
A Comparative Study on Optimization, Obfuscation, and
Deobfuscation Tools in Android

Geunha You1, Gyoosik Kim2, Seong-je Cho1*, and Hyoil Han3

1Dept. of Computer Science & Engineering, Dankook University, Yongin, Republic of Korea
{geunhayou, sjcho}@dankook.ac.kr

2KT Infra Lab, Seoul, Republic of Korea
erewe4@dankook.ac.kr

3School of Information Technology, Illinois State University, Normal, IL, USA
hhan12@ilstu.edu

Received: December 10, 2020; Accepted: February 5, 2021; Published: February 28, 2021

Abstract

Code optimization is a program transformation process to make the program work more efficiently
or consume fewer resources. Code obfuscation transforms a program and makes its code more diffi-
cult for a human to understand, which protects the code from reversing engineering. Deobfuscation
is reverse-engineering the obfuscation. Optimization and obfuscation are widely used in Android
apps. R8, the Android build process’s default tool, does all of the code shrinking, obfuscation, and
optimization. This paper compares and analyzes the functionalities of optimization, obfuscation, and
deobfuscation tools in the Android platform. Besides R8, the other tools covered in this paper are
ReDex, Obfuscapk, and DeGuard, which are optimization, obfuscation, and deobfuscation tools for
Android apps, respectively. We investigate the characteristics of the four tools and compare their
performance by performing experiments.

Keywords: Android app, Obfuscation, De-obfuscation, Optimization, R8 compiler, ReDex. Ob-
fuscapk, DeGuard

1 Introduction

Code optimization or program optimization is a program transformation technique, which makes the
program work more efficiently and uses fewer resources [23, 26]. Code optimization generally replaces
the program constructs of the target software with efficient program codes. Therefore, it can improve the
program’s speed, and make the program operate with less CPU power and memory space. In the An-
droid Dalvik just-in-time (JIT) compiler, optimization techniques include constant propagation, register
allocation, elimination of redundant load/store and null-check, redundant branch elimination, induction
variable optimization, loop optimization, method inlining, etc [19].

Code obfuscation is a practice in software development to obscure program code with semantics-
preserving transformation [10, 8, 20, 21]. Obfuscation transforms the code into a more complicated form
to protect the code from disassembling, decompiling, and debugging. Therefore, code obfuscation is
frequently used by both software developers and malware writers. Normal software developers obfuscate
their software to protect their intellectual property, such as the core logic and algorithms of software,

Journal of Internet Services and Information Security (JISIS), volume: 11, number: 1 (February 2021), pp. 2-15
DOI:10.22667/JISIS.2021.02.28.002

*Corresponding author: Department of Computer Science & Engineering, Dankook University, 152 Jukjeonro, Yongin-si,
Gyeonggi-do, 16890, Korea, Tel: +82-31-8005-3239

2

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

however, malware writers obfuscated their malware to hide its malicious intention and logic and resist
analysis.

On the other hand, code deobfuscation is reverse engineering obfuscated code and is useful for under-
standing obfuscated code [24, 7, 28, 27]. The objective of deobfuscation is to try to identify, simplify and
remove obfuscation code. Given a program Porg and its obfuscated version Pob f , Yadegari et al. [28, 27]
defined deobfuscation as the process of removing the effects of obfuscation from an obfuscated program,
Pob f . That is, deobfuscation analyzes and transforms the code for Pob f to obtain a program Porg that is
functionally equivalent to Pob f but is simpler and easier to understand. The deobfuscated code is easier to
understand with less analysis time compared to the obfuscated one. Code obfuscation and deobfuscation
are thus considered as a double-edged sword in the computer security community.

Code optimization and obfuscation tools are pervasively applied to Android apps. When an Android
project is built using Android Gradle plugin 3.4.0 or higher, the plugin works with the R8 compiler as
the default tool in the Android build process [18, 16]. The R8 compiler does all of the optimization,
obfuscation, code shrinking, and resource shrinking. A legitimate software company needs to analyze
which optimization tool (optimizer) or obfuscation tool (obfuscator) is good to use in order to protect
the intellectual property of their apps. In addition, malware analysts want to know which optimizer or
deobfuscation tool (deobfuscator) to use in order to efficiently analyze malware.

