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Abstract

Proxy re-encryption (PRE) securely enables the re-encryption of ciphertexts from one key to an-
other, without relying on trusted parties, i.e., it offers delegation of decryption rights. PRE allows a
semi-trusted third party termed as a “proxy” to securely divert encrypted files of a user (delegator)
to another user (delegatee) without revealing any information about the underlying files to the proxy.
Whereas, Proxy re-signature (PRS) allows a semi-trusted proxy to convert a signature of a user (dele-
gatee) into a signature of another user (delegator) on the same message, but the proxy cannot produce
new valid signature on new messages for either delegator or delegatee. To eliminate the necessity
of having a costly certificate verification process, Green and Ateniese [18] introduced an identity-
based PRE (IB-PRE) and Shao et al. [32] introduced an identity-based PRS (IB-PRS). The potential
applicability of IB-PRE and IB-PRS leads to intensive research from its first instantiations. Unfortu-
nately, till today, there is no unidirectional IB-PRE and IB-PRS secure in the standard model, which
can withstand quantum attack. In this paper, we provide, for the first time, concrete constructions
of unidirectional IB-PRE and IB-PRS which are secure in standard model based on the hardness of
learning with error problem and small integer solution problem, respectively. Our technique is to
use the novel trapdoor delegation technique of Micciancio and Peikert. The way we use trapdoor
delegation technique may prove useful for functionalities other than PRE and PRS as well.

Keywords: Learning with error, Small integer solution, Proxy Re-Encryption, Proxy Re-Signature

1 Introduction
Proxy Re-encryption (PRE) allows a semi-trusted third party, called a proxy, to securely divert encrypted
files of one user (delegator) to another user (delegatee). The proxy, however, cannot learn the under-
lying message m, and thus both parties’ privacy can be maintained. This primitive (and its variants)
have various applications ranging from encrypted email forwarding [7], securing distributed file sys-
tems [4], to digital rights management systems [35]. We notice a real-world file system employing a
PRE scheme by Toshiba Corporation [28]. In addition application-driven purposes, various works have
shown connections between re-encryption with other cryptographic primitives, such as program obfusca-
tion [19, 12, 11] and fully-homomorphic encryption [10]. Thus studies along this line are both important
and interesting for theory and practice. The other primitive, proxy re-signature (PRS), allows a semi-
trusted proxy to transform the delegatee’s signature on a message into the delegator’s signature on the
same message, but the proxy cannot produce new valid signature on new messages for either delegator
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or delegatee. PRS is employed in various applications including managing group signatures, providing
proof that a certain path in a graph is taken.

Blaze, Bleumer, and Strauss [7] introduced the concept of PRE and PRS. PRE and PRS are classified
as unidirectional and bidirectional based on the direction of delegation. It is worth mentioning that the
unidirectional constructions are much desirable because bidirectional construction easily implementable
using a unidirectional one. Though the concept of PRE and PRS were initiated in [7], the first unidirec-
tional PRE and PRS proposed by Ateniese et al. in [4] and [5], respectively, where desired properties
of PRE and PRS are listed. Desired properties of PRE are as follows: Non-interactivity (re-encryption
key can be generated by the delegator alone using public information of the delegatee; no trusted author-
ity is needed); Proxy transparency (neither the delegator nor the delegatees are aware of the presence
of a proxy); Key optimality (the size of B’s secret key remains constant, regardless of how many dele-
gations he accepts); Collusion resilience (it is computationally infeasible for the coalition of the proxy
and user B to compute A’s secret key); Non-transitivity (it should be hard for the proxy to re-delegate
the decryption right, namely to compute rkA→C from rkA→B, rkB→C). In case of PRS, desired properties
are: Non-transitivity; Proxy transparency; Key optimality; Non-interactivity; Private Proxy (re-signing
key can be kept secret by the proxy). To achieve the aforementioned properties with improved security
guarantee, there are elegant followup works that can be found in [9, 19, 24, 12, 11, 31, 13, 23]. For
the quantum-safe version of PRE, Gentry [16] mentioned the feasibility of unidirectional PRE through
a fully homomorphic encryption scheme (FHE). However, FHE costs huge computation. Further devel-
opment of lattice-based PRE can be found in [37, 22, 11, 29, 15]. Recently, Fan et al. [15] proposed
lattice-based PRS.

Certificate management problem is a crucial issue in the PKI based schemes. This crucial issue was
addressed by Green et al. [18] in the area of PRE and Shao et al. [31, 32] for PRS. For lattice-based
construction, Singh et al. [33] proposed a bidirectional identity-based PRE. However, it is required to
use secret key of both delegator and delegatee to generate re-encryption key, which lacks one of the
fundamental properties of PRE. Further, they proposed unidirectional identity-based PRE [34], termed
as IB-uPRE, secure in the random oracle model. However, the size of the re-encrypted ciphertext blows
up than the original encrypted one. Moreover, the schemes encrypt the message bit by bit. Later, there are
some further attempts to construct lattice-based identity-based PRE, which are flawed1 [21, 38]. On the
other hand, for lattice-based identity-based PRS, Tian [36] proposed a bidirectional construction which
is secure in the random oracle model. Unfortunately, there is no post-quantum secure unidirectional
identity-based PRS (IB-uPRS) secure even in the random oracle model.
Our Contributions: Constructions of post-quantum secure IB-uPRE and IB-uPRS, in the standard
model, are interesting open research problems. In this paper, we resolve these daunting tasks by con-
structing concrete schemes based on the hardness of learning with error (LWE) problem and small
integer solution (SIS) problem. The proposed IB-uPRE and IB-uPRS enjoy the properties like non-
interactivity, proxy transparency, key optimality, and non-transitivity. Moreover, the proposed IB-uPRE
is capable of encrypting a multi-bit message in one go. To construct the IB-uPRE and IB-uPRS, we start
with the construction of the identity-based encryption scheme by Agrawal et al. [1]. In non-interactive
IB-uPRE and IB-uPRS, it is required to construct re-encryption and re-signing key by the delegator alone.
One of the feasible ways to adopt the non-interactive feature is to provide a trapdoor to the delegator as
a secret key. But, this technique is not supported by the design of [1]. In [1], the trapdoor is the master
secret key and the secret key of the user is sampled by the master secret key. We first trace the design of
selective IBE and IBS, where the secret key of a user is also a trapdoor, by using the trapdoor delegation
technique of [25]. Here, the secret key of a user is a tuple of trapdoor, where one is used for decryption

1In [21], authors claimed to prove IND-ID-CPA, but provide the proof for IND-CPA. In [38], authors assumed a universally
known entity (G matrix; see section 2.1) as a secret entity.
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or signing and another one is used for re-encryption or re-signing key (ReKey) generation. ReKey is
generated as in [22, 15] with a trick to resists proxy to get any secret information of delegator. The
underlying IBE and IBS of the proposed IB-uPRE and IB-uPRS may prove useful to design expressive
cryptographic primitives other than IB-PRE and IB-PRS as well.
Overview and Techniques: For IB-uPRE scheme, we consider identities as elements from Zn

q. In
SetUp phase, we choose uniformly random matrix Ā from Zn×m̄

q and a random “short” matrix R
from the Gaussian distribution Dm̄×nk

Z,r . Set Ā′ = −ĀR. So, for
[

Ā −ĀR
]
, R is a trapdoor with

0 tag. We also choose four invertible matrices H1,H2,H3, and H4 from Zn×n
q and two random ma-

trices A1,A2 from Zn×nk
q . The setup algorithm outputs Ā, Ā′,A1,A2 together with the invertible ma-

trices as Public parameters and that trapdoor R as the Master secret Key. To compute the secret key
for an identity idi, we first construct Ãi =

[
Ā −ĀR+HidiG

]
(where Hidi is output of FRD[1],

G is the gadget matrix [25]), for which R is also a trapdoor with invertible tag Hidi . We construct
Ai1,Ai2 as A1 +H3HidiG, and A2 +H4HidiG respectively. Finally, we use the novel delegation tech-
nique for

[
Ãi Ai1

]
,
[

Ãi Ai2
]

to get trapdoors Ri1,Ri2 respectively. The Extract algorithm out-
puts

[
Ri1 Ri2

]
, as the secret Key for the identity idi. In Our scheme, we use Ri1 to compute Re-

encryption key from idi to any users, and Ri2 for decryption. For Encryption, and Decryption, we use
the method of Micciancio and Peikert Encryption Scheme [25]. To compute the re-encrypted cipher-
text, we simply multiply the fresh ciphertext with Re-encryption Key. This re-encrypted ciphertext can
be decrypted with similar method as for fresh ciphertext. Such technique enables the properties like
proxy transparency and key optimality. For the selective security, let id∗ be the target identity given
by the Adversary. During SetUp phase, we first set Ā′ = −A∗R−Hid∗G. For which, for any user
other than the target identity id∗, Ãi will be

[
A∗ −A∗R+(Hidi−Hid∗)G

]
. Since, (Hidi −Hid∗) is

invertible for all id 6= id∗, we can delegate skid using R. We also choose Ri∗1,Ri∗2← Dm×nk
Z,r , which we

use for reduction. We set A′1 = −
[

A∗ −A∗R
]
·Ri∗1 and A′2 = −

[
A∗ −A∗R

]
·Ri∗2. Construct

A1,A2 as A′1−H3Hid∗G and A′2−H4Hid∗G, respectively. So for id∗, Ãi∗ becomes
[

A∗ −A∗R
]
, and

Ai∗ =
[

Ãi∗ −Ãi∗Ri∗1 −Ãi∗Ri∗2
]
. Thus, we can embed an LWE challenge at id∗.

