
Administrative Models for Role Based Access Control in Android

Samir Talegaon* and Ram Krishnan
The University of Texas at San Antonio, San Antonio, Texas 78249 USA

{samir.talegaon, ram.krishnan}@utsa.edu

Abstract

Prior works propose new models for role based access control (RBAC) in Android; this paper adds on
to that body of research. Despite RBAC’s inherent administrative ease, managing roles for Android
applications is tedious for the device user, owing to their lack of knowledge in access control. To
realize the full potential of RBAC and to equip the user with ability to effectively manage Android
permissions, we introduce three new models for administration of RBAC in Android. These models
are based on an in-depth analysis of applications in Android, and support the principle of least privi-
lege to reduce unwanted permission exposure.

Keywords: Role based access control, Android, access control, administration

1 Introduction

Android is one of the most widely used mobile operating systems, and uses a permission based access
control system. Owing to the issues such as tedious administration mechanism of dangerous permissions,
absence of user control over normal permissions and the perpetually increasing number of permissions
and applications that can be installed at any time on modern devices, previous work has explored a role
based access control (RBAC) in Android [1, 11]. Given RBAC’s administrative ease, these works have
shown a promising approach towards managing application to resource access.

Analyzing a standardized RBAC system on Android, with users substituted for applications (see
Fig. 1), gives us an insight into the issues that could be faced in the administration of such a system.
Since a clear understanding of the constituencies of roles (i.e.: the permission that are assigned to the
roles (PA)) does not yet exist, the administrative ease RBAC offers cannot be envisioned accurately.
This is because, a proportionally higher number of roles with respect to the number of permissions,
undermines the user’s ability to easily manage the permission to role assignments (PA) and application
to role assignments (UA). On a side note, for this paper, it is assumed that the user of the Android device,
the application developers and Google are responsible for administering the UA and PA. Also, roles are
assumed to be defined by the application developers, that consist of role identities and their permission
assignments (PA).

In this paper, we propose three new administrative models for RBAC in Android. Acknowledging the
uncertainty of constituencies of roles, it is non trivial to design an administrative model that provides the
user with sufficient control over the UA and PA operations. Borrowing from the NIST RBAC paper [5],
constraints placed on the UA and PA operations alleviate some of the administrative burden from the
user, by potentially reducing the frequency of prompts. Another way of ensuring administrative ease, is
with an automated access control system such as RAdAC [8]. RAdAC functions by allowing the user to
define security tolerances (RiskTol) for the UA and PA operations. Then, the Android OS determines the
level of risk operations under consideration pose, and make access control decisions based on this risk.

Journal of Internet Services and Information Security (JISIS), volume: 10, number: 3 (August 2020), pp. 31-46
DOI: 10.22667/JISIS.2020.08.31.031

*Corresponding author: Electrical and Computer Engineering Department, The University of Texas at San Antonio, One
UTSA Circle, San Antonio, Texas, 78249, USA, Tel: +1-210-660-8859

31



Administrative Models for RBAC in Android Talegaon and Krishnan

UAAPPS PAROLES PERMS

SESSIONS

app_sessions session_roles

Figure 1: RBAC in Android

These models target the administration of UA and PA, and can mitigate user burden in the administration
of RBAC in Android.

Our Contribution: We propose three new models of administration of RBAC in Android, the first
model employs a user prompt based administration technique for UA and PA operations. The second
model introduces a constraint based approach, wherein the user can set multiple constraint variables
(called as cvar) that regulate the administrative RBAC operations. The third mode uses an automated
approach known as RAdAC, to manage UA and PA operations based on the risk they pose to the user’s
privacy and security.

OUTLINE: In Sect. 2 we present some of the related works and in Sect. 3 we present the adminis-
trative models for RBAC in Android. In Sect. 4 we discuss the rationale for constraints and describe a
few examples of operations with respect to Android. Sect. 5 describes the conclusion and the scope of
future work for the paper.

2 Related Works

This section describes the prior works that target access control in Android and implement RBAC in
Android, in order to improve it. Few works have implemented RBAC in Android, however, works which
implement administrative models for RBAC in Android are yet to be found. As such, this work is the
first such attempt to create a user friendly administration model. A few works that implement RBAC in
Android, without a user controlled administrative model, are described below.

Abdella et.al. [1] implemented RBAC in Android, by assigning roles to permissions and granting
these roles to apps. They use contextual information to limit the permissions that can be activated within
a given role that has been granted to an app, to reduce user administrative burden. However, roles are
arbitrarily created in their model. We believe, to fully realize the benefits of RBAC in Android, roles
need to be carefully crafted because, arbitrarily created roles hamper the effective advantage gained by
using RBAC in Android. However, the administration of RBAC in Android is done automatically via
the Policy Decision Manager without letting the user select which contexts they wish to consider. It is
our belief that access control for Android must take into consideration user input prior to making such
decisions. We have incorporated user input in all our models that lets the user decide upon the operation’s
successful execution.

Rohrer [11] implemented DRBACA model which is an adaptation of the RBAC model, in Android,
which considers the dynamic nature of contexts and controls application requests for permissions using
factors such as location of the device, time or date on the device, and events which take place on the
device. However, the 6 tupled rule mechanism is too complex to be understood by normal Android
users, and is geared more towards the enterprise environment. We have created our models with the
Android users in mind, most of whom are not knowledgeable in the field of access control.