In this paper, we compare and analyze the functionalities of some optimization, obfuscation, and
deobfuscation tools in Android platform. Besides R8, the other tools covered in this paper are ReDex [11,
12], Obfuscapk [5], and DeGuard [7], which are optimization, obfuscation, and deobfuscation tools
for Android apps, respectively. We investigate the characteristics of the four tools and compare their
performance through experiments.

The rest of this paper is organized as follows. Section 2 briefly describes the four tools: R8, ReDex,
Obfuscapk, and DeGuard. Section 3 reviews related work, and Section 4 summarizes the method and
analysis tools for our work. In Section 5, 6, and 7, we compare and evaluate the four tools. Finally, we
conclude our findings in Section 8.

2 Background

Table 1 presents the four tools this paper investigates. The similarities and differences in their aims,
functionalities, and input/output formats exist among these tools. These tools have many differences in
processing input files.

Table 1: Summary of Four Tools.
Tools Description Functionalities

R8 compiler [18, 16]
Optimizer
Obfuscator

Optimization (e.g., Removing unused else{} branches, Inlining),
Identifier renaming obfuscation,
Code shrinking, Resource shrinking

ReDex [11, 12] Optimizer
Minification and compression, Inlining,
Dead code elimination

Obfuscapk [5] Obfuscator

Trivial techniques with four subcategories: Align, Re-sign, Rebuild,
and Randomize manifest.
Non-trivial techniques with four subcategories: Renaming,
Encryption, Code, and Reflection.

DeGuard [7] De-obfuscator
A tool to reverse the layout obfuscation of APKs performed by
ProGuard or R8 compiler

3

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

2.1 The R8 compiler

The R8 compiler is a compiler suite to build Android apps and provide functionalities to optimize and
obfuscate codes. DX was the built-in DEX compiler before Android Studio 3.1.0, D8 from Android
Studio 3.1.0, and R8 from Android Studio 3.4.0 [15]. The DX, D8, and R8 compliers convert a .class file
to a .dex file.

Compared to DX, D8 compiles faster and outputs smaller DEX files. Figure 1 shows a high-level
overview of the compile process before R8 was introduced [15]. ProGuard, a well-known obfuscator,
transforms the names of packages, methods, and classes inside a target app, by substituting them with
obscure names [7]. It can also remove unused classes, methods, and fields to minimize the size of the
resulting APK. ProGuard works at the source-code level, mapping the original names to deformed ones
based on the user’s configuration [10]. Desugaring is a process that rewrites an Android app to provide
Java 8 language features such as lambda expressions, default interface methods, etc. The desugaring
engine has been extended to be able to desugar Java language APIs in Android Studio 4.0. R8 inte-
grates desugaring, shrinking, obfuscating, optimizing, and dexing (D8) all into one step, as shown in
Figure 2 [18, 16, 15]. Note that R8, working with the ProGuard rules, is a new tool for shrinking,
optimization, and obfuscation that replaces ProGuard.

Figure 1: The Android app compile process before D8 was introduced [15].

Figure 2: The Android app compile process after R8 was introduced [15].

Given an Android app, the obfuscation part of R8 reduces the app size by shortening the names of
the app’s classes, methods, and fields, but does not remove code from the app [18]. Code shrinking
(or tree-shaking) removes unused classes, methods, fields, and attributes from the app and its library
dependencies. Starting from each app’s entry point, the code shrinking part examines the app’s code to
build a graph of all methods, member variables, and other classes that the app might access at runtime.
It removes the code that is not connected to that graph. Moreover, if the app uses only a few APIs of a
library dependency, shrinking can identify library code that the app is not using and remove that code.

After the code shrinking, resource shrinking removes unused resources from the app, including un-
used resources in the app’s library dependencies. To decrease the size of the app’s DEX files even further,
the optimization part examines the code at a deeper level to remove more unused code. For example, it
can remove the code for the else {} branch that is never taken, inline a method invoked in only one
place, and combine a class with its subclass where the class has only the subclass.

