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Abstract

In this paper, we show how to construct an Identity Based Signcryption Scheme (IBSC) using an
Identity Based Encryption (IBE) and an Identity Based Signature (IBS) schemes. This we obtain by
first extending the An-Dodis-Rabin construction to the Identity Based setting and then instantiating.
We then further modify the construction to obtain an efficient construction. We show that the security
of the IBSC scheme–indistinguishability as well as unforgeablity–is derived from the security of the
underlying IBE and IBS schemes. Moreover, we show that under mild (reasonable) assumptions, the
scheme is both space and time efficient compared to the Sign-then-Encrypt approach.
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1 Introduction

In order to simplify key management, Shamir proposed an Identity Based Cryptosystem [1] in 1984. In
this cryptosystem, unambiguous identity of a user(such as email address, social security number etc.)
is used as a public key and the secret key corresponding to a user is issued by a third party called the
Private Key Generator (PKG). Since 1984, although Shamir proposed the first Identity Based Signature
(IBS) scheme in his proposal of Identity Based Cryptosystem, there were several proposals for Identity
Based Encryption (IBE) schemes. However none fulfilled the demands posed by IBE until 2000 when
Sakai-Ohgishi-Kashara [10]and 2001 when Boneh and Franklin [4] proposed an IBE scheme from bi-
linear pairing on Elliptic Curves. In 2001 again, Cocks [3] proposed an IBE scheme based on quadratic
residuosity problem modulo an RSA composite modulus.

In 1997, Zheng[14] proposed a new primitive viz signcryption in which encryption and signature are
done simultaneously at a much lower computational cost and communication overhead than the Sign-
then-Encrypt approach. The scheme in [14] was not formally proved to be secure since no formal notion
of security was proposed then. It was only in PKC 2002 that Baek, Steinfeld and Zheng [6] introduced a
formal notion of security for signcryption.

Since the introduction of the primitive, several schemes have been proposed. Very recently, Matsuda-
Matsuura-Schuldt [12] gave several simple but efficient contructions of signcryption schemes using ex-
isting primitives. In one of the constructions, they introduced the notion of signcryption composable
and show how, in this case, a signature scheme and an encryption scheme can be combined to achieve
higher efficiency than a simple composition. (Also, [12] gives a nice account of some prevous work on
signcryption and has an extensive bibliography.)
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In this paper, we consider an efficient construction of an Identity Based Signcryption scheme. We will
show how to construct an Identity Based Signcryption (IBSC) scheme using any Identity Based Encryp-
tion (IBE) scheme and Identity Based Signature (IBS) scheme. Our construction differs from those of
[12] in the sense that we do not use the sign-then-encrypt or encrypt-then-sign paradigm. In the iden-
tity based setting, [11] gives a construction to obtain an IBSC scheme from an IBE scheme and an IBS
scheme. However, our construction allows signature and encryption to be done in parallel during sign-
cryption while decryption and verification can be done in parallel during designcryption. Consequently,
our construction is more efficienct than the one in [11]. Security of the resulting IBSC scheme is inher-
ited from the security results of the underlying IBE and IBS schemes in the random oracle model.

In the public key setting, An, Dodis and Rabin [5] proposed a generic construction of Signcryption
scheme using Commitment then Encryption and Signature algorithm (C tE &S ) . Their construction
is efficient in the sense that Encryption and Signature can be done in parallel. In this paper, we show
that that their construction can easily be lifted to the Identity Based setting to yield an Identity Based
Signcryption scheme. We then instantiate this with a particular commitment scheme to obtain a generic
construction of an efficient ID based signcryption scheme. However, like the An-Dodis-Rabin construc-
tion, we only obtain a generalized IND-CCA secure IBSC scheme from an IND-ID-CCA secure IBE.
In fact, we show that this scheme is not IND-CCA secure. To obtain an IND-IBSC-CCA secure Iden-
tity Based Signcryption scheme, we modify the preceding construction. We show that this modification
yields an IND-IBSC-CCA secure signcryption scheme, provided the underlying IBE is IND-ID-CCA se-
cure. Finally, we show that our construction yields an efficient identity based signcryption schemes when
compared with existing ones.

2 Preliminaries

2.1 Formal Model for Commitment Scheme

Throughout this paper, by a Commitment Scheme we mean a non-interactive Commitment Scheme. A
Commitment Scheme consists of three algorithms:

• Setup : A probabilistic polynomial time algorithm that takes security parameter as input and
outputs a Commitment Key CK (possibly empty) and public parameters.

• Commit : A probabilistic polynomial time algorithm which takes message m and public parame-
ters and outputs a pair (c,d), where c is the commitment and d is the decommitment.

• Open : A deterministic polynomial time algorithm which takes commitment and decommitment
pair (c,d) as input and returns m if (c,d) is a valid pair for m, else ⊥.

For consistency, it is required that Open(Commit(m)) = m for all message m ∈M .

2.2 Properties of Commitment

1. Hiding Property : There exists no probabilistic polynomial time adversary A = (A1,A2) which
can distinguish the commitment to any two messages of its choice with non-negligible probability.
Formally,

Pr[b = b̂|CK← Setup(1k),(m0,m1,st)←A1(CK),b R←{0,1},(c,d)←CommitCK(mb), b̄←
A2(c,st)] = 1

2 + ε

162



Efficient Construction of IBSC schemes from IBE and IBS Schemes S. K. Pandey and R. Barua

where ε is a negligible quantity.

2. Binding Property : There exists no probabilistic polynomial time adversary A , having knowledge
of CK, can come up with (c,d,d′) such that (c,d) and (c,d′) are valid commitment pairs for m and
m′ but m ̸= m′.

3. Relaxed Binding Property : There exists no probabilistic polynomial time adversary A , having
knowledge of CK, can come up with a message m and A (c,d,CK) produces with non-negligible
probability, a value d′ for the output of Commit(m), say (c,d), such that (c,d′) is a valid commit-
ment to some m ̸= m′. Namely, A cannot find a collision using a randomly generated c(m), even
for m of its choice.

2.3 Formal Models for Identity Based Encryption

An IBE scheme consists of four algorithms which are the following :

• Setup : A probabilistic polynomial time algorithm run by a private key generator (PKG) that takes
security parameter as input and outputs a master secret key msk and public parameters Params.

• KeyGen : A probabilistic polynomial time algorithm run by PKG which takes master secret key
msk, identity ID and public parameters Params as input and outputs a secret key skID associated
to the identity ID.