32



Administrative Models for RBAC in Android Talegaon and Krishnan

Administration of RBAC has undergone extensive work in the past. Sandhu et.al. [15] (ARBAC96)
introduced the distinctions between an ordinary role and permission, with administrative roles and ad-
ministrative permissions. It was also the first model that introduced the administration of RBAC with the
help of RBAC itself. ARBAC97 [12, 13] introduced a decentralized administration for UA, PA and RR
assignment relations. Our models obey this distinction, which can also be seen in [9, 14]. It also defined
the can assign and the can revoke relations which dictate restrictions on administrative operations, and
depend on the concept of pre-requisite roles to limit which roles can be granted to a user. Since Android
does not maintain permissions with a hierarchy in mind, the concept of pre-requisite roles cannot be
materialized in Android.

In ARBAC97, when administrators assigned roles to users, such assignments enabled further role
assignments by satisfying the pre-requisite role qualifications. Thus, a single role assignment presented
an increased risk for administrators. Distinctions between mobile and immobile users in ARBAC99
[14] enabled administrators to grant the users, memberships in roles, without increasing the security
risk based on such a membership. In ARBAC97, pre-requisite roles presented an increased burden of
administration, by requiring administrators to grant all the chained pre-requisite roles before they could
grant a particular role. ARBAC02 categorized an organization into organization units which comprise of
user pool and permission pool. These pools enable administrators to directly assign a user to a user pool,
and a role to the user without needing to pre-assign all pre-requisite roles. Our administrative models do
not employ a pre-requisite role requirement, because in case of Android, the administrators are assumed
to be the device owner, app developers and Google itself. Also, pre-requisite roles require a hierarchical
design of the system being administered, however, no such hierarchy exists in the permissions or roles
for Android.

The UARBAC [7] paper established six design requirements based on three security principles
i.e.:flexibility and scalability, psychological acceptability and the economy of mechanism. From these
six principles, our models obey the requirements for equivalence and reversibility, because the operations
presented in our models do not create additional side effects i.e.: when a role is granted to an app, this
does not allow for any other role to be automatically granted to this app. Reversibility is the require-
ment by which an operation can be reversed, with the help of an opposite operation. All the ”assign”
operations presented in this paper, are reversed by the appropriate ”revoke” operations.

SARBAC introduces the concept of administrative scope which indicates modifiable role hierarchy.
Our models do not contain administrative role hierarchies, however, operations are processed either
depending on a set of modifiable constraints set by the administrator i.e.:device owner, or automatically
via the RAdAC system [8].

The models we present in this paper, aim to mitigate user burden on the administration of RBAC
in Android. Particularly the constraint based model reduces the user burden by letting the users pre-set
constraint values, which are then matched to the values during the authorization checks for the operations.
The RAdAC based model makes automated access control decisions by letting the user dictate the risk
that is acceptable for any given operation. The system then calculates the situational risk, based on
which it makes an access control decision. Since our models are built for Android, no administrative role
hierarchy exists in our models.

3 Administrative Models for RBAC in Android

The models for administration of RBAC in Android are described in this section. Each of these mod-
els comprise of several entity sets, helper functions, relationships and convenience functions. This is
followed by the operations in the model, for modification of the UA and PA relations. The models are
denoted by ARiAx which stands for administration of RBAC in Android - model x, where x is the num-

33



Administrative Models for RBAC in Android Talegaon and Krishnan

Table 1: Entity Sets

APPS
ROLES
PERMS
OWNER
DEV
ANDROID
AE

Table 2: Helper Functions

protlvl: ROLES→ {normal, dangerous, signature}
dev of: APPS→ DEV
usr approved: AE × PERMS × ROLES→ B
usr approved: AE × APPS × ROLES→ B
wished roles: APPS→ 2ROLES

user sel : cvarprotlvl→ 2{normal, dangerous}

pgrant approved: PERMS × ROLES→ B
rgrant approved: APPS × ROLES→ B

Table 3: Relations and Convenience Functions

UA ⊆ APPS × ROLES assigned apps: ROLES→ 2APPS

PA ⊆ PERMS × ROLES assigned permissions: ROLES→ 2PERMS

ROLE OWNER ⊆ ROLES × AE

ber distinguishing different models. The entity sets and relations from all the three models are denoted
in Tables 1, 2 and 3.These models have been put forth in an incremental fashion, that is, the base model
contains entities and relations that are common to all the three models. The rest of the models only
include those additional entities and relations not already noted in the base model.

3.1 ARiA0 (Base Model)

This is the base model for ARiA, and consists of entity sets, helper functions, relations and convenience
functions.

Entity Sets for ARiA0: The entity sets are designed to mimic the information stored on an Android
device (see Table 1). These entities are populated in accordance to the policies described further in the
paper.

– APPS, ROLES, PERMS, the sets of applications, roles and permissions on an Android device.