To enable code shrinking, obfuscation, and optimization when building the final version of the app,
you should include the ‘minifyEnabled true’ statement in your project-level build.gradle file.
You can also enable resource shrinking by including the ‘shrinkResources true’ statement in the

4

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

build.gradle file.

2.2 The ReDex optimizer

ReDex, developed by the Facebook engineering team, is an Android bytecode optimizer [11, 12, 31, 29,
30]. ReDex optimizes Android apps at the bytecode level via three pipeline stages: Minification and
compression, Inlining, and Dead code elimination. Minification and compression store file paths in a
compressed mode and recover them via a back-map in debugging. Inlining combines access methods
such as setter/getter and decreases the method invocation overhead. Lastly, Dead code elimination tra-
verses all branches and method invocations from the target app’s entry points and eliminates the unused
code. Each stage in the pipeline is independent of each other.

Wermke et.al. [25] considered ReDex a obfuscator similar to ProGuard [7, 25] because ReDex can
obfuscate package/class/method/field names. But ReDex’s ‘dead code elimination’ has a de-obfuscation
function and You et al. [31, 29, 30] considered ReDex a de-obfuscator.

ReDex can be installed by (1) downloading the source code from the Facebook/ReDex Github page
and compiling it into an executable file (Executable Linking Format or Potable Executable Format) on
the local system, or (2) using the docker image [13] deployed by the ReDex developers. Following the
notation used in the previous paper [29], what is built from source code is called Built-ReDex, and
what is distributed as a docker image is called Docker-ReDex. In this paper, we use the Built-ReDex
version.

As of this paper writing, the current Docker version was distributed two years ago, and it is recom-
mended to use the latest version of the source code that developers update periodically. ReDex outputs a
.dex file after uncompressing a compressed APK file. Users can optimize a .dex file, repackage and sign
the optimized .dex file and install it on an Android device.

2.3 Obfuscapk

Obfuscapk is a tool to obfuscate open-source black-box Android apps [5]. The inputs of Obfuscapk are
APK files and obfuscation option, and its output is the obfuscated APK files. The obfuscation techniques
provided by Obfuscapk is comprised of trivial techniques and non-trivial techniques. Trivial techniques
and non-trivial techniques each consist of four subcategories. Among the techniques, we focus on non-
trivial techniques in this paper.

The four subcategories of non-trivial obfuscation techniques are Renaming, Encryption, Code, and
Reflection. Renaming converts identifiers’ names (such as variable, methods, etc.) to meaningless names.
Encryption encrypts strings, asset files (video, photo, text, etc.) of a native library, strings.xml, and
constant strings in code and decrypts them in runtime.

Code subcategory contains several specific techniques: DebugRemoval, CallIndirection, Goto,
Reorder, ArithmeticBranch, Nop, and MedhodsOverload. DebugRemoval removes debug meta-
data such as line numbers, types, and method names. CallIndirection changes the control-flow graph
(CFG) by adding new methods and substituting existing methods with new wrapper methods. Goto mod-
ifies the CFG by inserting goto instructions. Reorder changes the order of basic blocks by inverting
a branch instruction’s condition and re-arranging the code, abusing goto instructions randomly. Arith-
meticBranch complicates the CFG by inserting useless arithmetic computations and branch instructions.
Nop inserts random nop instructions. MethodsOverload creates a new void method with the same name
and arguments or adds new random arguments.

The Reflection subcategory looks for method invocations of an app, ignoring the calls to the Android
framework. If an instruction with a suitable method invocation is found, such invocation is redirected to

5

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

a custom method. AdvancedReflection is complementary to the Reflection technique but targeting the
invocations of dangerous APIs.

2.4 DeGuard (de-obfuscator)

DeGuard is a free de-obfuscator to recover renamed symbols (identifiers) obfuscated by ProGuard [7,
29]. To evaluate the effectiveness of DeGuard, Bichsel et al. [7] arbitrarily selected 100 apps offered by
F-Droid [2] and experimented with the dataset by applying ProGuard’s identifier renaming obfuscation.
With the input of APK files, DeGuard perfectly recovered 79.1% of symbols obfuscated by machine
learning approaches and predicted third-party libraries with an accuracy of 91.3%. DeGuard could
not recover the final 20.9% of symbols, due to mis-deobfuscated symbols different from their original
symbols or due to failed obfuscation where the obfuscated symbols remain. DeGuard did not open its
source code but is open to an online web site so that people can use it freely.