• Encrypt : A probabilistic polynomial time algorithm that takes a message m, the recipient identity
IDRec, and public parameters Params and outputs a ciphertext C = Encrypt(m, IDRec,Params).

• Decrypt : A deterministic polynomial time algorithm that takes a ciphertext C, recipient identity
IDRec, recipient secret key skIDRec and public parameters Params as input and outputs m if C is the
valid ciphertext of message m else ⊥.

2.4 Security Notion of IBE scheme

An IBE scheme is said to be indistinguishable against adaptively chosen-ciphertext (IND-ID-CCA)
secure if no probabilistic polynomial time algorithm adversary A has a non-negligible advantage in the
following game.

• The Challenger runs the Setup algorithm on input of a security parameter and gives the public
parameters Params to adversary A .

• Find Stage : A starts probing the following oracles :

– KeyGen : returns secret keys for arbitrary identities.

– Decryption : given an identity IDR and a ciphertext C, it generates the receiver’s secret key
skIDR = KeyGen(IDR) and returns either plaintext m if C is the valid encryption of m else ⊥.

A can submit her queries adaptively in the sense that each query may depend on the previous
queries. Once A decides that the above stage is over, she produces two equal length plaintexts
m0,m1 and an identity IDR for which she has not extracted the secret key while probing the KeyGen
oracle. The Challenger then chooses a random bit b ∈ {0,1} and returns the ciphertext Cb =
Encrypt(mb, IDR,Params) and sends it to A .
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• Guess Stage : A issues new queries which are same as in the Find stage but she can neither ask for
the secret key of IDR to the KeyGen oracle nor the decryption of Cb corresponding to the receiver’s
identity IDR to the Decryption oracle. Finally, A outputs a bit b′ and wins if b′= b. A ’s advantage
is defined as A dv(A ) = |Pr(b′ = b)− 1

2 |.

An IBE scheme is said to be IND-ID-gCCA secure if no probabilistic polynomial time algorithm adver-
sary has a non-negligible advantage in the game which is the same as that of IND-ID-CCA (described
above) except that while querying the Decryption oracle, adversary is not allowed to query on ciphertext
C on the same identity IDR such that Decryption(Cb, IDR,skR,Params)=Decryption(C, IDR,skR,Params).

2.5 Formal Models for Identity Based Signature

An IBS scheme consists of four algorithms which are the following :

• Setup : A probabilistic polynomial time algorithm run by a private key generator (PKG) that takes
a security parameter as input and outputs a master secret key msk and public parameters Params.

• KeyGen : A probabilistic polynomial time algorithm run by PKG which takes master secret key
msk, identity ID and public parameters Params as input and outputs a secret key skID associated
to the identity ID.

• Sign : A probabilistic polynomial time algorithm that takes a message m, the sender’s iden-
tity & secret key, IDSen & skIDsen and public parameters Params and outputs a signature σ =
Sign(m, IDSen,skIDSen ,Params).

• Verify : A deterministic polynomial time algorithm that takes a message m, a signature σ and
sender’s identity IDSen as input and outputs accept if σ is a valid signature of the message m, else
outputs reject.

2.6 Security Notion of IBS scheme

An IBS scheme is said to be strongly unforgeable against chosen message attack (SUF-ID-CMA) if no
probabilistic polynomial time adversary has a non-negligible advantage in the following game.

• The Challenger runs the Setup algorithm on input of a security parameter and gives the public
parameters Params to adversary A .

• A starts probing the following oracles :

– KeyGen : returns secret keys for arbitrary identities.

– Sign : given an identity IDS and a message m, it generates the secret key skIDS =KeyGen(IDS)
and returns a signature σ on the message m associated to the identity IDS.

Once A decides that this stage is over, A produces a triple (m∗,σ∗, ID∗S) where a secret key
corresponding to ID∗S has not been extracted before and such that (m∗,σ∗, ID∗S) was never obtained
from the Sign oracle. A wins the game if σ∗ is a valid signature on message m∗ associated to the
identity ID∗S. A ’s advantage is defined as the probability of winning the above game.
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2.7 Formal Models for Identity Based Signcryption

An Identity Based Signcryption IBSC scheme consists of the following four algorithms.

• Setup : A probabilistic polynomial time algorithm run by a private key generator (PKG) that takes
security parameter as input and outputs a master secret key msk and public parameters Params that
include a system wide public key.

• KeyGen : A probabilistic polynomial time algorithm run by the PKG which takes master secret
key msk, identity ID and public parameters Params as input and outputs a secret key skID associ-
ated to the identity ID.

• Signcryption : A probabilistic polynomial time algorithm that takes a message m, the recipient
identity IDRec, sender’s identity IDSen, sender’s secret key skIDSen and public parameters Params as
input and outputs a ciphertext C = Signcryption(m, IDRec, IDSen,skIDSen ,Params).

• Designcryption : A deterministic polynomial time algorithm that takes a ciphertext C, the recip-
ient’s identity IDRec, sender’s identity IDSen, receiver’s secret key skIDRec and public parameters
Params as input and outputs either a message

m = Designcryption(C, IDRec, IDSen,skIDRec ,Params)

if C is a valid ciphertext of m or an error symbol ⊥.

For consistency, it is required that if

C = Signcryption(m, IDRec, IDSen,skIDSen ,Params)

then the output of the Designcryption(C, IDRec, IDSen,skIDRec ,Params) should be m (and sometimes an
additional information that allows receiver to convince a third party that the plaintext actually emanated
from the sender).

2.8 Security Notion of IBSC scheme

There are several models of security. We shall consider the strongest notion of confidentiality and un-
forgeability below.

2.8.1 Confidentiality

An IBSC is said to be indistinguishable against chosen ciphertext attack (IND-IBSC-CCA) if no prob-
abilistic poynomial time adversary has a non-negligible advantage in the following game between the
adversary and a challenger.

• The Challenger runs the Setup algorithm on input of security parameters and sends the public
parameters, Params, to the adversary A .

• Find Stage : A starts probing the following oracles:

– KeyGen : returns secret key for arbitrary identities.

– Signcryption : given a pair of identities IDRec, IDSen and a plaintext m, it returns an encryp-
tion under the receiver’s identity IDRec of the message m signed in the name of the sender
IDSen.
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– Designcryption : given a pair of identities (IDRec, IDSen) and a ciphertext C, it generates
the receiver’s secret key skIDRec = KeyGen(IDRec) and returns either a pair (m,s) made of a
plaintext m and a transferable authenticating information for the sender’s identity IDSen or
the ⊥ symbol if C does not properly decrypt under the secret key skIDRec

Once A decides that this stage is over, it produces two plaintexts m0,m1 and identities ID∗Rec and
ID∗Sen and sends to the challenger. It is required that A should not have extracted the secret key of
ID∗Rec before. Challenger then returns Cb = Signcryption(mb, ID∗Rec, ID∗Sen,skID∗Sen

,Params) to A
for a random b ∈ {0,1}.