– OWNER, the set of all device owners on an Android device. So, OWNER = {owner1, owner2, . . . ,
ownern}

– DEV, the set of all developers for applications installed on an Android device. So, DEV =
{dev1,dev2, . . . ,devn}

– ANDROID, the set containing all the ”Android” users. So, ANDROID = {android1, android2, . . . ,
androidn}

– AE, the set of all administrative entities on an Android device. So, AE = OWNER ∪ DEV ∪
ANDROID.

Helper Functions for ARiA0: The helper functions facilitate access control decisions by extracting
data from the device itself (see Table 2). It should be noted that, these access control decisions refer to
administrative operations themselves i.e.: whether a device administrator is allowed to modify a certain
device relation (UA or PA), or not.

34



Administrative Models for RBAC in Android Talegaon and Krishnan

– protlvl, a function that gives the protection level for a role.

– dev of, a function that returns the developer of an app a installed on an Android device.

– usr approved, a function that depicts user approval for addition of a permission to a role.

– usr approved, a function that depicts user approval for assigning a role to an app.

– wished roles, a function that provides wished roles for an app installed on an Android device.

Relations and Convenience Functions for ARiA0: The relations denote the information stored on
an Android device, and are used to make access control decisions (see Table 3). Convenience func-
tions extract data from the relations stored on the device, and facilitate the access control decisions in
accordance with policies defined by us.

– UA, a many-to-many mapping application to role assignment relation.

◦ assigned apps, the mapping of a role r:ROLES onto a set of applications assigned to it. For-
mally, assigned apps(r) = {a ∈ APPS | (a, r) ∈ UA}.

– PA, a many-to-many mapping permission to role assignment relation.

◦ assigned permissions, the mapping of role r:ROLES onto a set of permissions assigned to it.
Formally, assigned permissions(r) = {p ∈ PERMS | (p, r) ∈ PA}.

– ROLE OWNER, a relation mapping roles and the administrative entity that owns these roles on an
Android device. Note that, ∀r ∈ ROLES,∀ae1 6= ae2 ∈ AE. (r, ae1) ∈ ROLE OWNER →
(r,ae2) 6∈ ROLE OWNER

Administrative Operations for ARiA0: The administrative operations denote the modification of
device relations, and to succeed, all the requisite authorization checks presented in the model must be
satisfied (see Table 4). The operations AssignPerm and RevokePerm represent modification to the de-
vice PA relation, whereas, AssignApp and RevokeApp represent modification to the device UA relation.
The operations that add a permission to a role, or a role to a user are deemed more security sensitive than
those operations that remove them; evidently, the operations that perform additions to the UA or PA
relations, are fitted with more stringent security checks than the removal operations.

The AssignPerm operation adds a permission to a role, and can succeed if the administrative entity
owns the role, and is either the Android device itself, or an app developer for an app installed on the
device. If the administrative entity is an app developer, prior approval from the device owner is required
before this operation can succeed. The RevokePerm operation removes a permission from a role, and
can succeed if the administrative entity performing such an operation, owns the role under consideration.

The AssignApp operation assigns a role to an app, and can succeed if the role being assigned to the
app, is requested by that app, and upon satisfaction of any one of the following conditions:

– If the role being assigned belongs to the normal or signature protection level, then the adminis-
trative entity performing the operation is required to be the Android device itself.

– If the role being assigned belongs to the dangerous protection level, then

– if the administrative entity is the device owner themselves, the operation can succeed, or

35



Administrative Models for RBAC in Android Talegaon and Krishnan

Table 4: RiA0 Administrative Operations

Operation: AssignPerm(ae : AE, p : PERMS,r : ROLES)

Authorization Requirement:(
(r, ae) ∈ ROLE OWNER ∧

((
ae ∈ DEV ∧ usr approved(ae, p, r)

)
∨ ae ∈ ANDROID

))
Updates:

PA′ = PA ∪ {p, r}

Operation: RevokePerm(ae : AE, p : PERMS,r : ROLES)

Authorization Requirement: (r, ae) ∈ ROLE OWNER

Updates:

PA′ = PA \ {p, r}

Operation: AssignApp(ae : AE,a : APPS,r : ROLES)

Authorization Requirement: r ∈ wished roles(a) ∧((
protlvl(r) ∈ {normal, signature}∧ ae ∈ ANDROID

)
∨(

protlvl(r) = dangerous ∧ ae ∈ DEV ∧ usr approved(ae, a, r)
)
∨(

protlvl(r) = dangerous ∧ ae ∈ OWNER
))

Updates:

UA′ = UA ∪ {a, r}

Operation: RevokeApp(ae : AE,a : APPS,r : ROLES)

Authorization Requirement: ae ∈ OWNER ∨ ae = dev of(a)

Updates:

UA′ = UA \ {a, r}

– if the administrative entity is an app developer for an app installed on the device, then the
assignment operation requires the express approval from the device owner.

The RevokeApp operation de-assigns a role from an app, and can succeed if the administrative
entity performing the operation is the device owner themselves, or is the developer of the app under
consideration.

3.2 ARiA1 (Constraint Based Model)

This is the second model for administration of RBAC in Android, and it uses constraints set by the device
owner, to filter request prompts in order to minimize user burden. As mentioned before, the entities and
relations in addition to the base model, are stated below. These entities are followed by the administrative
operations in Table 7.