Table 2 shows code obfuscation techniques that DeGuard, R8, and ReDex can resolve in the point of
view of deobfuscation and optimization.

Table 2: The options that DeGuard, R8, and ReDex can deobfuscate.

Evaluation
Tools

Obfuscaors and their options
R8

(as an
obfuscator)

Obfuscapk

Renaming Renaming Encryption Reflection
Code

Arithmetic
Branch

Reorder
Call

Indirection
Method

Overload
Goto Nop

DeGuard O X X X X X X X ∆ ∆

R8
(as an

optimizer)
X X X X O X X X O O

ReDex X X X X O X X X O O

3 Related Work

Like DeGuard, Anti-ProGuard [6] is a tool to deobfuscate identifiers (or symbols) obfuscated by Pro-
Guard. Anti-ProGuard uses similarity algorithms similar to SimHash and n-gram to conjecture symbols
obfuscated by renaming. Anti-ProGuard experimented with four apps (offered by F-Droid) satisfying
the following three criteria:

1. The app has at least a few libraries.
2. Making ProGuard active/inactive should be easy.
3. It is distributed with Gradle scripts so that it is easy to compile.

The experiment by the authors showed that Anti-ProGuard identifies more than 50% of symbols in
packages.

Java-deobfuscator [3] is a deobfuscator that works for a Java program (.jar) on JVM. Java-deobfuscator
can resolve (or deobfuscate) Java programs obfuscated by commercial Java obfuscators such as Zelix
Klassmaster, Stringer, Allatori, DashO, DexGuard, ClassGuard, and Smoke. Most Android apps are
written in Java, and .class files are created after compiling Java programs. Android apps’ execution files
named .dex is converted to .jar files. However, Java-deobfuscator is not a tool for Android apps. We
extracted .dex files from APK files and converted .dex files to .jar files to use Java-deobfuscator for
Android apps. Then we used Java-deobfuscator to convert the converted .jar files into .dex files and
repackaged them. However, Java-deobfuscator outputs .jar files as well as many errors. That is, its

6

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

outputs are incomplete .jar files. The main reason for Java-deobfuscator’s failure in optimization is the
loss in converting .dex files to .jar files. Therefore, we could not execute the files on Android devices
after repackaging .dex files obtained by converting incomplete .jar files due to such Java-deobfuscator’s
failure.

Simplify [4] is a generic Android deobfuscator available in Github. Simplify operates Android apps in
a virtual machine and optimizes the apps’ activities. Optimization strategies of Simplify consist of con-
stant propagation, dead code elimination, unreflection, and several peephole optimizations. Simplify does
not deobfuscate renaming obfuscated but supports decrypting encrypted string, deobfuscating reflection
obfuscation, and simplifying codes. In the future, we plan to experiment with Simplify.

In our previous work, we analyzed and compared the performance of R8, ReDex, and DeGuard [31,
29, 30]. In the current paper, we included our extended results to our previous work. In [31], we
experimented with Docker-ReDex [27] to optimize Android apps obfuscated by Obfuscapk’s code cat-
egory and analyzed the outcomes. In [29], we experimented with DeGuard to deobfuscate and with
Docker-ReDex and Built-ReDex to optimize Android apps (APKF) obfuscated by Obfuscapk or An-
droid apps (APKP) obfuscated by R8 (or ProGuard). In [30], for Android apps (APKO), which R8 cannot
apply to, we compared Android apps (APKP) applied by R8 with Android apps (APKRO) optimized by
Built-ReDex.

In Section 5 of this paper, for Android apps (APKO), which R8 cannot apply to, we compare Android
apps (APKP) applied by R8 with Android apps (APKF renaming) obfuscated by renaming the category of
Obfuscapk and analyze the results. In Section 6, we compare the optimization performance between R8
and ReDex for Android apps (APKP) applied by R8 and Android apps (APKF code) obfuscated by Obfus-
capk’s code category. Additionally, we analyze the optimization performance of ReDex for Android apps
(APKP) that R8 applies to. Section 7 describes our experiment with DeGuard to deobfuscate Android
apps (APKP) that R8 applied to. In this paper, we experimented with Android apps that were not used in
the existing experiments.

