup model public key encryption scheme. Similarly, we distinguish two types of a digital signature
scheme: (1)Basic model is Σf = (Gen,Sig,Ver), (2)Setup model is Σs = (Setup,Gen,Sig,Ver). In this
paper, we show several impossibility results for strong attack model in the setup-free/setup model.

Our first impossibility result is that it is impossible to reduce indistinguishability under strong chosen
ciphertext attack (IND-SCCA) security on any setup-free model public key encryption scheme to any
non-interactive computationally hard problem under black-box analysis without random oracle model.
From the similar discussion, we show it is impossible to reduce existential unforgeability under strong
chosen message attack (EuF-SCMA) security on any setup-free model digital signature scheme to any
non-interactive computationally hard problem under black-box analysis. These results mean that if each
user who uses public key encryption or digital signature scheme has a public key that all parameter of the
key is different from any other, its schemes cannot be proven IND-SCCA/EuF-SCMA security under
any non-interactive computationally hard problem.

Fischlin prove similar impossibility results for complete non-malleability which he introduced in
[10]. Fischlin initiated the research of complete non-malleability and further showed that no completely
non-malleable schemes exist for general relations[10]. Lately Barbosa and Farshim proved equivalence
between security against strong decryption oracles and some kind of complete non-malleability [2].
Unfortunately, the definition of complete non-malleability used by Barbosa and Farshim [2] is slightly
different from that of Fischlin’s [10], and moreover, no implications between the two variants of complete
non-malleability are clearly shown for the present. This fact implies that Fischlin’s impossibility result is
not directly converted to the context of strong decryption scenarios, which is what this paper investigates.

Our second impossibility results is that it is impossible that IND-SCCA/EuF-SCMA security is
proven if the reduction is setup-preserving black-box reductions i.e. reductions is always call the adver-
sarial oracle with the common parameter I they were given as input. The above discussion is similar to
[16]. Our impossibility results do not contradict the result of [2]. In fact, in [2], the scheme is setup
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model and a reduction of the security proof is not setup-preserving.
Our second result is that we show several public key encryption and digital signature schemes which

are secure under the strong chosen ciphertext/chosen message attack model in the random oracle model.
Specifically, we prove that DHIES scheme and Schnorr signature scheme are secure in the random oracle
model as examples.

Finally, we discuss the essential mechanism to construct IND-SCCA secure public key encryption
scheme. Concretely, we show that it is possible to construct IND-SCCA secure scheme using the ex-
tended Naor-Yung paradigm [14].

1.3 Related Works

So far, the security for strong attack models on cryptographic primitives has been intensively studied in
the literatures. In [10], Fischlin introduced the concept of complete non-malleability, where an adversary
can tamper with ciphertext and public keys, and indistinguishability of ciphertexts. He shows several
impossibility result of complete non-malleability for any public encryption and digital signature scheme.
Moreover, he shows several secure schemes on complete non-malleability in the random oracle model.
In [2, 3], Barbosa and Farshim discuss relations among various notions of complete non-malleability.
In order to discuss relations, they introduce indistinguishability based security model based on a strong
decryption oracle (IND-SCCA) and they proposed efficient scheme which is secure for IND-SCCA. In
[12], Libert and Yung proposed efficient scheme which is secure for complete non-malleability under
decision bilinear Diffie-Hellman assumption.

2 Setup-Free and Setup Model for Public Key Encryption and Digital Sig-
nature

2.1 Public Key Encryption and Digital Signature

In this paper, we discuss two models for digital signature schemes and public key encryption schemes,
the setup-free model and the setup model.

Setup-free Models. First, we consider a setup-free public key encryption and digital signature model.
A setup-free public key encryption scheme is given by a triple of algorithms, Πf = (Gen,Enc,Dec).
Gen, the key generation algorithm, takes as inputs a security parameter and returns a pair (pk,sk) of
matching public and secret keys, denoted as (pk,sk)← Gen(k). Enc, the encryption algorithm, takes as
inputs a public key pk and a plaintext m, and returns a ciphertext c, denoted as c← Encpk(m). Dec, the
decryption algorithm, is a deterministic algorithm which takes as inputs a secret key sk and a ciphertext c,
and outputs a plaintext m or a special symbol ⊥ which indicates that the ciphertext was invalid, denoted
as m/⊥← Decsk(c) .

A setup-free digital signature scheme is given by a triple of algorithms, Σf = (Gen,Sig,Ver). Gen,
the key generation algorithm, takes as input a security parameter and returns a pair (pk,sk) of matching
public and secret keys, denoted as (pk,sk)← Gen(k). Sig, the signature generation algorithm, takes as
inputs a secret key sk and a message m, and returns a signature σ , denoted as σ ← Sigsk(m). Ver, the
verification algorithm, takes as inputs a public key, a message, and a signature, and outputs 1 if and only
if σ is valid on m, or 0 otherwise.

Setup Model. In this paper, we consider a slightly different model “Setup model” with the extra Setup
algorithm. So, a public key encryption scheme in setup model is Πs = (Setup,Gen,Enc,Dec) and a pub-
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lic key encryption scheme Σs = (Setup,Gen,Sig,Ver). Setup is the probabilistic setup algorithm which
takes as input the security parameter and returns the common parameter I, denoted as I← Setup(k). In
setup model, Gen takes as inputs I and returns a pair (pk.sk) of matching public and secret keys, denoted
as (pk,sk)← Gen(I,k).. Enc and Dec denoted as c← EncI,pk(m) and m/⊥← DecI,sk(c), respectively.
Also, in the signature scheme, Sig and Ver denoted as σ ← SigI,sk(m) and 0/1← VerI,pk(m,σ) in setup
model.