Constraints for ARiA1: As mentioned before, these constraints facilitate the mitigation of risks
associated with addition operations to the device UA and PA relations. It should be noted, however, that

36



Administrative Models for RBAC in Android Talegaon and Krishnan

Table 5: Constraints for the PA Relation

Constraint Statement Explanation
CPA

card(p, r) |assigned permissions(r)| < cvarPAcard A constraint that limits the maximum number
of permissions that can be assigned to a role
to x.

CPA
δcard

(p, r) δassigned permissions(r) < cvarPA
δcard

A constraint that limits the number of permis-
sions that can be added to a role in a certain
time frame to y.

CPA
protlvl(p, r) protlvl(p) ∈ user sel(cvarPAprotlvl) A constraint which directs that only the per-

missions that have a certain protection level
may be assigned to a role.

Table 6: Constraints for the UA Relation

Constraints Statements Explanation
CUA

card(a, r) | app roles(a) | < cvarUAcard A constraint that limits the maximum number
of roles that can be assigned to an app to x.

CUA
δcard

(a, r) δapp roles(a) < cvarUA
δcard

A temporal constraint that limits the number
of roles that can be added to an app in a certain
time frame, to y.

CUA
protlvl(a, r) protlvl(r) ∈ user sel(cvarUAprotlvl) A constraint which directs that only the roles

that have a certain protection level may be as-
signed to an app.

the satisfaction of any of these constraints does not prevent risk altogether.

• Cvars: User defined constraint variables that set limits on PA assignments.

– cvarcard, is the constraint on role-permission cardinality. Its values can range from 0 to
|PERMS|.

– cvarδcard
, is the constraint on the number of permissions that can be added to any role in a

short amount of time. Values range from 0 to |PERMS|.

– cvarprotlvl, is the constraint on the permissions that are allowed to be added to the roles
based on their protection levels; its values range from 0 to 3. So, a value of 0 sets the
protection level requirement to normal, 1 sets it to dangerous and 2 sets it to normal or
dangerous. So, if the user selected protection level requirement is normal then the permis-
sions belonging to the dangerous protection level may not be assigned to that role. It should
be noted that, when the constraint fails, the user can still approve such an operation explicitly,
as shown in the function pgrant approved.

• CPA
i (p, r), a constraint statement particular to the PA relation, that evaluates to either true or false.

These constraints are defined in Table 5; and, need to be satisfied prior to a permission being
assigned to a role.

• CUA
i (p, r), a constraint statement particular to the user assignment (UA), that evaluates to either

true or false. These constraints are defined in Table 6; and, need to be satisfied prior to a permission
being assigned to a role.

37



Administrative Models for RBAC in Android Talegaon and Krishnan

Table 7: ARiA1 Operations

Operation: AssignPerm(ae : AE, p : PERMS,r : ROLES)

Authorization Requirement: (r, ae) ∈ ROLE OWNER ∧(
ae ∈ DEV ∧ pgrant approved(ae, p, r) ∨ae ∈ ANDROID

)
Updates:

PA′ = PA ∪ {p, r}

Operation: RevokePerm(ae : AE, p : PERMS,r : ROLES)

Authorization Requirement: (r, ae) ∈ ROLE OWNER

Updates:

PA′ = PA \ {p, r}

Operation: AssignApp(ae : AE,a : APPS,r : ROLES)

Authorization Requirement: r ∈ wished roles(a) ∧((
protlvl(r) ∈ {normal, signature}∧ ae ∈ ANDROID

)
∨(

protlvl(r) = dangerous ∧ ae = dev of(a) ∧ rgrant approved(a, r)
)

(
protlvl(r) = dangerous ∧ ae ∈ OWNER

))
Updates:

UA′ = UA ∪ {a, r}

Operation: RevokeApp(ae : AE,a : APPS,r : ROLES)

Authorization Requirement: ae ∈ OWNER ∨ ae = dev of(a)

Updates:

UA′ = UA \ {a, r}

Helper Functions for ARiA1: These functions extract data stored on the device, and facilitate access
control decisions. The particular helper functions for this model enable provide assistance to place
constraints on the modifications of the UA and PA relations.

• δassigned permissions(r) and δapp roles(a), these functions track the number of assignments (from
the co-domain of the function to the domain) for a function, within a certain time frame. The time
frame is arbitrated by the user.

• user sel, a function that maps the user input to the protection level requirement for assigning
permissions to roles or roles to applications.

• pgrant approved, a function that seeks user approval and ensures certain constraints are sat-
isfied for modifications done to the PA relation. The constraints for this function are shown in
Table 5. Note that, ∀ae ∈ AE, ∀r ∈ ROLES, ∀p ∈ PERMS. pgrant approved(p, r) →( n∧

i = 1
CPA

i (p, r) ∨ usr approved(ae, p, r)
)

. If all the constraints are satisfied, then user prompt

38



Administrative Models for RBAC in Android Talegaon and Krishnan

SRM OPN ROLES

ACCESS
HISTORY

Sensitivity of the
role (γ1)

Situational
factors (γ2)

Dev. trust
(γ3)

Criticality of the
operation to app

functionality

APPS PERMS

RAdAC decision module

Figure 2: Administration of RBAC in Android using Risk-adaptive approach (RAdAC)

is not shown, however, if any of the constraints are not satisfied, the user is required to approve the
request.