• Guess Stage : A issues new queries. This time A neither may issue a secret key extraction
query on ID∗Rec to the KeyGen oracle nor can issue a designcryption query on Cb corresponding
to receiver’s identity ID∗Rec and sender’s identity ID∗Sen to the Designcryption oracle. Finally, A
outputs a bit b′ and wins if b′ = b.

A ′s advantage is defined as Adv(A ) = |Pr(b′ = b)− 1
2 |.

Outsider security, a weaker notion, does not allow the attacker to extract the secret key of ID∗Sen at any
time.

We define an IBSC scheme to be IND-IBSC-gCCA secure in the insider security model if no probabilis-
tic polynomial time algorithm adversary has a non-negligible advantage in the game which is the same
as that of IND-IBSC-CCA in the insider security model (described above) except that while querying the
decryption oracle, the adversary is not allowed to query on ciphertext C on the same receiver’s identity
ID∗Rec and some other sender’s identity IDSen (may be different from ID∗Sen) such that the output of the
Designcryption(Cb, ID∗Rec, ID∗Sen,skID∗Rec

,Params) and the output of the Designcryption(C, ID∗Rec, IDSen,
skID∗Rec

,Params) is same.

2.8.2 Unforgeability

An IBSC scheme is said to be signature unforgeable against adaptive chosen message attacks (ESUF-
IBSC-CMA) if no probabilistic polynomial time adversary has a non-negligible advantage in the follow-
ing game.

• The Challenger runs the Setup algorithm on input of security parameters and sends the public
parameters, Params, to the adversary A .

• Find Stage : A starts probing the following oracles:

– KeyGen : returns secret key for arbitrary identities.

– Signcryption : given a pair of identities IDRec, IDSen and a plaintext m, it returns an encryp-
tion under the receiver’s identity IDRec of the message m signed in the name of the sender
IDSen.

– Designcryption : given a pair of identities (IDRec, IDSen) and a ciphertext C, it generates
the receiver’s secret key skIDRec = KeyGen(IDRec) and returns either a pair (m,s) made of a
plaintext m and a transferable authenticating information for the sender’s identity IDSen or
the ⊥ symbol if C does not properly decrypt under the secret key skIDRec

• Finally, A produces a triple (C∗, ID∗Rec, ID∗Sen) and wins the game if the secret key of ID∗Sen was
not extracted and if the result of Designcryption oracle on the ciphertext C∗ under the secret key
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corresponding to ID∗Rec is a valid message-signature pair (m∗,s∗) such that no Signcryption oracle
query involving m∗, ID∗Sen and some receiver ID′Rec (may be different for IDRec) gives a cipher-
text C′ whose designcryption under the secret key corresponding to ID′Rec is the alleged forgery
(m∗,s∗, ID∗Sen)

The adversary’s advantage is its probability of winning the game.

Notation :

• SIBE → Identity Based Encrytion Scheme.

– ENC.SIBE(., . . . , .)→ Encryption algorithm of SIBE .

– DEC.SIBE(., . . . , .)→ Decryption algorithm of SIBE .

• SIBS→ Identity Based Signature Scheme.

– SIG.SIBS(., . . . , .)→ Sign algorithm of SIBS.

– V ER.SIBS(., . . . , .)→ Verification algorithm of SIBS.

• R→ Random number space.

• M →Message space.

• C ′→ Ciphertext space of SIBE

• S ′→ Signature space of SIBS corresponding to message space M .

• ParamsIBE → Public parameters of SIBE .

• ParamsIBS→ Public parameters of SIBS.

• Params→ Public parameters of our signcryption scheme.

• mskIBE →Master secret key of SIBE .

• mskIBS→Master secret key of SIBS.

• msk→Master secret key of our signcryption scheme.

• KeyGenIBE(.)→ Key generation algorithm of SIBE .

• KeyGenIBS(.)→ Key generation algorithm of SIBS.

3 Extension of An-Dodis-Rabin Construction

In [5], An-Dodis-Rabin gave a generic construction of signcryption using Commitment, Encryption and
Signature algorithms. Their scheme is in the traditional PKC setting. It can easily been seen that their
construction can be lifted to construct an Identity Based Signcryption. Using Commitment, Identity
Based Encryption and Identity Based Signature in their construction, we show that similar to the con-
struction in [5] one can obtain an Identity Based Signcryption scheme.
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3.1 ID-Based An-Dodis-Rabin Construction

Let Commit be a Commitment scheme, SIBE be an Identity Based Encryption scheme, SIBS be an Identity
Based Signature scheme and m be the message.

• Setup(1k): The public parameter, Params, is (ParamsIBE ,ParamsIBS,Commit) and master secret
key is (mskIBE ,mskIBS).

• KeyGen(ID): Let skIBE ← KeyGenIBE(ID) and skIBS ← KeyGenIBS(ID). The secret key corre-
sponding to the identity ID will be (skIBE ,skIBS).

• Signcryption: Given a message m, the sender with identity IDSen, runs

– (c,d)←Commit(m)

– e← ENC.SIBE(d, IDRec,ParamsIBE) and

– s = c||σ where σ ← SIG.SIBS(c, IDSen,skSen,ParamsIBS);

outputs signcryption u = (e,s)

• Designcryption: Receiver with identity IDRec, validates using V ER.SIBS(c,σ , IDSen,ParamsIBS)
and decrypts d ← DEC.SIBE(e, IDRec,skRec,ParamsIBE) (outputting ⊥ if either fails). The final
output is m′ = Open(c,d). Clearly, m′ = m if everybody is honest.

As in [5], one can prove the following. The proofs are similar and are ommited.

Theorem 1. If Commitment has hiding property and the Identity Based Encryption scheme is IND-ID-
gCCA secure, then the Identity Based Signcryption scheme obtained by the extended An-Dodis-Rabin
method is IND-IBSC-gCCA secure in the insider security model.

Theorem 2. If Commitment has relaxed binding property and the Identity Based Signature scheme is
SUF-ID-CMA secure, then the Identity Based Signcryption scheme constructed above is also ESUF-
IBSC-CMA secure in the insider security model.