2.2 Security Notions for Public Key Encryption

Security notions for public key encryption schemes are defined by pairing an adversarial goal (GOAL)
and an attack model (ATK) [8, 4, 15]. We review three main adversarial goals for Πf or Πs where Πf is a
public key encryption scheme in the setup-free model and Πs is a public key encryption scheme in setup
model.

Total unBreakable (TuB): Πf or Πs is said to be TuB when no PPT adversary can compute the secret
key

One-wayness (OW): Πf or Πs is said to be OW when for a given ciphertext c∗ = Encpk(m∗) where m∗

is a randomly chosen plaintext from the plaintext space M, no PPT adversary can recover m∗.

Indistinguishability (IND): Πf or Πs is said to be IND when for a given ciphertext cb = Encpk(mb)
where a plaintext mb ∈ {m0,m1} and (m0,m1) are chosen by the adversary, no PPT adversary can
output b′ = b with a non-negligibly higher probability than 1/2.

Three main attack models (atk) for Πf or Πs are as follows.

Chosen plaintext attack (CPA): In this model, an adversary is allowed to access the empty oracle ε
which for any input, return ⊥.

Plaintext checking attack (PCA)[15]: In this model, an adversary is allowed to access the plaintext-
checking oracle C which on input (m,c), returns 1 if m = Decsk(c), otherwise returns 0.

Chosen ciphertext attack (CCA): In this model, an adversary is allowed to access the decryption oracle
D which on input a ciphertext c, returns a plaintext m = Decsk(c) or a special symbol ⊥ which
indicates that the ciphertext was invalid.

In this paper, we define strong chosen ciphertext and message attack (SCCA) [2].

Strong chosen ciphertext attack (SCCA): In SCCA model, an adversary access to an oracle SD that
encrypted plaintext of the adversary’s choice with respect to arbitrary public key.

proc. SCCA(c, pk):
m← {m : ∃sk,m = Decsk(c)} Re-
turn m.

The above adversarial goals are considered not achieved if the adversary submits a query whose answer
from the oracle can be trivially transformed into the correct output.

Definition 1 ({TuB,OW}.ATK Secure). Let Πf = (Gen,Enc,Dec) and Πs = (Setup,Gen,Enc,Dec) be
a public key encryption scheme. We say Πf or Πs is GOAL-ATK secure for all PPT adversary A, when
the following probability is negligible for a security parameter k:

Pr[(sk, pk)← Gen(1k);(x)← AOATK(y)]( in the case of the setup-free model Πf , )
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where (x,y) = (sk, pk), or (m,(pk,c)) where m is chosen from the message space uniform at random
and c = Encpk(m), if GOAL=TuB or OW, respectively, and OATK = ε , C, or D, if ATK=CPA, PCA, or
CCA, respectively.

Pr[I← Setup(1k),(sk, pk)← Gen(1k);(x)← AOATK(y)]( in the case of the setup model Πs)

where (x,y) = (sk,(I, pk)), or (m,(I, pk,c)) where m is chosen from the message space uniform at ran-
dom and c = Encpk(m), if GOAL=TuB or OW, respectively, and OATK = ε , C, D, or SD if ATK=CPA,
PCA, CCA, or SCCA, respectively.

Definition 2 (IND-ATK Secure). Let Πf = (Gen,Enc,Dec) and Πs = (Setup,Gen,Enc,Dec) be a public
key encryption scheme. We say Πf or Πs is IND-ATK secure for all PPT adversary A, when the following
probability is negligible for a security parameter k:

Pr[(sk, pk)← Gen(1k);(m0,m1)← AOATK

IND-ATK[Π](pk,state);b←{0,1};

cb = Encpk(mb) : b← AOATK

IND-ATK[Π](pk,state)]− 1
2

in the case of setup-free model Πf ,

Pr[I← Setup(1k),(sk, pk)← Gen(1k);(m0,m1)← AOATK

IND-ATK[Π](pk,state);b←{0,1};

cb = Encpk(mb) : b← AOATK

IND-ATK[Π](pk,state)]− 1
2

in the case of setup model Πs

where OATK = ε , C, D, or SD if ATK=CPA, PCA, CCA, or SCCA, respectively.

2.3 Security Notions for Digital Signature

Security notions for a digital signature scheme are defined by pairing an adversarial goal (GOAL) and
an attack model (ATK) [11]. We first review three main adversarial goals (goal) for Σf or Σs where Σf is
a digital signature scheme in the setup-free model and Σs is a digital signature scheme in setup model.

Total unBreakable (TuB): Σf or Σs is said to be TuB when no PPT adversary can compute the secret
key sk which corresponds to pk.

Universal unForgery (UuF): Σf or Σs is said to be UuF when for a randomly chosen message m∗ from
the message space M, no PPT adversary can forge a valid signature σ∗ on m∗.

Existential unForgery (EuF): Σf or Σs is said to be EuF when no PPT adversary can forge a pair of a
message m∗ and its valid signature σ∗.

Three main attack models (atk) for Σf or Σs are as follows.