• rgrant approved, a function that seeks user approval and ensures certain constraints are sat-
isfied for modifications done to the UA relation. The constraints for this function are shown in
Table 6. Note that, ∀ae ∈ AE, ∀a ∈ APPS,∀r ∈ ROLES. rgrant approved(ae, a, r) →( n∧

i = 1
CUA

j (a, r) ∧ usr approved(ae, a, r)
)
.

Note the difference between pgrant approved and rgrant approved functions, in that the latter
requires the user’s express approval for assigning a role to an app, even when the constraints are satisfied.
This is because, apps utilize the roles to access components on the device; whereas, roles are merely a
tool, to organize permissions, and do not grant access to the device components themselves.

Administrative Operations for ARiA1: The administrative operations for ARiA1 are shown in Ta-
ble 7. The authorization requirements for the RevokeApp and the RevokePerm operations are identical
to the ones for ARiA0. The authorization requirements for AssignPerm and the AssignApp operations
are based on constraints described earlier.

The AssignPerm operation assigns a permission to a role, and can succeed when the administrative
entity performing the operation owns the role under consideration, and is either the Android device itself
or an app developer for an app installed on that device. If the administrative entity is an app developer,
then the operation succeeds either if all the constraints are satisfied, or upon express approval from the
device owner. The AssignApp operation assigns a role to an app, and can succeed if the role being
assigned is requested by the app under consideration, and either of the following conditions are satisfied.

• If the role being assigned belongs to the normal or the signature protection level, then the admin-
istrative entity is required to be the Android device itself.

• If the role being assigned belongs to the dangerous protection level, then either

◦ the administrative entity is the device owner, or

◦ the administrative entity is the app developer for the app under consideration, and all the
constraints are satisfied along with express user approval.

39



Administrative Models for RBAC in Android Talegaon and Krishnan

3.3 ARiA2 (RAdAC Based Model)

This model is based on the RAdAC model [8], and takes into consideration the operational risk before au-
tomatically making an access control decision. The main building blocks for this model are the SecRisk
and the OpNeed modules.

Operational Need Module (OPN): This module provides the quantifiable role request rationale
(see Table 8). The application developer can choose to provide the value of the operation to the app-
functionality. If the security risk posed by the operation can be challenged by this value, the operation
may still succeed.

Security Risk Module (SRM): This module calculates the quantifiable risk associated with each
operation based on the operation itself and a number of situational factors. The operational security risk
is always elevated for any assign operations and is reduced for corresponding revoke operations. This is
because assign operations are more security sensitive than the revoke operations. The situational factors
are - Location of the device, Time at which operation is initiated, whether the device owner is busy using
another app, proximity of the device to other Bluetooth/WiFi/NFC devices, and, in case of enterprise
scenario, whether the owner is logged in to the enterprise network. Total risk for any given operation is

given by
n
∑

i = 1
Ri.

Risk Threshold (RiskTol): The relative security budget defined by the user for any particular oper-
ation. Users can define a security budget value for all operations. If an operation’s security risk exceeds
its budget value, that operation can be denied by the RAdAC system.

The term OP is the set of app operations for the Android device. Note that, OP = {AssignPerm,
RevokePerm, AssignApp, RevokeApp}.

Administrative Operations for ARiA2: The administrative operations for the ARiA2 are authorized
by the RAdAC system (see Table 9). Initially, the device owner defines a risk threshold denoted by
RiskTol. This is the overall security risk, the device owner is willing to take, for that particular operation.
The RAdAC system then subtracts the calculated security risk via the SRM module, which is based on
situational factors such as location of the device, time of the day and proximity to certain wifi networks.
Then, the operational need provided by the app developer is added to this quantity to obtain the final
operational qualifying number. If this is greater than zero, the operation can succeed, and if not the
operation fails.

4 Discussion

In this section, we discuss the operations involved in the administrative RBAC in Android. As we use
constraints in ARiA1, we argue the rationale for such constraints, and their effects on user burden for
administering RBAC in Android. A few examples for administrative operations are also provided in this
section.

Table 8: Operational need for apps defined by developers

Op-need Explanation
0 Role not critical to app functionality, but complements it.
1 App needs the role, but if not available, does not impact user experience.
2 App can still function, but user experience is severely hampered.
3 App category prevents major functionality without role grant.

40



Administrative Models for RBAC in Android Talegaon and Krishnan

Table 9: ARiA2 Operations

Operation: AssignPerm(ae : AE, p : PERMS,r : ROLES)

Authorization Requirement: radacAssignPerm(ae, p, r)

Updates:

PA′ = PA ∪ {p, r}

Operation: RevokePerm(ae : AE, p : PERMS,r : ROLES)

Authorization Requirement: radacRevokePerm(ae, p, r)

Updates:

PA′ = PA \ {p, r}

Operation: AssignApp(ae : AE,a : APPS,r : ROLES)

Authorization Requirement: radacAssignApp(ae, p, r)

Updates:

UA′ = UA ∪ {a, r}

Operation: RevokeApp(ae : AE,a : APPS,r : ROLES)

Authorization Requirement: radacRevokeApp(ae, p, r)

Updates:

UA′ = UA \ {a, r}

radacOp(ae, p, r) →
(

RiskTol(op) − ∑SecRisk(γ) + OpNeed(op)
)

> 0

where op ∈ OP, the RiskTol is the threshold which is selected by the user for that operation.