Using a particular commitment scheme and the above construction, we now obtain a generic con-
struction of an IBSC scheme using any secure identity based encryption and signature schemes. The
construction is as follows.

3.2 An Identity Based Signcryption Scheme using An-Dodis-Rabin Construction

Let m be the message whose bit size is l1.

1. Setup(1k):

(a) Choose a Commitment Scheme, say Commit.

(b) Choose an Identity Based Encryption Scheme, say SIBE .

(c) Choose an Identity Based Signature Scheme, say SIBS.

(d) Choose two secure Hash functions, H1 : {0,1}∗→{0,1}l1 and H2 : {0,1}∗→{0,1}l1 .
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The public parameter, Params, is (ParamsIBE ,ParamsIBS) and master secret key, msk, is
(mskIBE ,mskIBS).

2. KeyGen(ID): Let skIBE ← KeyGenIBE(ID) and skIBS ← KeyGenIBS(ID). The secret key corre-
sponding to the identity ID will be (skIBE ,skIBS)

3. Signcryption(m, IDRec, IDSen,skIDSen ,Params)

• Commit(m)
(a) Choose r←R

(b) Compute h1 = H1(m,r)
(c) Compute h2 = H2(r)
(d) Compute c = m⊕h2

(e) Output (h1,c||r)

• Encryption(c||r, IDRec,ParamsIBE)
(a) c′← ENC.SIBE(c||r, IDRec,ParamsIBE)

• Signature(h1, IDSen,skIDSen ,ParamsIBS)
(a) σ ← SIG.SIBS(h1, IDSen,skIDSen ,ParamsIBS)

Ciphertext C ≡ (c′,h1||σ)

4. Designcryption(C , IDRec, IDSen,skIDRec ,Params)

• Verify(h1,σ , IDSen,ParamsIBS)
(a) x←V ER.SIBS(h1,σ , IDSen,ParamsIBS)

• Decryption(c′, IDRec,skRec,ParamsIBE)
(a) c′′||r′← DEC.SIBE(c′, IDRec,skIDRec ,ParamsIBE)

If either of above steps fails, then return ⊥, else

• Open(c′′||r′,d)
(a) Compute h′2 = H2(r′)
(b) Compute m′ = c′′⊕h′2
(c) Compute h′1 = H1(m′,r′)

(d) Check h1
?
= H1(m′,r′)

(e) If the above step is correctly verified, return m′, else ⊥

As defined in [13], we can split the Signcryption algorithm into two algorithms, namely Encrypt and
Sign, and also Designcryption algorithm into two algorithms, namely Decrypt and Verify. In this case,
then, in Designcryption algorithm, the output of Decrypt algorithm will be (m′,r′,h1,σ , IDSen). Verify
algorithm then, as input, takes (m′,r′,h1,σ , IDSen) and returns true if it is a valid tuple else f alse. Final
output will be m′ if output of Verify is true else final output will be ⊥.

Remark: It can be easily shown that the commitment scheme used above has both the relaxed binding
and the hiding properties in the random oracle model. Hence the Identity Based Signcryption scheme
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constructed above is IND-IBSC-gCCA secure, if the Identiy Based Encryption scheme used is IND-ID-
gCCA secure.
We will now show that the IBSC scheme obtained above using the An-Dodis-Rabin construction is not
IND-IBSC-CCA secure in the insider security model.(This was also observed for the original scheme in
[5])

• Attack on Confidentiality in the Insider Security Model
Consider the IND-CCA game between the challenger and the adversary A . Let (C = (c′,h1||σ))
be the challenge ciphertext obtained during the IND-IBSC-CCA game corresponding to the re-
ceiver’s identity IDRec and sender’s identity IDSen. In the insider security model, we may as-
sume that the adversary A knows the sender’s secret key skIDSen . Hence, since the signature
algorithm is probabilistic, A can obtain a different signature on h1, say σ ′. Now, designcryption
of (C′ = (c′,h1||σ ′)) corresponding to the receiver’s identity IDRec and the sender’s identity IDSen

will yield the same message, say m that is obtained from the designcryption of (C = (c′,h1||σ)
corresponding to IDRec and IDSen. By quering the designcryption oracle, A easily wins the game.

4 A Modified Scheme

As observed above, the construction in section 3.2 yields only an IND-IBSC-gCCA secure scheme from
an IND-ID-CCA secure IBE scheme. Thus to obtain an IND-IBSC-CCA secure IBSC scheme we need
to modify the construction in section 3.2. This is done below. The modified scheme is no longer an
instantiation of the extended An-Dodis-Rabin construction.

Note that the bit length of message space M , public parameters of SIBE , ParamsIBE , public parameters
of SIBS, ParamsIBS, mskIBE and mskIBS depend upon the security parameter. We assume that any element
from R, M , C ′, S ′, ParamsIBE , ParamsIBS, mskIBE and mskIBS can be encoded by a string in {0,1}∗.
Let l1 be the bit-length of message m. We require that the bit-length of a random number r ∈R should be
equal to the bit-length of the message m. Let l2 be the bit length of signatures s ∈ S′. Moreover, assume
that ParamsIBE ∩ParamsIBS = ϕ .

Setup(1k)

Let H1 : {0,1}∗ → {0,1}l1 , H2 : {0,1}∗ → {0,1}l1 be secure hash functions. The public parameter,
Params, is (ParamsIBE ,ParamsIBS,H1,H2) and the master key, msk, is (mskIBE ,mskIBS).

KeyGen(ID)

Let skIBE ← KeyGenIBE(ID) and skIBS← KeyGenIBS(ID). The secret key corresponding to the identity
ID will be (skIBE ,skIBS).

Signcryption(m, IDRec, IDSen,skIDSen ,Params)

1. Choose r ∈R

2. h1 = H1(m,r, IDRec, IDSen)

3. c = ENC.SIBE(r, IDRec,ParamsIBE)

4. σ = SIG.SIBS(h1, IDSen,skIDSen ,ParamsIBS)
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5. h2 = H2(r,c,h1,σ , IDRec, IDSen)

6. c′ = h2⊕m

7. C ≡ (c,c′,h1,σ)

Designcryption(C,skIDRec , IDRec, IDSen,Params)

1. r′ = DEC.SIBE(c, IDRec,skIDRec ,ParamsIBE)

2. V ER.SIBS(h1,σ , IDSen,ParamsIBS)

3. If the above step is correctly verified, then

4. compute h′2 = H2(r′,c,h1,σ , IDRec, IDSen)

5. compute m′ = h′2⊕ c′

6. check h1
?
= H1(m′,r′, IDRec, IDSen)

7. If the above step is correctly verified, then return m′.

In this scheme also, as defined in [13], we can split the Signcryption algorithm into two algorithms,
namely Encrypt and Sign, and also Designcryption algorithm into two algorithms, namely Decrypt
and Verify. In this case, then, in Designcryption algorithm, the output of Decrypt algorithm will be
(m′,r′,h1,σ , IDSen). Verify algorithm then takes (m′,r′,h1,σ , IDSen) as input and returns true if it is a
valid tuple else f alse. Final output will be m′ if output of Verify is true else final output will be ⊥.