4 Methods and Analysis tools

The methodology to compare the performance of tools depends on the input/out of each tool. Fig-
ure 3 shows the process of generating Android apps for experiments with R8 and Obfuscapk. The
dotted box in red in Figure 3 represents the Android apps used in our experiments. We chose three
Android apps downloaded from F-Droid [2]. These apps are named “tk.radioactivemineral.
metronome 5.apk,” “it.linuxday.torino 1.apk,” and “eu.veldsoft.ithaka.board.game 5.

apk” and correspond to APKO-1, APKO-2, and APKO-3, respectively. These apps are optimized or ob-
fuscated for our experiment. We execute these Android apps in Android 8.1 Oreo on Android Virtual
Device to experiment with the optimized apps, obfuscated apps, and deobfuscated app.

In Figure 3, the process that R8 applies to APKF does not appear due to a lack of spaces. We cannot
apply R8 directly to APKF because APKF is already a compiled app and must use a process that extracts
.dex and converts .dex to .jar using dex2jar. APKPF is generated by repackaging the .dex file obtained
by applying R8 to the converted .jar file. Table 3 explains the Android apps generated via the process in
Figure 3.

The process of generating Android apps to compare the R8 compiler with ReDex appears in [30].
Table 4 shows the analysis tools used in our experiments to compare and analyze original apps, optimized
apps, obfuscated apps, and deobfuscated apps.

7

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

Figure 3: The process of generating Android apps for our experiments.

5 Evaluation of R8 and Obfuscapk

This section describes the comparisons of R8 with Obfuscapk. Figure 4 shows the classes of an original
Android app and its obfuscated version by R8 and Obfuscapk. Figure 4(a) shows the class with an original
Android app (APKO), Figure 4(b) shows a class of the Android app (APKP), which is the original app
obfuscated by R8’s identifier renaming, and Figure 4(c) shows a class of the Android app (APKF), which
is the original app obfuscated by Obfuscapk’s renaming category. We used a decompiler called JEB Pro
3.28 to compare Java source code. Figure 4 shows the source code comparisons. Figures 4(b) and 4(c)
have a common property in the point of view of changing identifier names meaninglessly. Nonetheless,
Figures 4(b) and 4(c) have differences. Figure 4(b) shows that the identifier names are shortened by R8,
and the resultant .dex file size decreases. On the other hand, Figure 4(c) shows that Obfuscapk does not
decrease the size of the identifier names, and the resultant .dex file does not decrease.

6 Evaluation of R8 and ReDex

We chose the original app (APKO), and the obfuscated app (APKF), which is the app obfuscated by
Obfuscapk’s renaming category, to compare the optimization performance. ReDex developers built
ReDex to futher optimize Android apps already optimized by the Android compiler, and ReDex de-
creased the size of Facebook apps by 25% [14]. Therefore, we also experimented with applying Re-
Dex to the apps optimized by R8. Our experiment’s Android apps appear in Table 3, and the re-
sults of our optimization experiments appear in Tables 5-10. Tables 5-6 show the experimental results
based on APKO-1 app (tk.radioactivemineral.metronome 5.apk). Tables 7-8 show results based
on APKO-2 app (it.linuxday.torino 1.apk), and Tables 910 show results based on APKO-3 app
(eu.veldsoft.ithaka.board.game 5.apk).

APKO-1 is the original Android app that is not obfuscated and optimized, and APKP-1 is the Android
app obtained by compiling APKO-1 with R8. Whereas APKRO-1 is the Android app obtained by opti-
mizing a .dex file by ReDex after the .dex is extracted from APKO-1, and APKRP-1 is the Android app
optimized by ReDex after APKO-1 is optimized and obfuscated by R8. In Table 5, row 4 represents the

8

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

Table 3: The explanation for Android apps used in our experiments.
Notation APK name Description Size (in bytes)
APKO-1 tk.radioactivemineral.metronome 5.apk Built from source code 1,710,352
APKO-2 it.linuxday.torino 1.apk Built from source code 1,603,967
APKO-3 eu.veldsoft.ithaka.board.game 5.apk Built from source code 2,384,201