Key only attack (KOA): In this model, an adversary is allowed to access the empty oracle ε which for
any input, return ⊥.

Known message attack (KMA): In this model, an adversary is allowed to access the restrictive signing
oracle RS which on input 0, returns a pair of a message m and its signature σ = Sigsk(m) where m
is chosen from a pre-determined distribution.1

Chosen message attack (CMA): In this model, an adversary is allowed to access the signing oracle S
which on input a message m, returns its signature σ = Sigsk(m).

The above goals are considered not achieved if the adversary submits a query whose answer from the
oracle can be trivially transformed into the correct output. In this paper, we introduce strong chosen
message attack (SCMA) for digital signature schemes.
1Rigorously, it is necessary to specify the distribution of the messages for defining KMA, but since our results hold for any
distribution, here we do not strictly specify it.
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Strong chosen message attack (SCMA): In SCMA model, an adversary access to an oracle SS that
signs messages of the adversary’s choice with respect to arbitrary public key.

proc. SCMA(m, pk):
σ ← {σ : ∃sk,σ = Sigsk(m)} Re-
turn σ .

Definition 3. Let Σf = (Gen,Sig,Ver) and Σs = (Setup,Gen,Sig,Ver) be a digital signature scheme. We
say Σf or Σs is GOAL-ATK secure for all PPT adversary A, when the following probability is negligible
for a security parameter k:

Pr[(sk, pk)← Gen(1k);(x)← AOATK(y)]( in the case of the setup-free model Σf , )

where (x,y) = (sk, pk), (σ ,(pk,m)) where m is chosen from the message space uniform at random, or
((m,σ), pk), if GOAL=TuB, UuF, or EuF, respectively.

Pr[I← Setup(1k),(sk, pk)← Gen(I);(x)← AOATK(y)]( in the case of the setup model Σs)

where (x,y) = (sk,(I, pk)), (σ ,(I, pk,m)) where m is chosen from the message space uniform at random,
or ((m,σ),(I, pk)), if GOAL=TuB, UuF, or EuF, respectively. O = ε ,RS,Sor SS, if ATK=KOA, KMA,
CMA, or SCMA, respectively.

Black Box Reduction. Let P1 and P2 be two computational problems. A black-box reduction from P1 to
P2 is represented by probabilistic algorithm R which solves P1 using an algorithm to solve P2. Here, the
input of R is the same as the input of the algorithm that solves P1. Also, the input of an algorithm to
solve P2 is reduced by R. The success probability of R is ε1 which is non-negligible. If the probability
of an algorithm to solve P2 is ε2, the probability of solving P1 is ε1× ε2. The notation P1⇐R P2 means
that there exists a polynomial time black-box reduction R from P1 to P2. The case in which P1⇐ P2 and
P2⇐ P1 hold simultaneously is denoted as P1 ≡ P2.

In this paper, we will represent computational problems P as follows; First, we treat only com-
putational problem P which can be equivalent to some security notion GOAL-ATK. For example, in
Gap-Diffie-Hellman problem [15] GOAL is CDH problem and ATK is DDH oracle.

Definition 4. We say that GOAL1 is harder (resp. easier) than GOAL2 if for all scheme X and ATK, it
is always possible to explicitly construct a BB reduction R such that AGOAL2.ATK[X ] ⇐R AGOAL1.ATK[X ]

(resp. AGOAL1.ATK[X ]⇐R AGOAL2.ATK[X ]). Similarly, we say that ATK1 is weaker (resp. stronger) than
ATK2 if for all X and GOAL, it is always possible to explicitly construct a BB reduction R such that
AGOAL.ATK2[X ]⇐R AGOAL.ATK1[X ] (resp. AGOAL1.ATK[X ]⇐R AGOAL2.ATK[X ]).

3 Impossibility results in the Setup-Free Model

In this section, we show impossibility results that IND-SCCA/EuF-SCMA security under a non-interactive
computationally hard problem P in the setup-free model. We assume that an instance of P y can be gen-
erated with a security parameter k using an instance generator IGen(k).

Specifically, we show that there does not exists any black-box reduction R such that P⇐R AIND-SCCA[Πf ]

for all public key encryption scheme in the setup-free model Πf . By similar discussion, we show that
there does not exists any black-box reduction R such that P⇐R AEuF-SCMA[Σf ] for all digital signature
scheme in the setup-free model Σf .

Definition 5 (Non-interactive Hardness Problem.). A non-interactive cryptographic problem P=(IGen, IVer)
consists of two efficient algorithms:
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IGen. The instance generation algorithm takes as input the security parameter k and outputs an instance
y.

IVer. The instance verification algorithm takes as input a value x as well as an instance y of a crypto-
graphic problem, and outputs a decision bit.

We say that a PPT algorithm A solves P if the probability that A(y) outputs x′ such that IVer(x′,y) = 1 is
non-negligible. We say that P is hard if no efficient algorithm solves it.

Theorem 1. For all public key encryption scheme in the setup-free model Πf , if P is a (non-interactive)
computationally hard problem, there does not exist black-box reduction R such that P⇐R AIND-SCCA[Πf ].

Proof. First, we explain the overview of this proof. In the first step of this proof, OW-CPA adversary
B is constructed by using a black box reduction R such that P⇐R AIND-SCCA[Πf ]. Since IND-SCCA
adversary is constructed from B trivially, P can be solved by combining R and B. Since this contradicts
P is a computationally hard problem, we obtain the impossibility that there does not exist R.