Remark: Note that, ENC.SIBE(.) and SIG.SIBS(.) can be run in parallel in Signcryption(.) and DEC.SIBE

and V ER.SIBS can be run in parallel in Designcryption(.). As a result our construction is more efficient
than that obtained in [11]

5 Security of the Modified Scheme

5.1 Message Confidentiality

Theorem 3. Let A be a probabilistic polynomial time (PPT) adversary which can break our scheme
in the IND-IBSC-CCA game with an advantage ε in the random oracle model. Then there exists a PPT
adversary B which can break SIBE (Identity Based Encryption scheme used) in the IND-ID-CCA game
with an advantage at least ε

2 .

Proof. Let there be two PPT challengers Challenger1 and Challenger2. Challenger1 first runs the setup
algorithm of SIBE and gives the public parameters ParamsIBE to Challenger2. Challenger2 here acts as
a PPT adversary B also which will break the IND-ID-CCA security of SIBE . Challenger2 then runs the
setup algorithm of SIBS (Identity Based Signature scheme used in our scheme). Let ParamsIBS be the pub-
lic parameters of SIBS. Challenger2 then gives the public parameters Params≡ (ParamsIBE ,ParamsIBS)
to the PPT adversary A . Without loss of generality, we assume that ParamsIBE ∩ParamsIBS = ϕ . B
maintains two lists L1 and L2 for queries on the hash functions H1 and H2. Besides these, B maintains
two other lists S1 and S2 for queries on the secret keys of different identities corresponding to SIBE and
SIBS.

We now explain how requests from A are treated by B who plays the role of a challenger to A .
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• H1 queries : For inputs mi ∈M , ri ∈R, IDReci ∈ {0,1}∗, IDSeni ∈ {0,1}∗, B searches the list L1
for the tuple (mi,ri, IDReci , IDSeni ,h1i). If such a tuple exists, B returns h1i to A , else B randomly
selects h1i from {0,1}l1 and adds the tuple (mi,ri, IDReci , IDSeni ,h1i) to the list L1 and returns h1i to
A .

• H2 queries : For inputs ri ∈R, ci ∈C ′, h1i ∈ {0,1}l1 , σi ∈S ′, IDReci ∈ {0,1}∗, IDSeni ∈ {0,1}∗, B
searches the tuple (ri,ci,h1i,σi, IDReci , IDSeni ,h2i) in the list L2. If such a tuple exists, B returns h2i

to A , else B randomly selects h2i from {0,1}l1 and adds the tuple (ri,ci,h1i,σi, IDReci , IDSenih2i)
to the list L2. B then returns h2i to A .

• Secret key queries : For an input IDi from A , algorithm B responds to A in two steps:

1. B sends IDi to Challenger1. Challenger1 then run the Key Generation algorithm of SIBE .
Let SIBE return the corresponding secret key skIBE i . B then adds (IDi,skIBE i) into the list
S1.

2. As the constituent Identity Based Signature scheme, SIBS, is chosen by B, so B generates
the secret key skIBSi corresponding to IDi. B then adds (IDi,skIBSi) into the list S2.

B finally returns (skIBE i ,skIBSi) to A .

• Signcryption queries : The response to signcryption query for message mi ∈M corresponding to
the receiver’s identity IDReci and sender’s identity IDSeni ∈ {0,1}∗ is as follows :

1. B searches the list S2 for the secret key corresponding to the identity IDSeni . If it does
not exist, B generates the secret key corresponding to IDSeni using SIBS. Let skIBSi be the
corresponding secret key.

2. B then runs Signcryption(mi, IDReci , IDSeni ,skIBSi ,Params). Let Ci ≡ (ci,c′i,h1i,σi) be the
output of the Signcryption algorithm. Then B returns Ci to A .

• Designcryption queries : For an input C = (ci,c′i,h1i,σi), where ci ∈ C ′ and h1i ∈ {0,1}l1 , σ ′i ,
IDReci , IDSeni ∈ {0,1}∗ (receiver’s and sender’s identities are IDReci and IDSeni respectively), B
first verifies whether σi is a valid signature of h1i or not corresponding to the identity IDSeni .
If it is so, B sends (ci, IDReci) to Challenger1. Challenger1 then runs the decryption algorithm
of SIBE to decrypt (ci, IDReci), else returns ⊥. Let ri be the output from the decryption algo-
rithm of SIBE . Then B searches the list L2 for the tuple (ri,ci,h1i,σi, IDReci , IDSeni ,h2i). If
such a tuple does not exist, B chooses uniformly at random a string h2i from {0,1}l1 and adds
(ri,ci,h1i,σi, IDReci , IDSeni ,h2i) to the list L2. B then computes mi = h2i⊕c′. Now, B searches the
list L1 for the tuple (mi,ri, IDReci , IDSeni ,h

′
1i). If such a tuple exists and h′1i = h1i, then B returns

mi else ⊥. If such a tuple does not exist, then B chooses a string h′1i uniformly at random from
{0,1}l1 and adds (mi,ri, IDReci , IDSeni ,h

′
1i) to the list L1. If h′1i = h1i, then B returns mi, else ⊥.