For the IB-uPRS scheme, we employ the concept of tag-based signature scheme [8, 15], where each
signature carries a Sign-tag that can be chosen uniformly during signing from a suitable Sign-tag set.
Here, we do almost the same as the IB-uPRE scheme with the following exceptions: we choose l + 1
elements a,b1, · · · ,bl from Zn

q as public parameters; we choose an invertible matrix H1 from Zn×n
q . For

the signing key of identity idi, we do exactly the same as the IB-uPRE scheme, except we compute Ri2
with 0 tag. Here, we use Ri1 to compute the Re-signing key from any users to idi, and Ri2 for signing
the message. During the signing of a l-bit message m, we first choose a Sign-tag t from the Sign-
tag space T and compute Ht. Then we construct the signing matrix Aidi,t =

[
Ãi Ai1 Ai2 +Ht

]
=[

Ãi −ÃiRi1 +H1G −ÃiRi2 +Ht
]
. We sample a vector e1 ∈ DZnk,s. Finally, we sample the vector

(e0,e2) ∈ Zm×Znk for the cosets obtained from a+
l
∑

i=1
mi ·bi− (−ÃiRi1 +H1G)e1, where mi is the ith

bit of m; we use SampleO for the matrix
[

Ãi Ai2 +Ht
]

with the generalized trapdoor Ri2 and tag

Ht. For which, it holds that Aidi,t · (e1,e2,e3) = a+
l
∑

i=1
mi ·bi. We output the signature e = (e1,e2,e3)

with the corresponding Sign-tag t. For verification, we need to check the norm of e, and Aidi,t · e =

a+
l
∑

i=1
mi ·bi or not. To compute the re-signature, we simply multiply the fresh signature with Re-signing

Key. Verification of signature and re-signature follow the same algorithm, which enables the properties
like proxy transparency and key optimality. Now for the security reduction, let the target identity be id∗

and target Sign-tag be t∗, given by the Adversary. Here we will do same as IB-uPRE, except we construct
A2 as A′2−Hid∗G−Ht∗G. Since the trapdoor for computing signatures dose not vanish, for the signing
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query and re-signing query the reduction can generate signatures from the same distribution as long as
the Sign-tag is not t∗. At the end of experiment, adversary outputs a forgery tuple (id∗,m∗,e∗, t∗), which
vanishes the trapdoors in target user. Then the reduction can derive an SIS solution from the forgery
tuple.
Improvements from the proceedings version [14]: This version includes the following new results:

1. We newly propose a lattice-based construction of IB-uPRS in Section 4 and add required prereq-
uisites in Section 2.

2. We add a details proof of Theorem 16.

2 Preliminaries
We denote the real numbers and the integers by R,Z, respectively. We denote column-vectors by lower-
case bold letters (e.g. b), so row-vectors are represented via transposition (e.g. bt). Matrices are denoted
by upper-case bold letters and treat a matrix X interchangeably with its ordered set {x1,x2, . . .} of column
vectors. We use I for the identity matrix and 0 for the zero matrix, where the dimension will be clear from
context. We use [∗|∗] to denote the concatenation of vectors or matrices. A negligible function, denoted
generically by negl(n). We say that a probability is overwhelming if it is 1− negl(n). The statistical
distance between two distributions X and Y over a countable domain Ω defined as 1

2 ∑w∈Ω |Pr[X =
w]−Pr[Y = w]|. We say that a distribution over Ω is ε-far if its statistical distance from the uniform
distribution is at most ε . Throughout the paper, r = ω(

√
logn) represents a fixed function which will be

approximated by
√

ln(2n/ε)/π .

2.1 Lattices
A lattice Λ is a discrete additive subgroup of Rm. Specially, a lattice Λ in Rm with basis B= [b1, · · · ,bn]∈
Rm×n, where each bi is written in column form, is defined as Λ := {∑n

i=1 bixi|xi ∈ Z ∀i = 1, . . . ,n} ⊆Rm.
We call n the rank of Λ and if n = m we say that Λ is a full rank lattice. The dual lattice Λ∗ is the set of
all vectors y ∈Rm satisfying 〈x,y〉 ∈ Z for all vectors x ∈ Λ. If B is a basis of an arbitrary lattice Λ, then
B∗ = B(BtB)−1 is a basis for Λ∗. For a full-rank lattice, B∗ = B−t .

In this paper, we mainly consider full rank lattices containing qZm, called q-ary lattices, defined as
the following, for a given matrix A ∈ Zn×m

q and u ∈ Zn
q

Λ
⊥(A) := {z ∈ Zm : Az = 0 mod q} .

Λ(At) :=
{

z ∈ Zm : ∃ s ∈ Zn
q s.t. z = Ats mod q

}
.

Λ
⊥
u (A) := {z ∈ Zm : Az = u mod q}= Λ

⊥(A)+x f or x ∈ Λ
⊥
u (A).

Note that, Λ⊥(A) and Λ(At) are dual lattices, up to a q scaling factor: qΛ⊥(A)∗ = Λ(At), and vice-versa.
Sometimes we consider the non-integral, 1-ary lattice 1

q Λ(At) = Λ⊥(A)∗ ⊇ Zm.
Gaussian on Lattices: The n-dimensional Gaussian function on Rn centered at 0, is defined as ρ(x) =
exp(−π · ‖x‖2), ∀ x ∈ Rn. For any matrix B, we define a density function of a Gaussian distribution for
x ∈ span(B) and for Σ = BBt ≥ 0 as ρ√

Σ
= ρ(B+x) = exp(−π ·xtΣ+x).

Normalizing the above expression by its total measure over span(Σ), we obtain a probability density
function of the continuous Gaussian distribution D√

Σ
. The covariance matrix of this distribution is Σ

2π
,

we ignore the 1
2π

factor and refer to Σ as the covariance matrix of D√
Σ
.

The continuous Gaussian distribution D√
Σ

can be discretized to a lattice (or to the “shift” of the
lattice) as follows: for Λ ⊂ Rn, c ∈ Rn and positive semi-definite Σ > 0 such that (Σ+ c)∩ span(Σ) is

nonempty, the discrete Gaussian distribution is D
Λ+c,

√
Σ
(x) = ρ√

Σ
(x)

ρ√
Σ
(Λ+c) ∀x ∈ Λ+c, where the denomina-

tor is merely a normalization factor.
One of the important invariants of a lattice is the smoothing parameter ηε (originally defined in

[27]), defined as the following [25].

4



IB-uPRE and IB-uPRS Dutta, Susilo, Duong, Baek, and Roy

Definition 1. Let Σ be a positive semi-definite matrix i.e., Σ ≥ 0 and a lattice Λ ⊂ span(Σ),we say that√
Σ≥ ηε(Λ) if ρ√

Σ+(Λ∗)≤ 1+ ε.

We will also use the following tail bound on discrete Gaussians.

Lemma 2 ([6, Lemma 1.5]). Let Λ ⊂ Rn be a lattice and r ≥ ηε(Λ) for some ε ∈ (0,1). For any
c ∈ span(Λ), we have Pr[‖DΛ+c,r‖ ≥ r

√
n]≤ 2−n · 1+ε

1−ε
. If c = 0 then the inequality holds for any r > 0,

with ε = 0.

Now we state some useful facts about subgaussian random variable and the singular value of a matrix.
For any matrix B ∈ Rn×k, there exists a singular value decomposition B = QDPt , where Q ∈ Rn×n,P ∈
Rk×k are orthogonal matrices, and D ∈ Rn×k is a diagonal matrix with non-negative entries si(B) ≥ 0
on the diagonal, in non-decreasing order. The si(B) are called the singular values of B and s1(B) =
maxu ‖Bu‖ = maxu ‖Btu‖ ≥ ‖B‖,‖Bt‖, where the maximum is taken over all the real unit vectors u
according to the corresponding dimension.

Definition 3 ([25]). For δ ≥ 0, a random variable X is δ -subgaussian with parameter s > 0 if for all
t ∈ R, the (scaled) moment-generating function satisfies E[exp(2πtX)]≤ exp(δ ).exp(πs2t2).