4.1 Rationale for the Constraints on Modifications to PA and UA

App developers are required to use the minimum necessary permissions for functionality in line with
principle of least privilege. But they do not adhere to this principle and statistically request more permis-
sions than their apps need; prior research heavily indicates over-privilege in Android [4, 6, 16–18]. This
equates to the developers over-privileging their applications even when permissions are assigned directly
to applications. Introduction of roles can compound this issue, due to the reduction in granularity. So,
constraints on the assignment of permissions to roles and consequently the assignment of roles to apps
are necessary.

Out of all the permissions that are legitimately required by any app, not all permissions are needed all
the time. For example, WhatsApp requests 31 permissions (that are normal or dangerous)(from Table
10), however almost 13% permissions are very rarely used. Hence, it should be required for developers to
assign permissions to roles based on the frequency of usage of such permissions. However, Android does
not provide an easy way to monitor permission usage, hence, a cardinality based constraint can mitigate
this issue by limiting the maximum number of permissions that are assigned to roles, and further by
limiting the maximum number of roles that can be assigned to applications. Apart from this, a higher
number of roles, equates more prompts shown to the user. Due to this, users can develop fatigue and
choose to simply uninstall the app under consideration. This can prompt the developer to reduce the total
number of roles they assign their permissions to, which can further exacerbate the issue of over-privileged

41



Administrative Models for RBAC in Android Talegaon and Krishnan

Table 10: Permissions required by WhatsApp in Android

(a) Permissions used frequently

ACCESS NETWORK STATE
ACCESS WIFI STATE
CAMERA
INTERNET
READ CONTACTS
RECEIVE BOOT COMPLETED
RECORD AUDIO
STORAGE
VIBRATE
WRITE EXTERNAL STORAGE
READ PHONE STATE
READ SYNC SETTINGS
READ SYNC STATS
WRITE SYNC SETTINGS
WAKE LOCK
MODIFY AUDIO SETTINGS

(b) Permissions used on occasion

ACCESS COARSE LOCATION
ACCESS FINE LOCATION
CALL PHONE
CHANGE WIFI STATE
GET ACCOUNTS
GET TASKS
MANAGE ACCOUNTS
READ PROFILE
USE CREDENTIALS
WRITE CONTACTS
WRITE SETTINGS

(c) Permissions used rarely

AUTHENTICATE ACCOUNTS
RECEIVE SMS
SEND SMS
INSTALL SHORTCUT

applications.
Furthermore, legitimate applications can get tricked by malicious applications to reveal user data,

resulting in the well known privilege escalation attacks [2, 3, 10]. Many applications on the Play Store
use ad libraries to provide additional income to developers; these libraries can then gain access to user
data if applications remain over-privileged. These leaks of user data can be problematic and can result
in a monetary loss for the user. While solving the issue of permission over-privilege is outside the scope
of this paper, these constraints attempt to mitigate the over-privilege to help limit the damage that can
be caused by such an over-exposure of permissions. In the following subsection, a few examples of the
administrative operations are presented.

4.2 Example Operation - AssignApp

Consider the scenario where an app is installed on an Android device, called WhatsApp. The app re-
quests access to one of the dangerous roles present on the device. This corresponds to the AssignApp
administrative operation. The app has requested access to one other role within the past five minutes,
and has been granted four roles in total. The constraint variables (for ARiA1) that have been set by the
user are shown in Table 11.

The risk threshold and security risk values, for the AssignApp operation (for ARiA2) are shown
below.

• RiskTol(AssignApp) = 16

• ∑SecRisk = 12

• OpNeed(AssignApp) = 3

The behavior for this operation according to all the three models presented in this paper is as follows.
AssignApp operation for ARiA0: The third line in the authorization requirements (see Table 7)

states that such a request is basically forwarded to the user as a role prompt. The device owner can accept
this prompt to grant the role to that application. The manner in which this model forwards such requests

42



Administrative Models for RBAC in Android Talegaon and Krishnan

WhatsApp
Constraints
1. Cardinality
2. Temporal

3. Protection level

Role Request

Role Request
Denied

User Sets the
Constraints

If constraints are
not met

Grant WhatsApp
Role X?

User approves/rejects
the role prompt

If constraints
are met

Role Request
Granted

User 
Approves

Figure 3: ARiA1 : UA Constraints Based Administration of RBAC - AssignApp Operation

to the users, results in prompts for every role request, which increases user burden in administration of
the device.

AssignApp operation for ARiA1: In this case, the function rgrant approved needs to return true
for the role to be granted. As we can see from the Fig. 3 (see also function rgrant approved), that
apart from the satisfaction of all the constraints put forth by the owner, his (owner’s) express approval
is required for the role to be granted to the application. This is because, such an operation is highly
security sensitive, since granted roles enable the app complete access to the corresponding resources.
The constraints (see Table 6) are intended to act as a filter to incoming role request prompts.