Towards a contradiction, we assume that a black-box reduction R such that P⇐R AIND-SCCA[Πf ] is
given. Then, the theorem is proven by constructing another algorithm B which breaks Πf in the sense of
OW-CPA (AOW-CPA[Πf ]).

We can construct such B by using R as follows. B first is given a public key and a ciphertext (pk∗,c∗)
from OW challenger. B generate an instance of the problem P; y← IGen(k), and inputs y to R in order
to run R. Since R can simulate SCCA oracle SD, B obtain m∗ such that m∗← Decsk∗(c∗) by submitting
(pk∗,c∗) to R. Finally, B outputs m∗ as an answer of OW. Therefore, B works as a successful OW-CPA
adversary AOW-CPA[Πf ].

Since an OW-CPA adversary is easily converted to an IND-SCCA adversary, we obtain an IND-SCCA
adversary B′ converted from B. Now, we obtain a solver of P by combining B′ and R. It can be explicitly
constructed if we are given any implementation of R such that P⇐R AIND-SCCA[Πf ], and this contradicts
that P is computationally hard problem. 2

Theorem 2. For all digital signature scheme in the setup-free model Σf , if P is a (non-interactive)
computationally hard problem, there does not exist black-box reduction R such that P⇐R AEuF-SCMA[Σf ].

Proof. First, we explain the overview of this proof. In the first step of this proof, UuF-KOA adversary
B is constructed by using a black box reduction R such that P⇐R AEuF-SCMA[Σf ]. Since EuF-SCMA
adversary is constructed from B trivially, P can be solved by combining R and B. Since this contradicts
P is a computationally hard problem, we obtain the impossibility that there does not exist R.

Towards a contradiction, we assume that a black-box reduction R such that P⇐R AEuF-SCMA[Σf ] is
given. Then, the theorem is proven by constructing another algorithm B which breaks Σf in the sense of
UuF-KOA (AUuF-KOA[Σf ]).

We can construct such B by using R as follows. B first is given a public key and a ciphertext (pk∗,m∗)
from UuF challenger. B generate an instance of the problem P; y← IGen(k), and inputs y to R in order
to run R. Since R can simulate SCMA oracle SS, B obtain σ∗ such that 1←Versk∗(m∗,σ∗) by submitting
(pk∗,m∗) to R. Finally, B outputs σ∗ as an answer of UuF. Therefore, B works as a successful UuF-KOA
adversary AUuF-KOA[Σf ].

Since an UuF-KOA adversary is easily converted to an EuF-SCMA adversary, we obtain an EuF-SCMA
adversary B′ converted from B. Now, we obtain a solver of P by combining B′ and R. It can be explicitly
constructed if we are given any implementation of R such that P⇐R AEuF-SCMA[Σf ], and this contradicts
that P is computationally hard problem. 2

Remark 1. In Theorem 1 and 2, we prove impossibility results for IND-SCCA/EuF-SCMA security
in the standard model. On the other hand, there exist several schemes that is IND-SCCA/EuF-SCMA
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secure in the random oracle model. We show several public key encryption and digital signature schemes
which are secure under the strong attack model in the random oracle model. We prove that DHIES
scheme and Schnorr signature scheme are secure as examples in Appendix A. This result is similar to the
results of [10].

4 Impossibility Results in the Setup Model

In this section, we show that there does not exists setup-preserving black-box (SPBB) reduction R such
that P⇐R AEuF-SCMA[Σs] for all digital signature scheme in the setup model Σs and all GOAL-ATK if
ATK is weaker than SCMA. Here, P is a GOAL-ATK computationally hard problem on a setup model
scheme. By similar discussion, we that there does not exists setup-preserving black-box reduction R such
that AGOAL-ATK[Πs]⇐R AIND-SCCA[Πs] for all public key encryption scheme in the setup model Πs.
Setup Preserving Black Box Reduction. Black-box reduction R is called a “setup-preserving black-box
(SPBB) reduction” if R makes oracle calls to the adversary with the same common parameter I as its
own input2. Here, since we assume that the solver of P is equivalent to AGOAL-ATK, we also assume
that the input of AGOAL-ATK includes the common parameter I explicitly. A SPBB reduction is transi-
tive, that is, if there exist SPBB reductions R1 and R2 such that AGOAL1−ATK1 ⇐R1 AGOAL2−ATK2 and
AGOAL3−ATK3⇐R2 AGOAL1−ATK1, there exists a SPBB reduction R3 =R1◦R2 such that AGOAL3−ATK3⇐R3

AGOAL2−ATK2.

Theorem 3. For all public key encryption scheme in the setup model Πs, there does not exist a setup-
preserving black-box reduction R such that AGOAL-ATK[Πs] ⇐R AIND-SCCA[Πs] where GOAL is harder
than IND or ATK is weaker than SCCA.

Proof. We prove this theorem by combining the following two lemmas. In Lemma 1, we prove this
theorem in the case that GOAL is harder than IND In Lemma 2, we prove this theorem in the case that
ATK is weaker than SCCA.

Lemma 1. For all public key encryption scheme in the setup model Πs, if Πs is GOAL-ATK secure,
there does not exist a setup-preserving black-box reduction R such that AGOAL-ATK[Πs]⇐R AIND-SCCA[Πs]

where GOAL is harder than IND.