Lemma 4. Let A ∈ Rn×m be a δ -subgaussian random matrix with parameter s. There exist a universal
constant C > 0 such that for any t ≥ 0, we have s1(A)≤C · s · (

√
m+
√

n+ t) except with probability at
most 2exp(δ )exp(−πt2).

Lemma 5 ([20, Theorem 3.3.16]). Let A ∈Rm×n,B ∈Rn×m and l = min{m,n}. The following inequal-
ities hold for the decreasingly ordered singular values of AB : si(AB)≤ si(A)s1(B) f or i = 1, . . . , l.

Hard problems on Lattices: There are two lattice-based one-way functions associated with matrix
A ∈ Zn×m

q for m = poly(n):

• gA(e,s) = stA+ et mod q for s ∈ Zn
q and a Gaussian e ∈ Zm and fA(x) = Ax mod q, for x ∈ Zm;

• The Learning With Errors (LWE) problem was introduced in [30]. The problem to invert gA(e,s),
where e← DZm,αq is known as search-LWEq,n,m,α problem and is as hard as quantumly solv-
ing Shortest Independent Vector Problem (SIVP) on n-dimensional lattices. The decisional-
LWEq,n,m,α problem asks to distinguish the output of gA from uniform.

• The Small Integer Solution (SIS) problem was first suggested to be hard on average by Ajtai [2]
and then formalized by Micciancio and Regev [27]. Finding a non-zero short preimage x′ such
that fA(x′) = 0, with ‖x′‖ ≤ β , is an instantiation of the SISq,n,m,β problem. It is known to be as
hard as certain worst-case problems (e.g. SIVP) in standard lattices [3, 27, 17, 26].

Trapdoors for Lattices: Here, we briefly describe the main results of [25] and it’s generalized version
from [22]: the definition of G-trapdoor, the algorithms InvertO , SampleO and DelTrapO .

A G-trapdoor is a transformation (represented by a matrix R) from a public matrix A to a special
matrix G which is called as gadget matrix. The formal definitions as follows:

Definition 6 ([25]). Let A ∈ Zn×m
q and G ∈ Zn×w

q be matrices with m≥ w≥ n. A G-trapdoor for A is a

matrix R ∈ Z(m−w)×w such that A
[

R
I

]
= HG, for some invertible matrix H ∈ Zn×n

q . We refer to H as

the tag of the trapdoor.
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Definition 7 ([22]). The generalized version of a G-trapdoor :
Let A =

[
A0 A1 · · · Ak−1

]
∈ Zn×m

q for k≥ 2, and A0 ∈ Zn×m̄
q ,A1, . . . ,Ak−1 ∈ Zn×w

q with m̄≥ w≥
n and m = m̄+ (k− 1) ·w (typically, w = ndlogqe). A G-trapdoor for A is a sequence of matrices
R =

[
R1 R2 · · · Rk−1

]
∈ Zm̄×(k−1)w

q such that :

[
A0 A1 · · · Ak−1

]


R1 R2 · · · Rk−1
I 0 · · · 0
...

...
. . .

...
0 0 · · · I

=
[

H1G H2G · · · Hk−1G
]
,

for invertible matrices Hi ∈ Zn×n
q and a fixed G ∈ Zn×w

q .

InvertO(R,A,b,Hi) [22]: On input a vector bt = stA+ et , a matrix
A =

[
A0 −A0R1 +H1G · · · −A0Rk−1 +Hk−1G

]
and corresponding G- trapdoor

R =
[

R1 R2 · · · Rk−1
]

with invertible tag Hi, the algorithm computes

b′t = bt


R1 R2 · · · Rk−1
I 0 · · · 0
...

...
. . .

...
0 0 · · · I


and then run the inverting oracle O(b′) for G to get (s′,e′). The algorithm outputs s = H−1

i s′ and e =
b−Ats. Note that, InvertO produces correct output if e ∈P1/2(q ·B−t), where B is a basis of Λ⊥(G);
cf. [25, Theorem 5.4].

SampleO(R,A,H,u,s) [25]: On input (R,A′,H,u,s), the algorithm construct
A =

[
A′ −A′R+HG

]
, where R is the G-trapdoor for matrix A with invertible tag H and u ∈

Zn
q.The algorithm outputs, using an oracle O for Gaussian sampling over a desired coset Λ⊥v (G),

a vector drawn from a distribution within negligible statistical distance of DΛ⊥u (A),s, where s ≥ r ·√
s1(R)2 +1

√
s1(ΣG)+2. To sample a Gaussian vector x ∈ Zm

q for A =
[

A0 A1 · · · Ak−1
]
∈

Zn×m
q with the generalized trapdoor R =

[
R1 R2 · · · Rk−1

]
and k−1 invertible Hi’s given a coset

u ∈ Zn
q, use generalized version of SampleO from [22].

DelTrapO (A′ =
[

A A1
]
,R,H′,s)[25]: On input an oracle O for discrete Gaussian sampling over

cosets of Λ = Λ⊥(A) with parameter s ≥ ηε(Λ
⊥(A), an extended matrix A′ of A, an invertible matrix

H′, the algorithm will sample (using O) each column of R′ independently from a discrete Gaussian with
parameter s over the appropriate coset of Λ⊥(A), so that AR′ = H′G−A1. The algorithm outputs a
trapdoor R′ for A′ with tag H′.

2.2 Identity-Based Unidirectional Proxy Re-Encryption

Definition 8 (Identity-Based Unidirectional Proxy ReEncryption (IB-uPRE) [18]). A unidirectional
Identity-Based Proxy Re-Encryption (IB-uPRE) scheme is a tuple of algorithms (SetUp,Extract,
ReKeyGen,Enc,ReEnc, Dec) :

• (PP,msk) ←− SetUp(1n) : On input the security parameter 1n, the SetUp algorithm outputs
PP,msk.

• skid ←− Extract(PP,msk, id) : On input an identity id, public parameter PP, master secret key,
output the secret key skid for id.

6
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• rki→ j ←− ReKeyGen(PP,skidi , idi, id j) : On input a public parameter PP, secret key skidi of a
delegator i, and idi, id j, output a unidirectional re-encryption key rki→ j.

• ct ←− Enc(PP, id,m) : On input an identity id, public parameter PP and a plaintext m ∈M ,
output a ciphertext ct under the specified identity id.

• ct ′←−ReEnc(PP,rki→ j,ct) : On input a ciphertext ct under the identity i and a re-encryption key
rki→ j, output a ciphertext ct ′ under the identity j.

• m←−Dec(PP,skidi ,ct) : On input the ciphertext ct under the identity i and secret key skidi of i, the
algorithm outputs a plaintext m or the error symbol ⊥.

An Identity-Based Proxy Re-Encryption scheme is called single-hop if a ciphertext can be re-
encrypted only once. In a multi-hop setting proxy can apply further re-encryptions to already re-
encrypted ciphertext.

Definition 9 (Single-hop IB-uPRE Correctness). A single-hop IB-uPRE scheme
(SetUp,Extract,ReKeyGen,Enc,ReEnc,Dec) decrypts correctly for the plaintext space M if :

• For all skid , output by Extract under id and for all m ∈M ,
it holds that Dec(PP,skid ,Enc(PP, id,m)) = m.

• For any re-encryption key rki→ j, output by ReKeyGen(PP,skidi , idi, id j) and any
ct = Enc(PP, idi,m), it holds that Dec(PP,skid j ,ReEnc(PP,rki→ j,ct)) = m.

Security Game of Unidirectional Selective Identity-Based Proxy Re-Encryption Scheme against
Chosen Plaintext Attack (IND-sID-CPA): To describe the security model we first classify all of the
users into honest (HU) and corrupted (CU). In the honest case an adversary does not know secret
key, whereas for a corrupted user the adversary has secret key. Let A be the PPT adversary and Π =
(SetUp,Extract,ReKeyGen, Enc,ReEnc,Dec) be an IB-uPRE scheme with a plaintext space M and
a ciphertext space C . Let id∗(∈ HU) be the target user. Security game is defined according to the
following game ExpIND-sID-CPA

A (1n) :

1. SetUp: The challenger runs SetUp(1n) to get (PP,msk) and give PP to A .

2. Phase 1: The adversary A may make queries polynomially many times in any order to the fol-
lowing oracles:

• OExtract: an oracle that on input id ∈CU , output skid ; Otherwise, output ⊥.

• OReKeyGen: an oracle that on input the identities of i-th and j-th users: if idi ∈ HU \ {id∗},
id j ∈ HU or idi, id j ∈CU or idi ∈CU, id j ∈ HU , output rki→ j; otherwise, output ⊥.

• OReEnc: an oracle that on input the identities of i, j-th users and ciphertext of i-th user:
if idi ∈ HU \ {id∗}, id j ∈ HU or idi, id j ∈ CU or idi ∈ CU, id j ∈ HUoutput re-encrypted
ciphertext; otherwise, output ⊥.