Once A decides to enter the challenge phase, it chooses two messages m0,m1 of same length and
two indentities IDR and IDS corresponding to the receiver’s and sender’s identities respectively and
sends them to B. B then chooses two random strings r0,r1 ∈ {0,1}l1 and the receiver’s identity
IDR and sends them to Challenger1. Challenger1 then chooses a bit, say b, uniformly at random
from {0,1} and computes the ciphertext cb corresponding to receiver’s identity by running the en-
cryption algorithm of SIBE . Challenger1 then sends the ciphertext cb to B. B then searches the
list L1 for the tuple (m0,r0, IDR, IDS,h10). If such a tuple doesn’t exist, B chooses a string h10 uni-
formly at random from {0,1}l1 and adds the tuple (m0,r0, IDR, IDS,h10). B then computes a signature
on h10 , say σ0 corresponding to identity IDS. B then searches the tuple (r0,cb,h10 ,σ0, IDR, IDS,h20)
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in the list L2. If such a tuple doesn’t exist. B chooses a string uniformly at random, say h20 from
{0,1}l1 and adds the tuple (r0,cb,h10 ,σ0, IDR, IDS,h20) to the list L2. B then computes c′0 = h20 ⊕m0.
Let C0 ≡ (cb,c′0,h10 ,σ0). B then searches the list L1 for the tuple (m1,r1, IDR, IDS,h11). If such
a tuple doesn’t exist, B chooses a string h11 uniformly at random from {0,1}l1 and adds the tuple
(m1,r1, IDR, IDS,h11). B then computes a signature on h11 , say σ1 corresponding to the identity IDS. B
then searches the tuple (r1,cb,h11 ,σ1, IDR, IDS,h21) in the list L2. If such a tuple doesn’t exist. B chooses
a string uniformly at random, say h21 from {0,1}l1 and adds the tuple (r1,cb,h11 ,σ1, IDR, IDS,h21) to the
list L2. B then computes c′1 = h21 ⊕m1. Let C1 ≡ (cb,c′1,h11 ,σ1). B then chooses a bit v ∈ {0,1} uni-
formly at random and returns Cv to the adversary A . For the sake of simplicity, we denote the challenged
ciphertext Cv to be C ≡ (c,c′,h1,σ).

A then performs a second series of queries which is treated in the same way for H1, H2, Secret Key
(except secret key query on identity IDR) and Signcryption queries. For Designcryption queries, given
an input C = (c j,c′j,h1 j,σ j) where c j ∈ C ′ and h1 j ∈ {0,1}l1 , σ ′j, IDRec j , IDSen j ∈ {0,1}∗ (receiver’s and
sender’s identities are IDRec j and IDSen j respectively), the following cases arise

1. If (c j, IDRec j) ̸= (c, IDR), B responds in the same way as it does for designcryption queries in the
first stage.

2. If (c j,h1 j,σ j, IDRec j , IDSen j) = (c,h1,σ , IDR, IDS), then c′j ̸= c′ (otherwise (c j,c′j,h1 j,σ j) will be
same as the challenge ciphertext for the corresponding receiver’s identity IDRec j and sender’s iden-
tity IDSen j ). Since (c j, IDRec j) = (c, IDR), decryption of c j for identity IDRec j will yield r j which
will be same as rb. B then searches the tuple (r0,c j,h1 j,σ j, IDRec j , IDSen j ,h10) in the list L2 and
computes m j0 = c′j⊕h10 . Similarly, B searches the tuple (r1,c j,h1 j,σ j, IDRec j , IDSen j ,h11) in the
list L2 and computes m j1 = c′j ⊕ h11 . B then searches the tuple (m j0 ,r0, IDRec j , IDSen j ,h1 j) and
(m j1 ,r1, IDRec j , IDSen j ,h1 j) in the list L1. If either of the tuples exists, then B aborts the game and
returns the corresponding bit as the final guess bit to the challenger. If no such tuples exist, then
B chooses two strings uniformly at random, say h′1 j and ¯h′1 j from {0,1}l1 such that h′1 j ̸= h1 j and
¯h′1 j ̸= h1 j. B then adds the tuples (m j0 ,r0, IDRec j , IDSen j ,h

′
1 j) and (m j1 ,r1, IDRec j , IDSen j ,

¯h′1 j) to
the list L1 and returns ⊥ to the adversary A .

3. If (c j, IDRec j) = (c, IDR), but (h1 j,σ j, IDSen j) ̸= (h1,σ , IDS). As (c j, IDRec j) = (c, IDR), decryp-
tion of c j for identity IDRec j will yield r j which will be the same as rb. B then searches in the list
L2 for the tuple (r0,c j,h1 j,σ j, IDRec j , IDSen j ,h2 j0). If such a tuple doesn’t exist, then B chooses a
string uniformly at random, say h2 j0 ∈{0,1}l1 and adds the tuple (r0,c j,h1 j,σ j, IDRec j , IDSen j ,h2 j0)
in the list L2. B then computes m j0 = c′j⊕ h2 j0 . Similarly, B searches the tuple (r1,c j,h1 j,σ j,
IDRec j , IDSen j ,h2 j1) in the list L2. If such a tuple doesn’t exist, then B chooses a string uni-
formly at random, say h2 j1 ∈ {0,1}l1 and adds the tuple (r1,c j,h1 j,σ j, IDRec j , IDSen j ,h2 j1) in the
list L2. B then computes m j1 = c′j⊕ h2 j1 . B then searches the tuple (m j0 ,r0, IDRec j , IDSen j ,h1 j)
and (m j1 ,r1, IDRec j , IDSen j ,h1 j) in the list L1. If either of the tuples exists, then B aborts the game
and returns the corresponding bit as the final guess bit to the challenger. If no such tuple exists,
then B chooses two strings uniformly at random, say h′1 j and ¯h′1 j from {0,1}l1 such that h′1 j ̸= h1 j

and ¯h′1 j ̸= h1 j. B then adds the tuples (m j0 ,r0, IDRec j , IDSen j ,h
′
1 j) and (m j1 ,r1, IDRec j , IDSen j ,

¯h′1 j)
in the list L1 and returns ⊥ to the adversary A .

In the above designcryption queries, B aborts the game if the following two cases arise:

1. A queries for (m j0 ,r0, IDRec j , IDSen j ,h1 j) or (m j1,r1, IDRec j , IDSen j ,h1 j) randomly to H1 oracle.
Since, the choice of r0 and r1 by B is completely random from the adversary A ’s point of view,
this case occurs with negligible probability.
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2. A correctly decrypts c corresponding to the receivers’s identity IDR. Hence, in this case, the
probability of winning the game by B will be 1.

Note that in the above game, B interacts with Challenger1 as in the real game. Secret key query for
identity IDR has not been asked by A to B, hence by B to Challenger1. Besides it, B has not queried
on the challenge ciphertext to Challenger1.

At the end of the simulation, B will use the bit guessed by A to guess the challenge bit with SIBE . If A
guesses w∈ {0,1}, B will also guess the same bit viz w. We divide the analysis of the success probability
of B into two cases:

• B does not abort the game.