Proof. We assume that a SPBB R such that AGOAL-ATK[Πs]⇐R AIND-SCCA[Πs] is given. We first treat
with the case when ATK is weaker than SCCA, and then the case when SCCA is stronger than ATK.

(i) The case when ATK is weaker than SCCA. First, we prove the case that ATK is weaker than
SCCA. We can construct such GOAL-SCCA adversary B by using R as follows. B first is given a GOAL
challenge (I,y) from a GOAL challenger. B inputs (I,y) to R in order to run R. Then, R starts interacting
with a (virtual) oracle OATK (which is determined by ATK) and a (virtual) IND-SCCA adversary on Πs

by inputting (I, pk). Here, since R is setup-preserving black-box reduction, R inputs the same I as the
input of SCCA which B applies. When R submits a query to the virtual OATK, B responds to it in such a
way that B uses his own strong decryption oracle SD, and returns the answer from OATK as it is. Now,
SCCA is stronger than ATK, R can simulate OATK using SD. At some point, B is enforced to commit two
plaintexts m0 and m1 which will be challenged, and R returns the challenge ciphertext c̃b← Encpk(mb).
B submits (pk, c̃b) to SD and takes mb such that mb← DecI,sk(c̃b). B submits b to R and R outputs the
answer x of GOAL. Finally, B outputs x. Therefore, B works as a successful GOAL-SCCA adversary
AGOAL-SCCA[Πs].

2This similar concept was introduced in [16].
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Since an GOAL-SCCA adversary is easily converted to an IND-SCCA adversary, we obtain an
IND-SCCA adversary B′ converted from B. Now, we obtain an GOAL-ATK adversary by combin-
ing B′ and R. It can be explicitly constructed if we are given any implementation of R such that
AGOAL-ATK[Πs]⇐R AIND-SCCA[Πs], and this contradicts that Πs is GOAL-ATK secure.

(ii) The case when SCCA is weaker than ATK. Second, we prove the case that SCCA is weaker
than ATK. Then, this case is proven by constructing another algorithm B which breaks Πs in the sense
of GOAL-ATK. We can construct such GOAL-ATK adversary B by using R as follows. B first is given
a GOAL challenge (I,y) from a GOAL challenger. B inputs (I,y) to R in order to run R. Then, R starts
interacting with a (virtual) oracle OATK and a (virtual) IND-SCCA adversary on Πs by inputting (I, pk).
Here, since R is setup-preserving black-box reduction, R inputs the same I as the input of SCCA which
B applies. When R submits a query to the virtual OATK, B responds to it in such a way that B uses his
own OATK, and returns the answer from OATK as it is. Now, SCCA is weaker than ATK, R can simulate
OATK using SD.

At some point, B is enforced to commit two plaintexts m0 and m1 which will be challenged, and
R returns the challenge ciphertext c̃b ← Encpk(mb). Now, since SCCA is weaker than ATK, R can
simulate SD using OATK and SD can outputs mb, B can obtain mb such that mb ← DecI,sk(c̃b) using
OATK. B submits b to R and R outputs the answer x of GOAL. Finally, B outputs x. Therefore, B
works as a successful GOAL-ATK adversary AGOAL-ATK[Πs]. Now, we obtain an GOAL-ATK adversary
by combining B. It can be explicitly constructed if we are given any implementation of R such that
AGOAL-ATK[Πs]⇐R AIND-SCCA[Πs], and this contradicts that Πs is GOAL-ATK secure. 2

Lemma 2. For all public key encryption scheme in the setup model Πs, there does not exist a setup-
preserving black-box reduction R such that AGOAL-ATK[Πs]⇐R AIND-SCCA[Πs] where ATK is weaker than
SCCA.

First, we explain the overview of this proof. This proof is similar to Theorem1. In the first step of this
proof, OW-ATK adversary B is constructed by using a black box reduction R such that AGOAL-ATK[Πs]⇐R

AIND-SCCA[Πs]. Since IND-SCCA adversary is constructed from B trivially, AGOAL-ATK[Πs] can be solved
by combining R and B. Since this contradicts Πs is GOAL-ATK secure, we obtain the impossibility that
there does not exist R.

Towards a contradiction, we assume that a black-box reduction R such that AGOAL-ATK[Πs] ⇐R

AIND-SCCA[Πs] is given. Then, the theorem is proven by constructing another algorithm B which breaks
Πs in the sense of OW-ATK (AOW-ATK[Πs]).

We can construct such B by using R as follows. B first is given a public key and a ciphertext
(pk∗, I∗,c∗) from OW challenger. B generates a GOAL challenge y, and inputs (I∗,y) to R in order
to run R. When R submits a query to the virtual OATK, B responds to it in such a way that B uses his own
OATK, and returns the answer from OATK as it is. Since R can simulate SCCA oracle, B obtain m∗ such
that m∗ ← DecI∗,sk∗(c∗) by submitting (pk∗,c∗) to R. Notice that SCCA oracle is performed on same
common parameter I∗. Finally, B outputs m∗ as an answer of OW. Therefore, B works as a successful
OW-ATK adversary AOW-ATK[Πs].