3. Challenge: A outputs two messages m0,m1 ∈M and is given a challenge ciphertext ctb ←−
Enc(PP, id∗,mb) for either b = 0 or b = 1.

4. Phase 2: After receiving the challenge ciphertext, A continues to have access to the OExtract,
OReKeyGen and OReEnc oracle as in Phase 1.

5. ODecision: On input b′ from A , this oracle outputs 1 if b = b′ and 0 otherwise.
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The advantage of an adversary in the above experiment ExpIND-sID-CPA
A (1n) is defined as |Pr[b′ = b]− 1

2 |.

Definition 10. An IB-uPRE scheme is IND-sID-CPA secure if all PPT adversaries A have at most a
negligible advantage in experiment ExpIND-sID-CPA

A (1n).

Remark 11. In [18], ReKeyGen query is allowed from id∗ to HU to make the IB-uPRE collusion
resilient (coalition of malicious proxy and delegetee to compute delegator’s secret key). Here, we have
blocked ReKeyGen query from id∗ to HU and the proposed IB-uPRE scheme is not claimed to be
collusion resilient.

2.3 Identity-Based Unidirectional Proxy Re-Signature with selectively chosen tag

Definition 12 (Identity-Based Unidirectional Proxy Re-Signature (IB-uPRS)). A unidirectional Identity-
Based Proxy Re-Signature (IB-uPRS) scheme is a tuple of algorithms (SetUp,
Extract,Sign,Verify,ReKeyGen,ReSign) with a plaintext space M and a Sign-tag space T :

• (PP,msk)←− SetUp(1n) : On input the security parameter 1n, the SetUp algorithm outputs a key
pair (PP,msk).

• skid←−Extract(PP,msk, id) : On input an identity id, public parameter and master key, it outputs
the signing key skid for id.

• e←− Sign(PP,skid ,m, t) : On input public parameter PP, signing key skid , it computes a signature
σ for message m ∈M and Sign-tag t ∈T under the specified identity id.

• accept or re ject ←− Verify(PP, id,e,m, t) : On input public parameter PP, identity id, the sig-
nature σ for m, t under the identity id, the algorithm outputs accept if the signature σ is valid.
Otherwise, it outputs re ject.

• rki→ j←−ReKeyGen(PP, idi, id j,skid j) : On input public parameter PP, two identities idi, id j and
the signing key skid j of a delegator id j, it outputs a unidirectional re-signing key rki→ j.

• σ ′ ←− ReSign(PP,rki→ j, idi, id j,m, t,σ) : If Verify(PP, idi,σ ,m, t) = accept, then using re-
signing key rki→ j computes a re-signature σ ′ of the message m, with Sign-tag t under the identity
id j, otherwise outputs ⊥.

Definition 13 (Single-hop IB-uPRS Correctness). Let σ = Sign(PP,skidi , idi,m) and
σ ′ = ReSign(PP,rki→ j, idi, id j,m, t,σ) of the same message m, then it holds that
Verify(PP, idi,σ ,m, t) = accept and Verify(PP, id j,σ

′,m, t) = accept.

Security Game of Unidirectional Selective Identity-Based Proxy Re-Signature against Adaptive
Chosen-Message Attack (EU-sID-CMA) [32]: To describe the security model we first classify all of
the users into honest user (HU) and corrupted user (CU). In the honest case an adversary does not know
signing key, whereas for a corrupted user the adversary has the signing key. Let A be the PPT adversary
and Π = (SetUp,Extract,Sign,Verify,
ReKeyGen,Resign) be an IB-uPRS scheme with a plaintext space M and a Sign-tag space T . Let
id∗ ∈ HU be the challenge identity and t∗ ∈ T be the challenge Sign-tag, send by the adversary at
the begining of the game. Security game is defined according to the following game played between a
challenger C and an adversary A .

8
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1. SetUp: The challenger C runs the SetUp(1n) algorithm to get (PP,msk), and then gives PP to A .

2. Query Phase: The adversary A may make queries polynomially many times in any order to the
following oracles:

• OExtract: an oracle that on input id ∈CU , output the signing key skid ; Otherwise, output ⊥.

• OSign: an oracle that on input a message m, a Sign-tag t 6= t∗ under id ∈HU , challenger runs
the Sign algorithm to get a signature σ and gives σ to A . It assumes that, for corrupted
users, adversary can sign message by himself. If Sign-tag t = t∗, then challenger will output
⊥.

• OReKeyGen: an oracle that on input the identities of i-th and j-th users: if idi ∈HU , id j ∈HU \
{id∗} or idi, id j ∈ CU or idi ∈ HU, id j ∈ CU , output the Re-signing Key rki→ j; otherwise,
output ⊥.

• OReSign: an oracle that on input the identities of i, j-th users and a signature e of the message
m, with Sign-tag t under the identity idi: if idi ∈ HU , id j ∈ HU or idi, id j ∈ CU or idi ∈
HU, id j ∈ CUoutput re-signature; otherwise, output ⊥. If Sign-tag t = t∗, then challenger
will output ⊥.

3. Forgery: A outputs a signature σ∗ on message m∗ with Sign-tag t∗ under id∗. The adversary
succeeds if the following situations all hold:

(a) Verify(PP, id∗,σ∗,m∗, t∗) = accept.

(b) No extract query made on id∗ to OExtract.

(c) No sign query made on m∗ for any Sign-tag t under id ∈ HU to OSign.

(d) No re-signature query made on (σ ,m∗, idi, id j) for any Sign-tag t, where id j ∈HU to OReSign.

The advantage of an adversary in the above game is the probability that A succeeds the game.

Definition 14. An IB-uPRS scheme is said to be existential unforgeable against adaptive chosen message
and selective identity attacks if all PPT adversaries A have at most a negligible advantage in the above
game.

Remark 15. In contrast of [32], we don’t allow the query to OReKeyGen from idi ∈ HU to id∗.

3 Single-hop Identity-Based Unidirectional Proxy Re-Encryption Scheme
(IB-uPRE)

3.1 Construction of Single-hop IB-uPRE

In this section, we present our construction of single-hop IB-uPRE. We set the parameters as the follow-
ing.

• G ∈ Zn×nk
q is a gadget matrix for large enough prime power q = poly(n) and k = O(logq) =

O(logn), so there are efficient algorithms to invert gG and to sample for fG.

• m̄ = O(nk) and the Gaussian D = Dm̄×nk
Z,r , so that (Ā, ĀR) is negl(n)-far from uniform for Ā.

• the LWE error rate α for IB-uPRE should satisfy 1/α = O(nk)3 · r3.

To start out, we first recall encoding techniques from [25, 1].

9
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• Message Encoding: In the proposed construction, message space is M = {0,1}nk. M map
bijectively to the cosets of Λ/2Λ for Λ = Λ(Gt) by some function encode that is efficient to
evaluate and invert. In particular, letting E ∈ Znk×nk be any basis of Λ, we can map m ∈ {0,1}nk

to encode(m)= Em ∈ Znk [25].
• Encoding of Identity: In the following construction, we use full-rank difference map (FRD) as in

[1]. FRD: Zn
q → Zn×n

q ; id 7→ Hid . We assume identities are non-zero elements in Zn
q. The set of

identities can be expanded to {0,1}∗ by hashing identities into Zn
q using a collision resistant hash.

FRD satisfies the following properties: 1. ∀ distinct id1, id2 ∈ Zn
q, the matrix Hid1 −Hid2 ∈ Zn×n

q
is full rank; 2. ∀ id ∈ Zn

q \ {0}, the matrix Hid ∈ Zn×n
q is full rank; 3. FRD is computable in

polynomial time (in n logq).

The proposed IB-uPRE consists of the following algorithms:

SetUp(1n) : On input a security parameter n, do:

1. Choose Ā← Zn×m̄
q , R←D , and set Ā′ =−ĀR ∈ Zn×nk

q .
2. Choose four invertible matrices H1,H2,H3,H4 uniformly random from Zn×n

q .

3. Choose two random matrices A1,A2 from Zn×nk
q .

4. Output PP = (Ā, Ā′,A1,A2,H1,H2,H3,H4,G) and the master secret key is msk = R.

Extract(PP,msk, id) : On input a public parameter PP, master secret key msk and the identity of i-th
user idi, do:

1. Construct Ãi =
[

Ā Ā′+HidiG
]
=
[

Ā −ĀR+HidiG
]
∈ Zn×m

q , where m = m̄+nk. So, R is
a trapdoor of Ãi with tag Hidi .

2. • Construct Ai1 = A1 +H3HidiG ∈ Zn×nk
q and set A′i1 =

[
Ãi Ai1

]
∈ Zn×(m+nk)

q .
• Call the algorithm DelTrapO(A′i1,R,H1,s) to get a trapdoor Ri1 ∈ Zm×nk for A′i1 with tag

H1 ∈ Zn×n
q , where s≥ ηε(Λ

⊥(Ãi)), so that ÃiRi1 = H1G−Ai1.