APKP-1 tk.radioactivemineral.metronome 5.apk
Obfuscated and optimized from
source code using R8

640,069

APKP-2 it.linuxday.torino 1.apk
Obfuscated and optimized from
source code using R8

1,149,824

APKP-3 eu.veldsoft.ithaka.board.game 5.apk
Obfuscated and optimized from
source code using R8

690,489

APKF -1 tk.radioactivemineral.metronome 5.apk
Obfuscated from APKO-1 using
Obfuscapk

3,831,684

APKF -2 it.linuxday.torino 1.apk
Obfuscated from APKO-2 using
Obfuscapk

3,544,401

APKF -3 eu.veldsoft.ithaka.board.game 5.apk
Obfuscated from APKO-3 using
Obfuscapk

3,830,524

APKRO-1 tk.radioactivemineral.metronome 5.apk
Optimized from APKO-1 using
ReDex

1,665,665

APKRO-2 it.linuxday.torino 1.apk
Optimized from APKO-2 using
ReDex

1,534,988

APKRO-3 eu.veldsoft.ithaka.board.game 5.apk
Optimized from APKO-3 using
ReDex

2,342,769

APKRP-1 tk.radioactivemineral.metronome 5.apk
Optimized from APKP-1 using
ReDex

632,719

APKRP-2 it.linuxday.torino 1.apk
Optimized from APKP-2 using
ReDex

2,321,373

APKRP-3 eu.veldsoft.ithaka.board.game 5.apk
Optimized from APKP-3 using
ReDex

690,113

APKRF -1 tk.radioactivemineral.metronome 5.apk
Optimized from APKF -1 using
ReDex

2,274,768

APKRF -2 it.linuxday.torino 1.apk
Optimized from APKF -1 using
ReDex

2,321,373

APKRF -3 eu.veldsoft.ithaka.board.game 5.apk
Optimized from APKF -1 using
ReDex

2,975,136

APKPF -1 tk.radioactivemineral.metronome 5.apk
Obfuscated and optimized from
APKF -1 using R8

2,015,794

APKPF -2 it.linuxday.torino 1.apk
Obfuscated and optimized from
APKF -2 using R8

2,093,434

APKPF -3 eu.veldsoft.ithaka.board.game 5.apk
Obfuscated and optimized from
APKF -3 using R8

2,726,662

O: denotes ‘Original’, P: denotes ‘R8 compiler’, F:denotes ‘Obfuscapk’, R: denotes ‘ReDex’

size of all the resources in APK, rows 8-9 show the number of edges and nodes in a call graph (CG), rows
10-11 represent the number of basic blocks and edges of a control-flow graph (CFG), and row 11 shows
the average size of methods in the Android app. The average size of methods was measured only for
methods that appear in the original Android app, its obfuscated Android app, and its optimized Android

9

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

Table 4: Analysis tools used in our work.
Analysis Tools Description
JEB Pro 3.28 [22] A decompiler that decompiles .dex and generates Java source code

Androguard [9]
Androguard outputs an app’s call graph (CG), used in analyzing nodes and
edges.

Dexdump2 [17]
Dexdump2 outputs an app’s control flow graph (CFG) used to analyze
basic blocks and edges.

dex2jar [1] dex2jar converts .dex into .jar.

(a) An original Android app (APKO). (b) The Android app (APKP).

(c) The Android app (APKF).

Figure 4: (a) An original Android app (APKO), (b) the Android app (APKP), which is the original
app obfuscated by R8’s identifier renaming, and (c) the Android app (APKF), which is the original app
obfuscated by Obfuscapk’s renaming category.