Since an OW-ATK adversary is easily converted to an IND-SCCA adversary, we obtain an IND-SCCA
adversary B′ converted from B. Now, we obtain an GOAL-ATK adversary by combining B′ and R. It
can be explicitly constructed if we are given any implementation of R such that AGOAL-ATK[Πs] ⇐R

AIND-SCCA[Πs], and this contradicts that Πs is GOAL-ATK secure. 2

Theorem 4. For all digital signature scheme in the setup model Σs, there does not exist a setup-
preserving black-box reduction R such that AGOAL-ATK[Σs] ⇐R AEuF-SCMA[Σs] where GOAL is harder
than EuF or ATK is weaker than SCMA.
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Proof. We prove this theorem by combining the following two lemmas. In Lemma 1, we prove this
theorem in the case that GOAL is harder than EuF In Lemma 2, we prove this theorem in the case that
ATK is weaker than SCMA.

Lemma 3. For all public key encryption scheme in the setup model Σs, if Σs is GOAL-ATK secure, there
does not exist a setup-preserving black-box reduction R such that AGOAL-ATK[Σs]⇐R AEuF-SCMA[Σs] where
GOAL is harder than EuF.

Proof. We assume that a SPBB R such that AGOAL-ATK[Σs] ⇐R AEuF-SCMA[Σs] is given. Then, this
lemma is proven by constructing another algorithm B which breaks Σs in the sense of GOAL-SCMA or
GOAL-ATK.

First, we prove the case that ATK is weaker than SCMA. We can construct such GOAL-SCMA
adversary B by using R as follows. B first is given a GOAL challenge (I,y) from a GOAL challenger.
B inputs (I,y) to R in order to run R. Then, R starts interacting with a (virtual) oracle OATK (which is
determined by ATK) and a (virtual) EuF-SCMA adversary on Σs by inputting (I, pk). Here, since R is
setup-preserving black-box reduction, R inputs the same I as the input of SCMA which B applies. When
R submits a query to the virtual OATK, B responds to it in such a way that B uses his own strong signing
oracle SS, and returns the answer from OATK as it is. Now, SCMA is stronger than ATK, R can simulate
OATK using SS. At some point, B submits (pk,m∗) to his own strong signing oracle and receives σ∗
where m∗ is chosen randomly. B submits (m∗,σ∗) to R and R outputs the answer x of GOAL. Finally, B
outputs x. Therefore, B works as a successful GOAL-SCMA adversary AGOAL-SCMA[Σs].

Since an GOAL-SCMA adversary is easily converted to an EuF-SCMA adversary, we obtain an
EuF-SCMA adversary B′ converted from B. Now, we obtain an GOAL-ATK adversary by combin-
ing B′ and R. It can be explicitly constructed if we are given any implementation of R such that
AGOAL-ATK[Σs]⇐R AEuF-SCMA[Σs], and this contradicts that Σs is GOAL-ATK secure.

Second, we prove the case that SCMA is weaker than ATK. Then, this case is proven by constructing
another algorithm B which breaks Σs in the sense of GOAL-ATK. We can construct such GOAL-ATK
adversary B by using R as follows. B first is given a GOAL challenge (I,y) from a GOAL challenger. B
inputs (I,y) to R in order to run R. Then, R starts interacting with a (virtual) oracle OATK and a (virtual)
EuF-SCMA adversary on Σs by inputting (I, pk). Here, since R is setup-preserving black-box reduction,
R inputs the same I as the input of SCMA which B applies. When R submits a query to the virtual OATK,
B responds to it in such a way that B uses his own OATK, and returns the answer from OATK as it is.

Now, since SCMA is weaker than ATK, R can simulate SS using OATK and B can generate (m∗,σ∗)
using SS such that 1← DecI,sk(m∗,σ∗) with OATK. B submits b to R and R outputs the answer x of
GOAL. Finally, B outputs x. Therefore, B works as a successful GOAL-ATK adversary AGOAL-ATK[Σs].
Now, we obtain an GOAL-ATK adversary by combining B. It can be explicitly constructed if we are
given any implementation of R such that AGOAL-ATK[Σs]⇐R AEuF-SCMA[Σs], and this contradicts that Σs is
GOAL-ATK secure. 2

Lemma 4. For all public key encryption scheme in the setup model Σs, there does not exist a setup-
preserving black-box reduction R such that AGOAL-ATK[Σs]⇐R AEuF-SCMA[Σs] where ATK is weaker than
SCMA.

First, we explain the overview of this proof. This proof is similar to Theorem1. In the first step of this
proof, UuF-ATK adversary B is constructed by using a black box reduction R such that AGOAL-ATK[Σs]⇐R

AEuF-SCMA[Σs]. Since EuF-SCMA adversary is constructed from B trivially, AGOAL-ATK[Σs] can be solved
by combining R and B. Since this contradicts Σs is GOAL-ATK secure, we obtain the impossibility that
there does not exist R.

134



Towards a contradiction, we assume that a black-box reduction R such that AGOAL-ATK[Σs]⇐R AEuF-SCMA[Σs]

is given. Then, the theorem is proven by constructing another algorithm B which breaks Σs in the sense
of UuF-ATK (AUuF-ATK[Σs]).

We can construct such B by using R as follows. B first is given a public key and a ciphertext
(pk∗, I∗,m∗) from UuF challenger. B generates a GOAL challenge y, and inputs (I∗,y) to R in order
to run R. When R submits a query to the virtual OATK, B responds to it in such a way that B uses his own
OATK, and returns the answer from OATK as it is. Since R can simulate SCMA oracle, B obtain σ∗ such
that 1← VerI∗,pk∗(m∗,σ∗) by submitting (pk∗,m∗) to R. Notice that SCMA oracle is performed on same
common parameter I∗. Finally, B outputs σ∗ as an answer of UuF. Therefore, B works as a successful
UuF-ATK adversary AUuF-ATK[Σs].