3. • Construct Ai2 = A2 +H4HidiG ∈ Zn×nk
q and set A′i2 =

[
Ãi Ai2

]
∈ Zn×(m+nk)

q .
• Call the algorithm DelTrapO(A′i2,R,H2,s) to get a trapdoor Ri2 ∈ Zm×nk for A′i2 with tag

H2 ∈ Zn×n
q , so that ÃiRi2 = H2G−Ai2.

Output the secret key as skidi =
[

Ri1 Ri2
]
∈ Zm×2nk. Notice that,

[
Ãi Ai1 Ai2

] Ri1 Ri2
I 0
0 I

=
[

H1G H2G
]
.

Enc(PP, idi,m ∈ {0,1}nk) : On input a public parameter PP, the identity of i-th user idi and message
m ∈ {0,1}nk, do:

1. Construct Ãi =
[

Ā −ĀR+HidiG
]
∈ Zn×m

q .

2. Construct Ai1,Ai2 for idi same as in Extract algorithm and set Ai =
[

Ãi Ai1 Ai2
]
.

3. Choose a uniformly random s← Zn
q.

4. Sample error vectors ē0← Dm̄
Z,αq and e′0,e1,e2← Dnk

Z,s′ , where s′2 = (‖ē0‖2 + m̄(αq)2)r2. Let the
error vector e = (e0,e1,e2) ∈ Zm̄+nk×Znk×Znk, where e0 = (ē0,e′0) ∈ Zm̄×Znk.

5. Compute bt = (b0,b1,b2) = 2(stAi mod q) + et + (0,0,encode(m)t) mod 2q, where the first
zero vector has dimension m̄+nk, the second has dimension nk and b0 = (b̄0,b′0).

6. Output the ciphertext ct = b ∈ Zm̄+3nk
2q .
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Dec(PP,skidi ,ct) : On input a public parameter PP, the secret key of i-th user skidi and ciphertext ct,
do:

1. If ct has invalid form or Hidi = 0, output ⊥. Otherwise,

• Construct Ãi =
[

Ā −ĀR+HidiG
]
∈ Zn×m

q .
• Construct Ai1,Ai2 for idi as in Extract algorithm and set Ai =

[
Ãi Ai1 Ai2

]
.

2. Call InvertO(
[

Ri1 Ri2
]
,Ai,b,H2) to get z∈Zn

q and e=(e0,e1,e2)∈Zm̄+nk×Znk×Znk, where
e0 = (ē0,e′0) ∈ Zm̄×Znk for which bt = ztAi +et mod q. If the call to Invert fails for any reason,
output ⊥.

3. If ‖ē0‖ ≥ αq
√

m̄ or ‖e′0‖ ≥ αq
√

2m̄nk · r or ‖e j‖ ≥ αq
√

2m̄nk · r for j = 1,2, output ⊥.

4. Let V = b− e mod 2q, parsed as V = (V0,V1,V2) ∈ Zm̄+nk
2q ×Znk

2q×Znk
2q, where V0 = (V0,V′0) ∈

Zm̄
2q×Znk

2q. If V0 /∈ 2Λ(Āt), output ⊥.

5. Output encode−1(Vt

 Ri1 Ri2
I 0
0 I

 mod 2q) ∈ {0,1}nk if it exists, otherwise output ⊥.

ReKeyGen(PP,skidi , idi, id j) : On input a public parameter PP, the secret key of i-th user skidi and
identity of j-th user id j, do:

1. Construct Ai =
[

Ãi Ai1 Ai2
]
, where Ãi =

[
Ā Ā′+HidiG

]
and Ai1,Ai2 are same as in

Extract algorithm .

2. Construct A j =
[

Ã j A j1 A j2
]
, where Ã j =

[
Ā Ā′+Hid j G

]
and A j1,A j2 are same as in

Extract algorithm .

3. Using SampleO with trapdoor Ri1(from the secret key of ith user ), with tag H1, we sample from
the cosets which are formed with the column of the matrix Ā′+Hid j G. After sampling nk times
we get an (m̄+2nk)×nk matrix and parse it as three matrices X00 ∈ Zm̄×nk, X10 ∈ Znk×nk and X20

∈ Znk×nk matrices with Gaussian entries of parameter s. So,
[

Ãi −ÃiRi1 +H1G
] X00

X10
X20

 =

Ā′+Hid j G, i.e.
[

Ãi Ai1
] X00

X10
X20

= Ā′+Hid j G.

4. Continue sampling for the cosets obtained from the columns of the matrix A j1 from A j. This
time, we increase the Gaussian parameter of the resulting sampled matrix up to s

√
m̄/2:[

Ãi −ÃiRi1 +H1G
] X01

X11
X21

= A j1 , i.e.
[

Ãi Ai1
] X01

X11
X21

= A j1 .

For the last sampling, to get a correct re-encryption, we will use the cosets which are formed with
the column of the matrix A j2 + ÃiRi2−H2G :[

Ãi −ÃiRi1 +H1G
] X02

X12
X22

= A j2 + ÃiRi2−H2G , where X01,X02 ∈ Zm̄×nk

and X11,X12,X21,X22 ∈ Znk×nk with entries distributed as Gaussian with parameter s
√

m̄.
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5. Output re-encryption key rki→ j =


I X00 X01 X02
0 X10 X11 X12
0 X20 X21 X22
0 0 0 I

 ∈ Z(m+2nk)×(m+2nk),

which satisfies: Ai · rki→ j = A j.

ReEnc(rki→ j,ct) : On input rki→ j and i-th user’s ciphertext ct, Compute:
b′t = bt · rki→ j = 2st

[
Ã j A j1 A j2

]
+ ẽt +(0,0,encode(m)t), where ẽ = (ẽ0, ẽ1, ẽ2), ẽ0 = ( ˜̄e0, ẽ′0)

and ˜̄e0 = ē0, ẽ′0 = ē0X00+e′0X10+e1X20, ẽ1 = ē0X01+e′0X11+e1X21, ẽ2 = ē0X02+e′0X12+e1X22+e2.
Then output ct ′ = b′.

3.2 Correctness and Security
In this section, we analyze the correctness and security of the proposed scheme.
Theorem 16 (Correctness). The IB-uPRE scheme with parameters proposed in Section 3.1 is correct.
Proof: To show that the decryption algorithm outputs a correct plaintext, we will consider both original
and re-encrypted ciphertext. Let skidi =

[
Ri1 Ri2

]
and skid j =

[
R j1 R j2

]
be the secret key for i-th

and j-th user respectively in the IB-uPRE scheme.
From ReKeyGen(PP,skidi , idi, id j) algorithm, we get

rki→ j =


Im̄×m̄ X00 X01 X02

0 X10 X11 X12
0 X20 X21 X22
0 0 0 Ink×nk

 .
Let ct =b be the ciphertext of plaintext m∈{0,1}nk for i-th user and ct ′=b′=(ReEnc(PP,rki→ j,ct))

be the re-encrypted ciphertext for the j-th user. Thus, we need to prove that Dec(PP,skidi ,ct) =
Dec(PP,skid j ,ct ′) = m.

The arguments for the original ciphertext follows from the Lemma 6.2 of [25].
Now for the re-encrypted ciphertext, we have
b′t = bt · rki→ j = 2st

[
Ã j A j1 A j2

]
+ ẽt + (0,0,encode(m)t) mod 2q, where bt = 2(stAi

mod q)+ et +(0,0,encode(m)t) mod 2q,
e = (e0,e1,e2),e0 = (ē0,e′0) and ẽ = (ẽ0, ẽ1, ẽ2), ẽ0 = ( ˜̄e0, ẽ′0) and ˜̄e0 = ē0, ẽ′0 = ē0X00 + e′0X10 + e1X20,
ẽ1 = ē0X01 + e′0X11 + e1X21, ẽ2 = ē0X02 + e′0X12 + e1X22 + e2.

In the decryption process, we multiply a re-encrypted ciphertext (and thus its error term) by R j1 R j2
I 0
0 I

. So, in order to get a correct output, we need to show that ẽt ·

 R j1 R j2
I 0
0 I

 ∈
P1/2(q ·B−t), where B is a basis of Λ⊥(G). i.e., ẽ0R j1 + ẽ1, ẽ0R j2 + ẽ2 ∈P1/2(q ·B−t).