The first constraint limits the maximum number of roles that can be assigned to any app. As cvarUAcard
= 5, and |app roles(WhatsApp)| = 4, the first constraint is satisfied. The second constraint limits the
number of roles that can be granted in quick succession. This constraint is intended to mitigate the issue
of app requesting multiple roles in quick succession that causes the device owner to get fatigued by
successive role prompts. As cvarUA

δcard
= 2, and since WhatsApp has been granted only one other role

recently, this constraint is satisfied as well. It should be noted that the temporal constraint (i.e.: the exact
time constraint) within which an app must request roles, is not decided by this paper. Further research
is needed to select an ideal time for such a constraint. The third constraint sets a limit on the maximum
allowable protection level for a permission. As cvarUAprotlvl = normal, and the currently requested role
is dangerous, this constraint is not satisfied and the role request is thus automatically declined.

AssignApp operation for ARiA2: The RAdAC model states that the user defined security tolerance
should be higher than the security risk for an operation, for the operation to allowed to complete. A
small factor called OpNeed allows the app developers to indicate if the role request is critical for the app
functionality. As the RiskTol is set at 16, and the SecRisk calculated by Android is 12, with the OpNeed
specified by the app developer to be 3, the operation would succeed (16 - 12 + 3 = 5 which is greater
than zero).

Table 11: UA Constraints for ARiA1, for the AssignApp Operation

Constraint Set value Calculated value

cvarUAcard 5 4

cvarUA
δcard

2 1

cvarUAprotlvl normal dangerous

43



Administrative Models for RBAC in Android Talegaon and Krishnan

WhatsApp
Constraints
1. Cardinality
2. Temporal

3. Protection level

Permission Addition
Request to a Role r1

Permission Addition 
Request Granted

User Sets the
Constraints

If constraints are
met

Grant permission
CAMERA to role

r1?

User approves/rejects
the permission addition prompt

If constraints
are not met

Permission Addition
Request Denied

User
Denies

Figure 4: ARiA1 Constraint Based Administration of RBAC - AssignPerm Operation

4.3 Example Operation - AssignPerm

The AssignPerm operation is used to assign a permission to a role. Consider a scenario where an
app, WhatsApp, attempts to add a permission ”android.permission.CAMERA” which is a dangerous
permission to one of the roles assigned to it, r1. The role r1 has 9 other permissions assigned to it. The
values for the constraints on the permission-assignment relation are stated in Table 12.

The risk threshold and security risk values, for the AssignPerm operation (for ARiA2) are shown
below.

• RiskTol(AssignPerm) = 12

• ∑SecRisk = 9

• OpNeed(AssignPerm) = 2

AssignPerm operation for ARiA0: The authorization requirement for the AssignPerm operation
states that, if the request for adding a permission to role originates from the app (and by extension the app
developer) such an operation requires prior user approval in the form of a permission addition prompt. If
the user accepts such a prompt, the permission may be added to the role.

AssignPerm operation for ARiA1: The authorization requirement for the AssignPerm operation
states that the function pgrant approved needs to return true, for the permission to be added to the
role. Further, it can be seen from Fig.4 that this function states that either all the constraints set by the
owner (see Table 12) needs to be satisfied, or the owner should accept the incoming permission addition
prompt. As mentioned earlier, the role r1 has nine other permissions assigned to it, so the cardinality
constraint is satisfied. The second constraint is a temporal constraint, which is also satisfied, since only
two permissions were added to this role recently. The third constraint states that if the permission being
assigned to the role should belong to an equal or higher protection level, as compared to the role. In
this case, however, since the permission is a dangerous one, and the role it is being added to is a normal

Table 12: PA Constraints for ARiA1, for the AssignPerm Operation

Constraint Set value Calculated value

cvarPAcard 10 9

cvarPA
δcard

5 2

cvarPAprotlvl normal dangerous

44



Administrative Models for RBAC in Android Talegaon and Krishnan

role, this constraint is not satisfied. However, it should be noted that the user can still accept the resultant
permission addition prompt, for the permission to be assigned to the role r1.

AssignPerm operation for ARiA2: The RAdAC model calculates security risk for the operation
based on a number of situational factors. In this case, the operation is approved, since the addition of
the security risk and the operational need exceeds the risk threshold defined by the owner (12 - 9 + 2 = 5
which is greater than zero).

5 Conclusion

In this work, we have presented several administrative models for RBAC in Android, to facilitate the
user management of user-assignment and permission-assignment operations. Without knowing the PA,
it is difficult and non-trivial to design an administrative model. We have utilized several techniques such
as a constraints on UA and PA operations, and RAdAC based administration of RBAC. The models pre-
sented in this paper aim to mitigate the user burden in administration of Android by either automatically
processing role-assignment and permission-assignment requests, or by cardinality, temporal and protec-
tion level based constraints. A few example operations are also explained in the paper, describing the
operation to assign a role to an application, and assigning a permission to a role. Implementation of the
models in Android, and, an analysis of the security, privacy and usability with respect to these models to
determine the feasibility and advantage offered by them, can be done in the future.

Acknowledgments

This work is partially supported by NSF CREST Grant HRD-1736209 and NSF CAREER Grant CNS-
1553696.