Since an UuF-ATK adversary is easily converted to an EuF-SCMA adversary, we obtain an EuF-SCMA
adversary B′ converted from B. Now, we obtain an GOAL-ATK adversary by combining B′ and R.
It can be explicitly constructed if we are given any implementation of R such that AGOAL-ATK[Σs] ⇐R

AEuF-SCMA[Σs], and this contradicts that Σs is GOAL-ATK secure. 2

In this section, we show impossibility results of SCMA/SCCA in the standard model. Whereas,
we show that there exists scheme is secure in SCMA/SCCA model in the random oracle model, and
it is possible that digital signature scheme or public key encryption scheme in setup model is secure in
SCMA/SCCA model.

5 How to Construct IND-SCCA Secure Public Key Encryption

In this section, we discuss the essential mechanism to construct IND-SCCA secure public key encryption
scheme in the standard model.

During the security proof, a simulator B should simulate a SCCA oracle SD, that is B should decrypt
a ciphertext under arbitrarily chosen public key. If B use different parameter for each public key when
B simulates SD, B should create an exponential number of parameter in order to decrypt under any pk.
One solution to the problem is to decrypt ciphertexts under any public key using a same parameter.

For example, IND-SCCA secure scheme can be constructed by using similar technique of the Naor-
Yung paradigm [14]. Then, a ciphertext contains three IND-CPA secure encryptions of the same plaintext
under each user’s two public key (pk1, pk2) and a common parameter I, along with a non-interactive zero-
knowledge (NIZK) proof that indeed the same plaintext were encrypted. During the security proof, first,
a simulator will generate s as a secret key of I. Next, the simulator generates I from s as the common
parameter and run a IND-SCCA adversary on I. Note that in order to implement the strong decryption
oracle SD, the simulator only needs to decrypt one ciphertext component which depends on I and rely
on the soundness of the NIZK proof. Since the simulator generate I, this security proof does not use
setup-preserving black-box manner. So, this construction does not contradict the impossibility result in
Sec. 3. From above discussion, IND-SCCA scheme can be constructed in the setup model.
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A Secure Schemes in the Random Oracle Model

In this section, we show a public key encryption/digital signature scheme which is proved to be IND-SCCA/
EuF-SCMA secure in the random oracle model, in order to show that the impossibility result in Sec-
tion 3. does not cover random oracle constructions. Specifically we show that the DHIES [1] with a
slight modification is actually IND-SCCA secure in the random oracle model.

A.1 Computationally hard Problem

In this subsection, we define discrete logarithm assumption and gap Diffie-Hellman assumption.

Definition 6 (Gap Diffie-Hellman Assumption). Let G be a group of prime order p. We say that the
(τ ,ε)-GDH assumption on G holds when for all τ-time algorithm A it holds that Pr[AO(g,gα ,gβ ) =
gαβ ] ≤ ε where the probability is taken over the random choices of α , β and the generator g here the
oracle O(g,ga,gb,gc) returns 1 when ab = c and returns 0 otherwise.

Definition 7 (Discrete Logarithm Assumption). The discrete logarithm (DL) problem in G is defined as
follows. We say that a PPT algorithm A has an advantage AdvDL

A (l) in solving the DL problem in G
if AdvDL

A (l) = Pr [A(gx,g) = x : x←R Zp,g ∈G] . We say that the DL assumption holds in G if no PPT
algorithm has a non-negligible AdvDL

A (l) in l in solving the DL problem in G.

A.2 DHIES scheme

First, we show that the DHIES [1] with a slight modification is actually IND-SCCA secure in the random
oracle model. For simplicity of presentation, we only give a brief sketch of a proof that the KEM part
of the scheme is IND-SCCA secure. Even though no KEM/DEM composition theorem is known for
SCCA security, the full-fledged DHIES can be proved to be IND-SCCA secure with a natural extension
of the following.

For completeness we give the concrete description of the KEM part of the DHIES public key en-
cryption. Let G be a multiplicative group of a prime order q. The DHIES key encapsulation mechanism
consists of the following three algorithms:

Gen: The key generation algorithm Gen chooses a random generator g of G and a random x← Zq and
computes y← gx. And then Gen chooses a cryptographic hash function H. The public key pk is
set to pk = (g,y,H) and the secret key sk is sk = x.

Enc: The encapsulation algorithm Enc takes pk = (g,y,H) as input and chooses a random r← Zq. The
algorithm then computes C← gr and K ← H(pk,yr) (= H(g,y,yr)). The ciphertext is C and its
corresponding session key is K.

Dec: The decapsulation algorithm Dec takes a ciphertext C, a public key pk = (g,y,H), and a secret key
sk = x and outputs K = H(pk,Cx).

As the following, it can be proven that the above DHIES key encapsulation mechanism has strong
chosen-ciphertext security under gap Diffie-Hellman assumption:

Theorem 5. If the gap Diffie-Hellman assumption holds on G and H is modeled as a random oracle, the
DHIES key encapsulation mechanism is IND-SCCA secure.