Here, ẽ0R j1 + ẽ1 = ( ˜̄e0, ẽ′0)R j1 + ẽ1 =

(ē0, ē0X00 + e′0X10 + e1X20)R j1 + ē0X01 + e′0X11 + e1X21 (1)

ẽ0R j2 + ẽ2 = ( ˜̄e0, ẽ′0)R j2 + ẽ2 =

(ē0, ē0X00 + e′0X10 + e1X20)R j2 + ē0X02 + e′0X12 + e1X22 + e2 (2)

So, we have to estimate the upper bounds for the length of (1) and (2). Hence, it is required to
estimate the resultant length of the Gaussian vectors ē0,e′0,e1,e2 after multiplication by the matrices. We
analyze each term of (1), separately. The same arguments hold for (2).
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According to the sampling algorithm, the parameter s for each column of the X00,X10 and of X20 is
as small as

√
s1(Ri1)2 +1 ·

√
s1(ΣG)+2 · r, where Ri1 is the trapdoor that was used in the re-encryption

key generation. By Lemma 2, we have ‖ē0‖ < αq
√

m̄, ‖e′0‖ < αq
√

2m̄nk · r and ‖e1‖ < αq
√

2m̄nk · r.
Now from Lemma 4, Lemma 5 and the fact that s1(ΣG) = 4, we obtain ‖(ē0, ē0X00 +e′0X10 +e1X20)‖<
αq ·12

√
6 ·
√

m̄ ·
√

2m̄nk ·
√

s1(Ri1)2 +1 · r2 and ‖(ē0, ē0X00 + e′0X10 + e1X20)R j1‖<C ·αq ·24
√

6 · m̄ ·√
2m̄nk ·

√
s1(Ri1)2 +1 · r3, where C ≈ 1

2π
.

The singular value for matrix X01 which was sampled with parameter s
√

m̄/2 (the same holds for
X11,X21,X02,X12,X22) satisfies s1(X01) ≤ 2

√
3 · m̄ ·

√
s1(Ri1)2 +1 · r. Using the fact m̄ = O(nk),m =

m̄+nk and s1(Ri1)≤ O(
√

nk) · r (from Lemma 4), we finally have

‖ẽ0R j1 + ẽ1‖< αq ·O(nk)3 · r3.

Hence, ẽ0R j1 + ẽ1, ẽ0R j2 + ẽ2 ∈ P1/2(q ·B−t), by taking 1/α = O(nk)3 · r3.

Theorem 17 (Security). The above scheme is IND-sID-CPA secure assuming the hardness of decision-
LWEq,α ′ for α ′ = α/3≥ 2

√
n/q.

Proof: First, using the same technique in [25], we transform the samples from LWE distribution to what
we will need below. Given access to an LWE distribution As,α ′ over Zn

q×T, (whereT= R/Z) for any
s∈Zn

q, we can transform its samples (a,b= 〈s,a〉/q+e mod 1) to have the form (a,2(〈s,a〉 mod q)+e′

mod 2q) for e′← DZ,αq, by mapping b 7→ 2qb+DZ−2qb,s mod 2q, where s2 = (αq)2− (2α ′q)2 ≥ 4n≥
ηε(Z)2, ηε is smoothing parameter [27, 25]. This transformation maps the uniform distribution over
Zn

q×T to the uniform distribution Zn
q×Z2q. Once the LWE samples are of the desired form, we construct

column-wise matrix A∗ from these samples a and a vector b∗ from the corresponding b. Let idi∗ be the
target user. The proof follows by sequence of games.
Game 0: This is the original IND-sID-CPA game from definition between an attacker A against scheme
and an IND-sID-CPA challenger.
Game 1: In Game1, we change the way that the challenger generates Ā, Ā′,A1, A2 in the public param-
eters. In SetUp phase, do as follows:

• Set the public parameter Ā = A∗, where A∗ is from LWE instance (A∗,b∗) and set Ā′ =−A∗R−
Hidi∗G, where R is chosen according to Game 0.

• Choose four invertible matrices H1,H2,H3,H4 uniformly random from Zn×n
q .

• Choose Ri∗1,Ri∗2←D = Dm×nk
Z,r ; Set A′1 =−

[
A∗ −A∗R

]
·Ri∗1 and

A′2 =−
[

A∗ −A∗R
]
·Ri∗2; Construct A1 = A′1−H3Hidi∗G and A2 = A′2−H4Hidi∗G.

• Set PP = (Ā, Ā′,A1,A2,H1,H2,H3,H4,G) and send it to A .
To answer secret key query against idi ∈CU , challenger will construct
Ãi =

[
A∗ −A∗R−Hidi∗G+HidiG

]
=
[

A∗ −A∗R+(Hidi−Hidi∗ )G
]
. So, R is a trapdoor of Ãi

with invertible tag (Hidi −Hidi∗ ). Then using Extract algorithm, challenger gets the secret key skidi =[
Ri1 Ri2

]
for idi, sends skidi to A . Challenger will send⊥, against the secret key query for idi ∈HU .

Note that for idi∗ , Ãi∗ =
[

A∗ −A∗R
]
, so A′1 =−Ãi∗Ri∗1,A′2 =−Ãi∗Ri∗2 and

Ai∗ =
[

Ãi∗ Ai∗1 Ai∗2
]
=
[

Ãi∗ A1 +H3Hidi∗G A2 +H4Hidi∗G
]

=
[

Ãi∗ A′1 A′2
]
=
[

Ãi∗ −Ãi∗Ri∗1 −Ãi∗Ri∗2
]
.

For the re-encryption key query and re-encryption query, challenger maintain the restrictions as in
definition 10 and computes rki→ j, ReEnc(rki→ j,ct) according to the ReKeyGen and ReEnc algorithms
to reply the adversary. Due to left-over hash lemma [1, Lemma 14], (A∗,−A∗R,−

[
A∗ −A∗R

]
·Ri∗1,

−
[

A∗ −A∗R
]
·Ri∗2) is statistically indistinguishable with uniform distribution. Hence, (A∗,−A∗R−

Hidi∗G,−
[

A∗ −A∗R
]
·Ri∗1−H3Hidi∗G,
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−
[

A∗ −A∗R
]
·Ri∗2−H4Hidi∗G) is statistically indistinguishable with uniform distribution. Since

Ā, Ā′,A1,A2 and responses to key queries are statistically close to those in Game 0, Game 0 and Game 1
are statistically indistinguishable.
Game 2: In Game2 we change the way that the challenger generates challenge ciphertext. Here Chal-
lenger will produce the challenge ciphertext b on a message m ∈ {0,1}nk for idi∗ as follows: Choose
s← Zn

q and ē0 ← Dm̄
Z,αq as usual, but do not choose e′0,e1,e2. Let b̄t

0 = 2(stA∗ mod q)+ ēt
0 mod 2q

and b′0
t = −b̄t

0R+ êt
0 mod 2q, where ê0 ← Dnk

Z,s′ . So, b0 = (b̄0,b′0). The last 2nk coordinates can be
set as bt

1 = −bt
0Ri∗1 + êt

1 mod 2q; bt
2 = −bt

0Ri∗2 + êt
2 + encode(m) mod 2q, where ê1, ê2← Dnk

Z,s′ . Fi-
nally, replace b̄0 with b∗ in all the above expression, where (A∗,b∗) is the LWE instance. Therefore,
b̄0

t
= b∗t ; b′0

t = −b∗tR+ êt
0 mod 2q; bt

1 = −b∗0
tRi∗1 + êt

1 mod 2q; bt
2 = −b∗0

tRi∗2 + êt
2 + encode(m)

mod 2q. Set b∗0
t = (b∗t ,−b∗tR + êt

0 mod 2q). Then the challenger output the challenge ciphertext
ct = b = (b∗0,b1,b2).

We now show that the distribution of b is within negl(n) statistical distance of that in Game 1 from
the adversary’s view. Clearly, b∗ have essentially the same distribution as in Game 0 by construction. By
substitution we have: b′0

t = 2(st(−A∗R) mod q)+ ēt
0R+ êt

0 mod 2q; bt
1 = 2(st(−Ãi∗Ri∗1) mod q)+

(ēt
0, ē

t
0R+ êt

0)Ri∗1 + êt
1 mod 2q; bt

2 = 2(st(−Ãi∗Ri∗2) mod q) + (ēt
0, ē

t
0R+ êt

0)Ri∗2 + êt
2 + encode(m)

mod 2q.
By Corollary 3.10 in [30], the noise term ēt

0R+ êt
0 of b′0 is within negl(n) statistical distance from

discrete Gaussian distribution Dnk
Z,s′ . The same argument, also, applies for the noise term of b1,b2. Hence,

Game 1 and Game 2 are statistically indistinguishable.
Game 3: Here, we only change how the b∗ component of the challenge ciphertext is created, letting it
be uniformly random in Zm̄

2q. Challenger construct the public parameters, answer the secret key queries,
re-encryption queries and construct the last 3nk coordinates of challenge ciphertext exactly as in Game 2.
It follows from the hardness of the decisional LWEq,α ′ that Game 2 and Game 3 are computationally
indistinguishable.