1. If b = v, the simulation is perfect and the ciphertext, C, produced by B will be a valid
ciphertext of the message mv corresponding to IDR (receiver’s identity) and IDS (sender’s
identity). Let

– E1 denote the event that B wins.
– E2 denote the event that b = v.
– E3 denote the event that A wins.
– E4 denote the event that C is a valid ciphertext.

Then
Pr(E1|E2) = Pr(E3|E4)

WLOG, we assume

Pr(E3|E4)≥ 1
2

2. Suppose b ̸= v.

(a) Suppose A recognizes C as an invalid ciphertext. In that case, B will guess the bit
b = v̄, i.e., the complement of v. In this case, B will guess correctly.
Let

– E5 denote the event that b ̸= v.
– E6 denote the event that A recognizes C as an invalid ciphertext.

Then
Pr(E6|E2) = 0

and
Pr(E1|E5∩E6) = 1

Let
Pr(E6|E5) = p

(b) Now assume that A doesn’t recognize C as an invalid ciphertext. In this case, from A ′s
point of view, C will appear as a random ciphertext unless A queries H2 on input (rv,cb).
Since, rv was chosen uniformly at random from {0,1}l1 by B, hence the probability that
A will query H2 on input (rv,cb) is negligible. So, from A ′s point of view, C will
appear as a random ciphertext. Let,

– E7 denote the event that A recognizes C as a random ciphertext.
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Then
Pr(E7|E5) = 1− p

Pr(E1|E5∩E7) = 1
2

Note that

– E5 = EC
2

– Pr(E2) = Pr(E5) = 1/2

– (E5∩E6)∪ (E5∩E7) = E5

– E2∩ (E5∩E6) = ϕ
– E2∩ (E5∩E7) = ϕ
– (E5∩E6)∩ (E5∩E7) = ϕ
– Pr(E5∩E6) = Pr(E6|E5)Pr(E5) = 1

2 p

– Pr(E5∩E7) = Pr(E7|E5)Pr(E5) = 1
2(1− p)

Therefore,

Pr(E1) = Pr(E1|E2)Pr(E2) + Pr(E1|E5∩E6)Pr(E5∩E6) + Pr(E1|E5∩E7)Pr(E5∩E7) (1)

⇒ Pr(E1) = 1
2 Pr(E1|E2) + 1

2 p + 1
2 .

1
2(1− p) ≥ 1

2 Pr(E1|E2) + 1
4

Since,

Pr(E1|E2) = Pr(E3|E4)≥ 1
2

(2)

⇒ Pr(E1) ≥ 1
2 Pr(E3|E4) + 1

4 ≥
1
2

• B aborts the game.
Let

– E8 denotes the event that A correctly decrypts the ciphertext c.

Then
Pr(B aborts the game) = Pr(E8). (3)

In this case,
Pr(B wins) = 1. (4)

Using equations (3) and (4), we get
Pr(B wins) = Pr(B wins |B aborts the game)Pr(B aborts the game) + Pr(B wins |B doesn’t abort the
game)Pr(B doesn’t abort the game)
⇒ Pr(B wins) = 1.Pr(E8) + Pr(E1)(1 − Pr(E8))
⇒ Pr(B wins) = Pr(E1) + Pr(E8)(1 − Pr(E1))
⇒ Pr(B wins) ≥ Pr(E1)

Hence,
Advantage of B = A dv(B) = |Pr(B wins)− 1

2 |
≥ |(Pr(E1)− 1

2)| ≥
1
2(|Pr(E3|E4)− 1

2 |) =
1
2(A dv(A )) = ε

2
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5.2 Ciphertext Unforgeability

We can similarly prove ciphertext unforgeability. We show that our scheme is ESUF-IBSC-CMA se-
cure under the random oracle model provided the underlying IBS scheme is strongly unforgeable under
adaptive chosen message attack.

Theorem 4. Let A be a probabilistic polynomial time (PPT) adversary which can break our scheme in
the ESUF-IBSC-CMA game with an advantage ε in the random oracle model. Then there exists a PPT
adversary B which can break SIBS (Identity Based Signature scheme used) in the SUF-ID-CMA game
with an advantage ε .

Proof. Suppose algorithm B receives public parameters ParamsIBS from Challenger1 in the SUF-ID-
CMA game. Then B will choose an Identity Based Encryption scheme SIBE whose public param-
eters ParamsIBE are independently generated from the public parameters of SIBS. We assume that
ParamsIBS ∩ ParamsIBE = ϕ . B maintains two lists L1 and L2 for queries on the hash functions H1
and H2. Besides these, B maintains two other lists S1 and S2 for queries on the secret keys of different
identities corresponding to SIBE and SIBS .

We now explain how requests from A are treated by B. The response to H1 and H2 queries are
exactly as in the proof of Theorem 4.1.

• Secret key queries : To a query for IDi from A , B responds to A in two steps:

1. B sends IDi to Challenger1. Challenger1 then runs the Key Generation algorithm of SIBS.
Let SIBS return the corresponding secret key skIBSi . B then adds (IDi,skIBSi) to the list S2
corresponding to the identity IDi.

2. As the constituent Identity Based Encryption scheme, SIBE , is chosen by B, so B generates
the secret key skIBE i corresponding to IDi. B then adds (IDi,skIBE i) to the list S1 corre-
sponding to the identity IDi.

B finally returns (skIBE i ,skIBSi) to A .

• Signcryption queries : For input mi ∈M , IDReci , IDSeni ∈ {0,1}∗ (receiver’s and sender’s identities
are IDReci and IDSeni respectively), B first chooses a number, say ri ∈R. B then checks in the list
L1 for the tuple (mi,ri, IDReci , IDSeni ,h1i). If such a tuple doesn’t exist, then B chooses a string,
say h1i,uniformly at random from {0,1}l1 and adds the tuple (mi,ri, IDReci , IDSeni ,h1i) to the list
L1. B then sends (h1i, IDSeni) to SIBS to get a signature for h1i. Let σi be the output from the
signature algorithm of SIBS. B then runs the Encryption algorithm of SIBE corresponding to the
input (ri, IDReci). Let ci be the output of the encryption algorithm of SIBE . Then B searches the
list L2 for a tuple (ri,ci,h1i,σi,h2i). If such a tuple does not exist, B chooses a string uniformly
at random, say h2i, from {0,1}l1 and adds (ri,ci,h1i,σi,h2i) to the list L2. B then computes c′i =
h2i⊕mi and returns Ci = (ci,c′i,h1i,σi) to A .