References

[1] J. Abdella, M. Özuysal, and E. Tomur. Ca-arbac: privacy preserving using context-aware role-based access
control on android permission system. Security and Communication Networks, 9(18):5977–5995, 2016.

[2] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry. Towards taming privilege-
escalation attacks on android. In PRoc. of the 19th Annual Network & Distributed System Security Symposium
(NDSS’12), San Diego, California, USA, volume 17, page 19, February 2012.

[3] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege escalation attacks on android. In Proc. of
the 13th International conference on Information security (ISC’10), Boca Raton, Florida, USA, volume 6531
of Lecture Notes in Computer Science, pages 346–360. Springer, October 2010.

[4] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions demystified. In Proc. of the
18th ACM conference on Computer and communications security (CCS’11), Chicago, Illinois, USA, pages
627–638. ACM, October 2011.

[5] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed nist standard for role-
based access control. ACM Transactions on Information and System Security, 4(3):224–274, August 2001.

[6] D. Geneiatakis, I. N. Fovino, I. Kounelis, and P. Stirparo. A permission verification approach for android
mobile applications. Computers & Security, 49:192–205, March 2015.

[7] N. Li and Z. Mao. Administration in role-based access control. In Proc. of the second ACM symposium
on Information, computer and communications security (ASIACCS’07), Singapore, pages 127–138. ACM,
March 2007.

[8] R. McGraw. Risk-adaptable access control (radac). In Proc. of the 2009 NIST Privilege (Access) Management
Workshop, volume 25, pages 55–58, 2009.

45



Administrative Models for RBAC in Android Talegaon and Krishnan

[9] S. Oh and R. Sandhu. A model for role administration using organization structure. In Proc. of the 7th ACM
symposium on Access control models and technologies (SACMAT’02), Monterey, California, USA, pages
155–162. ACM, June 2002.

[10] M. Rangwala, P. Zhang, X. Zou, and F. Li. A taxonomy of privilege escalation attacks in android applications.
International Journal of Security and Networks, 9(1):40–55, February 2014.

[11] F. Rohrer, Y. Zhang, L. Chitkushev, and T. Zlateva. Dr baca: dynamic role based access control for android. In
Proc. of the 29th Annual Computer Security Applications Conference (ACSAC’13), New Orleans, Louisiana,
USA, pages 299–308. ACM, December 2013.

[12] R. Sandhu, V. Bhamidipati, E. Coyne, S. Ganta, and C. Youman. The arbac97 model for role-based admin-
istration of roles: preliminary description and outline. In Proc. of the second ACM workshop on Role-based
access control (RBAC’97), Fairfox, Virginia, USA, pages 41–50. ACM, November 1997.

[13] R. Sandhu, V. Bhamidipati, and Q. Munawer. The arbac97 model for role-based administration of roles.
ACM Transactions on Information and System Security, 2(1):105–135, February 1999.

[14] R. Sandhu and Q. Munawer. The arbac99 model for administration of roles. In Proc. of the 15th Annual
Computer Security Applications Conference (ACSAC’99), Phoenix, Arizona, USA, pages 229–238. IEEE,
December 1999.

[15] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models. Computer,
29(2):38–47, February 1996.

[16] T. Vidas, N. Christin, and L. Cranor. Curbing android permission creep. In Proc. of the 5th workshop on Web
2.0 Security & Privacy (W2SP’11), Oakland, California, USA, volume 2, pages 91–96, May 2011.

[17] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Permission evolution in the android ecosystem. In Proc.
of the 28th Annual Computer Security Applications Conference (ACSAC’12), Orlando, Florida, USA, pages
31–40. ACM, December 2012.

[18] S. Wu and J. Liu. Overprivileged permission detection for android applications. In Proc. of the 2019 IEEE
International Conference on Communications (ICC’19), Shanghai, China, pages 1–6, May 2019.

——————————————————————————

Author Biography

Samir Talegaon received the M.S. degree in Electrical Engineering from The Univer-
sity of Texas at San Antonio (UTSA) in 2014. Currently he is working on a doctoral
degree at the Electrical and Computer Engineering Department at UTSA. His research
interests include access control in Android and Android platform analysis and modi-
fication.

Ram Krishnan is an Associate Professor of Electrical and Computer Engineering
at the University of Texas at San Antonio, where he holds Microsoft President’s
Endowed Professorship. His research focuses on (a) applying machine learning to
strengthen cybersecurity of complex systems and (b) developing novel techniques to
address security/privacy concerns in machine learning. He actively works on topics
such as using deep learning techniques for runtime malware detection in cloud sys-
tems and automating identity and access control administration, security and privacy

enhanced machine learning and defending against adversarial attacks in deep neural networks. He is
a recipient of NSF CAREER award (2016) and the University of Texas System Regents’ Outstanding
Teaching Award (2015). He received his PhD from George Mason University in 2010.

46


	Introduction
	Related Works
	Administrative Models for RBAC in Android
	ARiA0 (Base Model)
	ARiA1 (Constraint Based Model)
	ARiA2 (RAdAC Based Model)

	Discussion
	Rationale for the Constraints on Modifications to PA and UA
	Example Operation - AssignApp
	Example Operation - AssignPerm

	Conclusion