Now by the left-over hash lemma [1, Lemma 14], (A∗,b∗,−A∗R,b∗tR,−Ãi∗Ri∗1,b∗0
tRi∗1, −Ãi∗Ri∗2,

b∗0
tRi∗2) is negl(n)-uniform when R,Ri∗1,Ri∗2 are chosen as in Game 2. Therefore, the challenge ci-

phertext has the same distribution (up to negl(n) statistical distance) for any encrypted message. So, the
advantage of the adversary against the proposed scheme is same as the advantage of the attacker against
decisional LWEq,α ′ .

4 Single-hop Selective Identity-Based Unidirectional Proxy Re-Signature
Scheme (IB-uPRS)

4.1 Construction of Single-hop IB-uPRS

In this section, we present our construction of single-hop IB-uPRS. We set the parameters as the follow-
ing.

• G ∈ Zn×nk
q is a gadget matrix for large enough prime power q = poly(n) and k = O(logq) =

O(logn), so there are efficient algorithms to invert gG and to sample for fG.

• m̄ = O(nk) and the Gaussian D = Dm̄×nk
Z,r , so that (Ā, ĀR) is negl(n)-far from uniform for Ā←

Zn×m̄
q and R←D .

• Let the message space M be {0,1}l , where l = O((nk)6).

• The real number βSIS of SISq,n,m̄,βSIS for IB-uPRS should satisfy q≥ βSISω(
√

n logn) [27], and we
set βSIS = O((nk)3.5) · r6.

• Encoding of Identity: We use the FRD map same as in IB-uPRE, to map the identity id to an
invertible matrix Hid .
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• Encoding of Sign-tag: We consider the Sign-tag space T = Zn
q. We map a non-zero Sign-tag

t ∈T to an invertible matrix Ht, using the same FRD map.

Our construction of IB-uPRS is as follows:

SetUp(1n) :

1. Choose Ā← Zn×m̄
q , R←D , and construct Ā′ =−ĀR ∈ Zn×nk

q .

2. Choose an invertible matrix H1 at uniformly random from Zn×n
q .

3. Choose two random matrices A1,A2 from Zn×nk
q .

4. Choose uniformly random (l +1) vectors a and b1, · · · ,bl from Zn
q.

5. Output public parameters PP = (Ā, Ā′,A1,A2,H1,a,b1, · · · ,bl,G) and the master secret key
msk = R.

Extract(PP,msk, id) : Let idi be the identity of i-th user.

1. Construct Ãi =
[

Ā Ā′+HidiG
]
=
[

Ā −ĀR+HidiG
]
∈ Zn×m

q , where m = m̄+nk. So, R is
a trapdoor of Ãi with tag Hidi .

2. • Construct Ai1 = A1 +HidiG ∈ Zn×nk
q and set A′i1 =

[
Ãi Ai1

]
∈ Zn×(m+nk)

q .

• Call the algorithm DelTrapO(A′i1,R,H1,s) to get a trapdoor Ri1 ∈ Zm×nk for A′i1 with tag
H1 ∈ Zn×n

q , where s ≥ ηε(Λ
⊥(Ãi)); i.e., using SampleO , sample each column of Ri1 inde-

pendently from a discrete Gaussian with parameter s over the appropriate coset of Λ⊥(Ãi),
so that ÃiRi1 = H1G−Ai1.

3. • Construct Ai2 = A2 +HidiG ∈ Zn×nk
q and set A′i2 =

[
Ãi Ai2

]
∈ Zn×(m+nk)

q .

• Call the algorithm DelTrapO to get a trapdoor Ri2 ∈ Zm×nk for A′i2 with tag 0 ∈ Zn×n
q ; i.e.,

using SampleO , sample each column of Ri2 independently from a discrete Gaussian with
parameter s over the appropriate coset of Λ⊥(Ãi), so that ÃiRi2 =−Ai2.

Output the signing key as skidi =
[

Ri1 Ri2
]
∈ Zm×2nk.

Sign(PP,skidi ,m ∈ {0,1}l) :

1. Randomly choose a non-zero Sign-tag t ∈T , construct Ht.

2. Construct Ãi, Ai1, and Ai2 for idi same as in Extract algorithm.

3. Set the signing matrix:
Aidi,t =

[
Ãi Ai1 Ai2 +Ht

]
=
[

Ãi −ÃiRi1 +H1G −ÃiRi2 +Ht
]
.

4. Using the l-bit message m = (m1, · · · ,ml), where mi ∈ {0,1}; construct a+
l
∑

i=1
mi ·bi ∈ Zn

q.

5. Sample the vector (e0,e2) ∈ Zm×Znk for the cosets obtained from a+
l
∑

i=1
mi · bi− (−ÃiRi1 +

H1G)e1; we use SampleO for the matrix
[

Ãi Ai2 +Ht
]

with the generalized trapdoor Ri2 and

tag Ht with parameter s=O(
√

nk) ·r2. It holds that Aidi,t ·e= a+
l
∑

i=1
mi ·bi, where e= (e1,e2,e3)∈

Zm+2nk.

6. Output the signature e together with the corresponding Sign-tag t.
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Verify(PP, idi,m,e, t) :

1. Reconstruct the signing matrix
Aidi,t =

[
Ãi Ai1 Ai2 +Ht

]
=
[

Ãi −ÃiRi1 +H1G −ÃiRi2 +Ht
]
.

2. Accept if ‖e‖ ≤ βmax and Aidi,t ·e = a+
l
∑

i=1
mi ·bi, where βmax = m̄

√
m+2nk · s2; otherwise, reject.

ReKeyGen(PP, idi, id j,skid j) : Let skid j =
[

R j1 R j2
]

be the signing key for j-th user.

1. Construct Aidi =
[

Ãi Ai1 Ai2
]
, where Ãi =

[
Ā Ā′+HidiG

]
and Ai1,Ai2 are same as in

Extract algorithm.

2. Construct Aid j =
[

Ã j A j1 A j2
]
, where Ã j =

[
Ā Ā′+Hid j G

]
and A j1,A j2 are same as in

Extract algorithm.

3. Using SampleO with trapdoor R j1(from the signing key of jth user ), with tag H1, we sample from
the cosets which are formed with the column of the matrix Ā′+HidiG. After sampling nk times
we get an (m̄+2nk)×nk matrix and parse it as three matrices X00 ∈ Zm̄×nk, X10 ∈ Znk×nk and X20

∈ Znk×nk matrices with Gaussian entries of parameter s. So,
[

Ã j −Ã jR j1 +H1G
] X00

X10
X20

=

Ā′+HidiG. i.e.
[

Ã j A j1
] X00

X10
X20

= Ā′+HidiG.

4. Continue sampling for the cosets obtained from the columns of the matrix Ai1. This time, we
increase the Gaussian parameter of the resulting sampled matrix up to s

√
m̄/2:

[
Ã j −Ã jR j1 +H1G

] X01
X11
X21

= Ai1 , i.e.
[

Ã j A j1
] X01

X11
X21

= Ai1 .

For the last sampling, to get a correct re-signing key, we use the cosets which are formed with

the column of the matrix Ai2−A j2:
[

Ã j A j1
] X02

X12
X22

= Ai2−A j2, where X01,X02 ∈ Zm̄×nk,

X11,X12,X21,X22 ∈ Znk×nk with entries distributed as Gaussian with parameter s
√

m̄.

5. The re-signing key is a matrix with Gaussian entries:

rki→ j =


Im̄×m̄ X00 X01 X02

0 X10 X11 X12
0 X20 X21 X22
0 0 0 Ink×nk

 ∈ Z(m+2nk)×(m+2nk) and it satisfies:

[
Ā Ā′+Hid j G A j1 A j2

]
· rki→ j =

[
Ā Ā′+HidiG Ai1 Ai2

]
.

Notice that, it satisfies Aid j,t · rki→ j = Aidi,t for any Sign-tag t.

ReSign(PP,rki→ j, idi, id j,e,m, t) :

1. Ouput ⊥, if Verify(PP, idi,m,e, t)→ reject.

2. Otherwise, compute e′ = rki→ j · e ∈ Zm+2nk. Output re-signature e′ for the message m with the
same Sign-tag t under id j.
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4.2 Correctness and Security

Theorem 18 (Correctness). The IB-uPRS scheme with parameters proposed in Section 4.1 is correct.
Proof: Let skidi =

[
Ri1 Ri2

]
and skid j =

[
R j1 R j2

]
are the signing key for i, j-th user respectively.

Let the Re-signing key from ith to jth user be
Im̄×m̄ X00 X01 X02

0 X10 X11 X12
0 X20 X21 X22
0 0 0 Ink×nk

 .
As ‖e‖ ≤ s ·

√
m+2nk, it follows from the construction that if a signer construct a signature e on a

message m with Sign-tag t, under the identity idi, it will be accepted by the verifier.
Let e′ be the re-signature of m with the same Sign-tag t under the j-th user. Now for the re-signature,

we need to snow that Aid j,t · e′ = a+
l
∑

i=1
mi ·bi, and ‖e′‖ ≤ βmax.