• Designcryption queries : Designcryption query for ciphertext Ci = (ci,c′i,hi,σi), where ci ∈ C ′,
hi ∈ {0,1}l1 and σi ∈ {0,1}l2 corresponding to the receiver’s identity IDReci and the sender’s iden-
tity IDSeni ∈ {0,1}∗, is executed as follows :

1. B searches the list S1 for the secret key corresponding to the identity IDReci . If it does not
exist, B generates the secret key corresponding to IDReci using the key generation algorithm
of SIBE . Let skIBE i be the corresponding secret key.
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2. B then runs Designcryption(Ci, IDReci , IDSeni ,skIBE i ,Params). Let x be the output of the
Designcryption algorithm. B then returns x to A .

Note that to designcrypt the message associated to the sender’s identity IDSen, only the receiver’s
secret key is required. One does not require the secret key of IDSen.

Once this game is over, A submits a ciphertext C = (c,c′,h1,σ) corresponding to the receiver’s identity
IDRec and the sender’s identity IDSen such that the secret key corresponding to IDSen has not been queried
earlier.

Regarding (h1,σ , IDSen), the following cases arise:

1. B has not queried the Challenger1 on h1 corresponding to the sender’s identity IDSen. B then
submits (h1,σ) corresponding to the sender’s identity IDSen to Challenger1. In this case, B wins
the game.

2. (h1,σ) corresponding to the sender’s identity has been obtained by B from the the Challenger1;
hence, A has obtained some ciphertext Ci ≡ (ci,c′i,h1i,σi) from the Signcryption oracle for some
receiver’s idenity IDReci and IDSeni , where (h1i, IDSeni) = (h1, IDSen) and σi ̸= σ . B then submits
(h1,σ) corresponding to the sender’s identity IDSen to Challenger1. In this case also, B wins the
game.

3. (h1,σ) corresponding to the sender’s identity has been obtained by B from the Challenger1;
hence, A has obtained some ciphertext Ci ≡ (ci,c′i,h1i,σi) from the Signcryption oracle for some
receiver’s idenity IDReci and IDSeni , where (h1i,σi, IDSeni) = (h1,σ , IDSen). Since h1i = h1, with
negligible probability, two different input value on H1 will yield the same output (assuming H1 as
a random function). Hence, designcryption of C = (c,c′,h1,σ), say m, corresponding to the re-
ceiver’s identity IDRec and the sender’s identity IDSen, and the designcryption of Ci =(ci,c′i,h1i,σi),
say mi, corresponding to the receiver’s identity IDReci and sender’s identity IDSeni will be same, i.e.
m = mi. Again decryption of c, say r, corresponding to the receiver’s identity IDRec and decryp-
tion of ci, say ri, corresponding to the receiver’s identity IDReci will also be the same, i.e. r = ri.
Moreover, IDRec = IDReci . Hence in this case, (m,r,hi,σ) = (mi,ri,h1i,σi) corresponding to the
sender’s identity IDSen. So, this case will not arise as per the definition of ESUF-IBSC-CMA’s
security game.

Case 1 and 2 implies that whenever C = (c,c′,h1,σ) is a valid forged ciphertext submitted by A defined
in the security game of ESUF-IBSC-CMA, the forged message-signature pair (h1,σ) submitted by B to
Challenger1 will be a valid according to the definition of security game of SUF-ID-CMA.
Hence, whenever A is able to submit a valid ciphertext to B, B will also be able to submit a valid forged
message-signature pair to Challenger1.
So, advantage of B = A dv(B) = Pr(B wins) = Pr(A wins) = A dv(A ) = ε .

6 Efficiency

1. Time Efficiency : In our proposed scheme, encryption and signature can be done in parallel in
the signcryption algorithm and decryption and verification can be done in parallel in the design-
cryption algorithm. Let tE , tS, tD, tV and tH be the time taken by the encryption, sign, decryption,
verification and hash algorithms respectively. Then, assuming that the signature and encryption
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are computed concurrently in signcryption, the time taken by our scheme in signcryption will be
TSC =max(tE , tS)+2tH and assuming that decryption and verification are computed concurrently in
designcryption, the time taken by our scheme in designcryption will be TDSC = max(tD, tV )+2tH ;
whereas in the Sign-then-Encrypt approach, the total time taken in signcryption will be (tE + tS)
and in designcryption will be (tD + tV ). In general, tH << (tE or tS or tD or tV ).

2. Space Efficiency : In many cases, in practice, the ciphertext length bears (approx.) a constant
ratio with the plaintext. This is also the case with many signature schemes. Let the output length
of the encryption algorithm be (at most) αl1, where l1 is the bit length of message m. Let the
output length of the signature corresponding to a l1 bit message be (at most) l2 = β l1. Hence, the
total length of ciphertext will be (at most) (α +β +2)l1. But in the Sign-then-Encrypt approach,
ciphertext length will be, roughly, α(β + 1)l1. Hence, our scheme is likely to produce a shorter
ciphertext length compared to the Sign-then-Encrypt approach if α ≥ 2

β +1.

7 Comparisons

Using our generic method, we composed two IBSC scheme - first one by composing Boneh-Franklin
Identity Based Encryption (BF-IBE) [4] with Shamir’s Identity Based Signature (SH-IBS) [1] scheme
and the second one by composing Boneh-Franklin IBE [4] with Kurosawa-Heng Identity Based Sig-
nature (KH-IBS) ([7], page 113 of [2]) scheme. We compared these schemes with the Identity Based
Sgncryption (IBSC) schemes proposed by Boyen [13], Chen-Malone-Lee [8] and Barreto et. al. [9].
BF-IBE + SH-IBS (Boneh-Franklin IBE and Shamir IBS) has more than double ciphertext overhead and
BF-IBE + KH-IBS (Boneh-Franklin IBE and Kurosawa-Heng IBS) has almost double ciphertext over-
head than IBSC schemes proposed by Boyen, Chen-Malone-Lee and Barreto. In case of time efficiency,
both schemes (BF-IBE + SH-IBS and BF-IBE + KH-IBS) take less time in signcryption (note to remem-
ber that in our method, in signcryption, encryption and signature algorithm can be run in parallel) and
designcryption compared to Boyen and Chen-Malone-Lee IBSC scheme. Barreto’s scheme has lower
cost of computation in signcryption than that of BF-IBE + SH-IBS and BF-IBE + KH-IBS but in design-
cryption, BF-IBE + SH-IBS has lower and BF-IBE + KH-IBS has almost equal cost of computation than
that of Libert. Summary of the efficiency comparisons has been given in table 1.
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