Proof. Given an adversary A against the DHIES key encapsulation mechanism, we will construct a
simulator B solving the gap Diffie-Hellman problem. The construction of B is as follows:
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Setup The simulator B is given a tuple (g,gα ,gβ ), and sets pk∗ = (g,gα). Then S sends pk∗ to the
adversary A.

Strong Decapsulation Query (Phase I) When A makes a decapsulation query (pk,C), where pk is
parsed as (g,y), B proceeds as follows: At first B searches for the entry of the form (g,y,C,Z,h)
such that (g,y,C,Z) forms a DDH tuple (that is, the equation loggC = logy Z holds). This operation
can be done by querying (pk,C,Z) to B’s own DDH oracle. (i) When such an entry is found, B
returns h to A. (ii) Otherwise if no such an entry found, B chooses h at uniformly random, adds
(g,y,C,⊥,h) to the hash list, and returns h to A.

Phase I (Hash Query) When A makes a hash query (g,y,C,K), B proceeds as follows: (i) If the hash
list contains an entry of the form (g,y,C,⊥,h) (for some h) and (g,y,C,K) forms a DDH tuple (To
examine whether (g,y,C,K) forms a DDH tuple, B can use an access to its own DDH oracle.), B
replaces the entry (g,y,C,⊥,h) with (g,y,C,K) and returns h to A. (ii) Otherwise if no such an
entry is found or (g,y,C,K) does not form a DDH tuple, B chooses a uniformly random h, add
(g,y,C,K)

Challenge When A requests a challenge, B sets C∗ be gβ and K∗ be an independent random session key.
Then B sends (C∗,R∗) to A.

Phase II The adversary again submits decapsulation queries and hash queries. The simulator responds
as before.

Guess Finally A outputs a bit b. The simulator tries to find from the hash list the entry of the form
(g,gα ,gβ ,Z,h) such that (g,gα ,gβ ,K,h) forms a DDH tuple. If such an entry is found, B outputs
Z as a solution for the gap Diffie-Hellman problem.

It can be proved that the above simulator can find the correct solution of the gap Diffie-Hellman problem
with a high probability. Intuitively, it is due to the fact that the adversary A with a high advantage must
queries (g,gα ,gβ ,gαβ ) to the random oracle with a high probability, because otherwise H(g,gα ,gβ ,gαβ ),
which is what A has to guess, is independently distributed from the A’s view. The formal proof can be
given by adopting similar discussions in [6], but it is omitted due to the limitation of pages.

A.3 Schnorr Signature

Next, we show that the Schnorr signature scheme is actually EuF-SCMA secure in the random oracle
model. Schnorr’s identification protocol was introduced [18, 19] as a means to prove knowledge of
the discrete logarithm of a publicly known group element. Schnorr signatures derive from Schnorr’s
identification protocol by applying the Fiat-Shamir transform [9] with respect to a hash function H :
{0,1}∗ → Zq. The Fiat-Shamir-transformed protocol is changed into a signature scheme by making it
non-interactive. We define Schnorr Signature scheme in the setup-free model Σf = (Gen,Sig,Ver) as
follows.

Gen. Given a security parameter k, Gen picks g ∈ Zp, x ∈ Zq, and a hash function H : {0,1}∗→ Zq.
Next, Gen computes y = gx mod p. The output is pk = (g,y, p,q,H) and sk = x.

Sig. Given a message m ∈ {0,1}∗, pk and sk, Sig picks a random r← Zq, computes h = gr mod p,c =
H(pk,h,m) and s = r+ cx. The output signature is σ = (s,c).

Ver. Given a message m ∈ {0,1}∗, pk and σ = (s,c), Ver returns valid if c = H(pk,gs/yc,m) and 0
otherwise.
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As the following, it can be proven that the Schnorr signature scheme has strong chosen-message
security:

Theorem 6. If the discrete logarithm assumption holds and H is modeled as a random oracle, Schnorr
signature scheme is EuF-SCMA secure.

Proof (Sketch). Given an adversary A against the Schnorr signature scheme, we will construct a
simulator B solving the discrete logarithm problem. The construction of B is as follows: B uses a
counter cnt, initially set to 0.

Setup For given (g,y, p,q), B input pk = (g,y, p,q) to AEuF-SCMA[Σf ].

Hash Query When A makes hash query (pki,h,m), B proceeds as follows: (i) If the hash list contains
an entry of the form (cnt, pki,h,m,c) (sor some c and cnt) returns c to A. (ii) Otherwise if no such
an entry is found, B chooses a uniformly random h, add (cnt, pki,h,m,c) to the hash list and sets
cnt← cnt +1.

Strong Chosen Message Query When A makes strong chosen message query (pki,m), A proceeds as
follows: At first A chooses (s,c)← Zqi randomly and responds them to A. Next, A computes
h = gs

yc and adds (⊥, pki = (gi,yi, pi,qi),h,m,c) to the hash list.

Output Since A breaks EuF, A outputs (m∗1,σ∗1 ). Then, from the Forking Lemma [17], B obtain

(m∗1,σ∗1 = (s∗1,c
∗
1)) and (m∗2,σ∗2 = (s∗2,c

∗
2)) such that gs∗1

yc∗1
= gs∗2

yc∗2
and computes x =

s∗1−s∗2
c∗1−c∗2

. Finally,

B outputs x as an answer of the discrete logarithm problem
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