We have,
Aid j,t · e′ = Aid j,t · (rki→ j · e) = (Aid j,t · rki→ j) · e

= Aidi,t · e = a+
l

∑
i=1

mi ·bi, as Verify(PP, idi,m,e, t)→ accept.

Now ‖e′‖ = ‖rki→ j · e‖ ≤ ‖rki→ j‖ · ‖e‖ ≤ s1(rki→ j) · ‖e‖. We have ‖e′‖ ≤ m̄
√

m+2nk · s2 = βmax.
This completes the proof.

Theorem 19 (Security). The above scheme is existential unforgeable against adaptive chosen message
and selective identity attacks in the standard model under the hardness of SISq,n,m̄,βSIS .
Proof: Let a reduction C attacking SIS. Let A∗ ∈ Zn×m̄

q be the SIS instance, to which, asked to return a
solution e ∈ Zm̄

q , such that A · e = 0 mod q and 0 6= ‖e‖ ≤ βSIS. Let id∗ ∈ HU be the challenge identity
and t∗ ∈ T be the challenge Sign-tag, send by the adversary at the begining of the game. The proof
proceeds in a sequence of games.
Game 0: This is the original security game from definition between an adversary A and C .
Game 1:We set Ā, Ā′,a,b1, · · · ,bl from public parameter as follows:
Ā = A∗, where A∗ is from SIS instance and set Ā′ =−A∗R−Hidi∗G, where R is chosen in the same way
as in Game 0.

Now choose (l + 1) small vectors s0,s1, · · · ,sl ∈ DZm,s, set a = A∗s0 and bi = A∗si. Due to left-
over hash lemma [1, Lemma 14], (A∗,−A∗R,A∗s0,A∗si) is statistically indistinguishable with uniform
distribution. Hence, (A∗,−A∗R−Hidi∗G,A∗s0,A∗si) is statistically indistinguishable with uniform dis-
tribution. So, Game 0 and Game 1 are statistically indistinguishable to adversary A .

Choose an invertible matrix H1 at uniformly random from Zn×n
q . Set A′ =

[
A∗ −A∗R

]
and

choose Ri∗1,Ri∗2←D = Dm×nk
Z,r . Set A′1 =−A′ ·Ri∗1 and A′2 =−A′ ·Ri∗2. Construct A1 = A′1−Hidi∗G

and A2 = A′2−Hidi∗G−Ht∗G. Set PP = (Ā, Ā′,A1,A2,H1,a,b1, · · ·bl,G) and send it to the Adversary
A .

OExtract: To answer a signing key query against idi(6= idi∗), challenger will do as follows: Construct
Ãi =

[
A∗ −A∗R−Hidi∗G+HidiG

]
=
[

A∗ −A∗R+(Hidi−Hidi∗ )G
]
. So, R is a trapdoor of Ãi

with invertible tag (Hidi−Hidi∗ ).
Then using Extract algorithm, challenger gets the signing key skidi =

[
Ri1 Ri2

]
for idi, sends

skidi to the adversary A .
OSign: For sign-query of message m under idi(6= idi∗), first selects a non-zero Sign-tag t such that

t 6= t∗, then compute the signature e of m with Sign-tag t according to the Sign algorithm and sends it to
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the adversary. Sign-query of message m under idi∗ , with Sign-tag t such that t 6= t∗, the signing matrix
Aidi∗ ,t =

[
Ãi∗ Ai∗1 Ai∗2 +Ht

]
=
[

Ãi A1 +Hidi∗G A2 +Hidi∗G+HtG
]

=
[

Ãi∗ A′1 A′2−Ht∗G+HtG
]

=
[

Ãi∗ −Ãi∗Ri∗1 −Ãi∗Ri∗2−Ht∗G+HtG
]
.

So, for
[

Ãi∗ −Ãi∗Ri∗2−Ht∗G+HtG
]
, Ri∗2 is a trapdoor with invertible tag Ht−Ht∗ . So using this

we can sign a message under idi∗ with Sign-tag t 6= t∗.
OReKeyGen: For the re-signing key query, challenger maintain the restrictions as in definition 14 and

computes rki→ j, according to the ReKeyGen algorithm to reply the adversary.
OReSign: For a re-signature query on the signarure e of the message m = (m1, · · · ,ml), with Sign-tag

t under idi, to a signature under id j, we consider following cases:
• If t = t∗, or Verify(PP, idi,m,e, t)= reject, output ⊥.
• If idi ∈HU , id j ∈HU \{id∗} or idi, id j ∈CU or idi ∈HU, id j ∈CU , output the re-signature using

ReSign algorithm.
• For re-signing the signarure e of the message m, with Sign-tag t 6= t∗ under idi ∈ HU to id∗, do as

follows:
– Construct Aidi∗ ,t =

[
Ãi∗ Ai∗1 Ai∗2 +Ht

]
=
[

Ãi∗ −Ãi∗Ri∗1 −Ãi∗Ri∗2−Ht∗G+HtG
]
.

So, for
[

Ãi∗ −Ãi∗Ri∗2−Ht∗G+HtG
]
, Ri∗2 is a trapdoor with invertible tag Ht−Ht∗ . So

Ri∗2 is a trapdoor for Aidi∗ ,t (extension), using this we can sample a (pseudo) Re-signing key
rk s.t. Aidi∗ ,t · rk = Aidi,t.

– Since, Aidi,t · e = a+
l
∑

i=1
mi ·bi, so we have Aidi∗ ,t · rk · e = a+

l
∑

i=1
mi ·bi.

– Output the re-signature e′ = rk · e under id∗.
Now adversary A sends the forgery tuple (id∗,m∗,e∗, t∗) to C , where m∗ = (m∗1, · · · ,m∗l ). Note that

for idi∗ , Ãi∗ =
[

A∗ −A∗R
]
, which is A′ from the set up phase and Aidi∗ ,t∗ =

[
Ãi∗ Ai∗1 Ai∗2 +Ht∗

]
=[

Ãi∗ −Ãi∗Ri∗1 −Ãi∗Ri∗2
]
. Now C constructs a solution to SIS instance A∗ as follows: Parsed e∗

as e∗ = (e1,e2,e3) ∈ Zm ×Znk ×Znk. Thus, for correctness, it holds that Aidi∗ ,t · e
∗ = a +

l
∑

i=1
m∗i · bi

i.e.,
[

Ãi∗ −Ãi∗Ri∗1 −Ãi∗Ri∗2
]
· (e1,e2,e3) = A∗s0 +

l
∑

i=1
m∗i ·A∗si i.e. ⇒ Ãi∗(e1−Ri∗1e2−Ri∗2e3) =

A∗(s0 +
l
∑

i=1
m∗i si), where (e1−Ri∗1e2−Ri∗2e3) ∈ Zm. Now parsed (e1−Ri∗1e2−Ri∗2e3) as (e∗1,e∗2) ∈

Zm̄×Znk and let S∗ = s0 +
l
∑

i=1
m∗i si. So, we get Ãi∗(e∗1,e∗2) = A∗S∗ i.e.,

[
A∗ −A∗R

]
(e∗1,e∗2) = A∗S∗

i.e., A∗(e∗1−Re∗2−S∗) = 0.
Since, matrices R,Ri∗1,Ri∗2 and vectors s0,si are independent of each other, and hidden from adver-

sary A ’s view, then with overwhelming probability (e∗1−Re∗2−S∗) 6= 0. As ‖e∗‖ ≤ m̄
√

m+2nk · s2 =
βmax and s1(Ri∗1),s1(Ri∗2) ≤ O(

√
nk) · r, we have ‖(e∗1,e∗2)‖ ≤ O((nk)3) · r5. Since, m̄ = O(nk),

m = m̄ + nk, and s j ≤ O(
√

m) · r for j = 0,1, · · · , l, we have ‖S∗‖ ≤
√

l +1 ·O(
√

nk) · r. Finally,
s1(R) ≤ O(

√
nk) · r implies ‖(e∗1 −Re∗2 − S∗)‖ ≤ O((nk)3.5) · r6 +

√
l +1 ·O(

√
nk) · r. According to

the security parameters of section 4.1, (e∗1−Re∗2−S∗) ≤ O((nk)3.5) · r6. Hence, (e∗1−Re∗2−S∗) works
as the solution for SISq,n,m̄,βSIS instance A∗, where βSIS = O((nk)3.5) · r6. This completes the proof.

5 Conclusion
In this paper, we first propose quantum-safe concrete constructions of IB-uPRE and IB-uPRS secure
in the standard model. Both IB-uPRE and IB-uPRS enjoy the important features like Non-transitivity,
Proxy transparency, Key optimality, and Non-interactivity. The proposed constructions are single-hop.
It is an interesting open issue to construct multi-hop version of the proposed schemes.
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