Table 5: The analysis results of the original app (APKO-1) and its optimized apps by R8 or ReDex.
(Original app: tk.radioactivemineral.metronome 5.apk)

APK
size

.dex
size

Res
size

of
classes

of
methods

of
fields

of
nodes
(CG)

of
edges
(CG)

of basic
blocks
(CFG)

of
edges
(CFG)

Average
size of

methods
Executable

APKO-1 1,710,352 3,205,844 234,152 3,289 31,264 14,430 28,814 48,190 57,000 52,027 77.21 O
APKP-1 640,069 498,412 190,425 554 5,289 3,362 4,936 7,820 10,979 11,845 55.54 O
APKRO-1 1,665,665 3,160,116 234,152 3,204 29,863 14,428 27,594 47,593 53,369 45,480 54.86 O
APKRP-1 632,719 487,204 190,425 532 5,162 3,361 4,828 7,761 10,186 10,315 51.19 O

app. The last row in Table 5 explains the status of whether or not the Android app is executable.
R8’s code shrinking significantly decreased the number of unused classes and methods, the number

of nodes and edges in a call graph, the number of basic blocks and edges in a control-flow graph, and
the size of .dex. Additionally, the resource shrinking significantly decreased the size of resources by
removing unused resources. Compared with the results by R8, the improvement of APKRO-1 optimized

10

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

Table 6: The analysis results of the original app (APKO-1) and its optimized and/or obfuscated apps.
(Original app: tk.radioactivemineral.metronome 5.apk)

APK
size

.dex
size

Res
size

of
classes

of
methods

of
fields

of
nodes
(CG)

of
edges
(CG)

of basic
blocks
(CFG)

of
edges
(CFG)

Average
size of

methods
Executable

APKO-1 1,710,352 3,205,844 234,152 3,289 31,264 14,430 28,814 48,190 57,000 52,027 77.21 O
APKP-1 3,831,684 12,003,476 275,083 3,289 64,019 14,430 45,195 67,753 832,968 757,798 175.10 O
APKRO-1 2,015,794 4,429,520 275,083 3,289 62,,692 14,174 43,917 67,749 95,693 58,023 56,97 X
APKRP-1 2,274,768 5,463,804 275,083 3,204 62,628 14,430 44,300 65,578 91,563 51,872 54.33 O

by ReDex is not dramatic. Finally, APKRP-1 is the Android app obtained after ReDex optimized APKP-1,
which slightly decreased all related features in APKP-1.

The Android apps in Table 6 are APKF -1, APKPF -1, and APKRF -1. APKF -1 is obtained by applying
the code category of Obfuscapk with all options to APKO-1. APKPF -1 is obtained by optimizing APKF -
1 by R8. APKRF -1 is obtained by optimizing APKF -1 by ReDex. Among Obfuscapk’s code category
options, CallIndirection and MethodOverload increased the number of nodes and edges in CG by
increasing the number of methods. The ArithmeticBranch and Goto options increased the number
of basic blocks and edges in CFG by inserting meaningless operators and branches. These options for
obfuscation and the Nop option increased the size of .dex. For APKPF -1, R8 significantly decreased the
number of nodes in CG and the size of .dex. For APKRF -1, ReDex significantly decreased the number
of basic blocks and edges in CFG. Obfuscapk’s code category options that impact the number of basic
blocks and edges in CFG are ArithmeticBranch, Goto, CallIndirection, MethodOverload, and
Nop. ReDex removes a lot of dummy code added by ArithmeticBranch, Goto, and Nop, and partially
eliminates partially the methods added by CallIndirection and MethodOverload.

Tables 7-8 show the experimental results of Android apps optimized or obfuscated based on “it.li-
nuxday.torino 1.apk”, whereas, Tables 9-10 present the experimental results of Android apps opti-
mized or obfuscated based on “eu.veldsoft.ithaka.board.game 5.apk.” Our analysis shows that
these results are similar to the results in Tables 56.

Table 7: The analysis results of the original app (APKO-2) and its optimized apps by R8 or ReDex.
(Original app: it.linuxday.torino 1.apk)

APK
size

.dex
size

Res
size

of
classes

of
methods

of
fields

of
nodes
(CG)

of
edges
(CG)

of basic
blocks
(CFG)

of
edges
(CFG)

Average
size of

methods
Executable

APKO-2 1,603,967 2.524.824 636 1,658 17,392 7,612 15,905 25,065 31,730 32,165 74.38 O
APKP-2 1,149,824 872,764 605,379 993 9,843 4,122 9,346 15,892 20,689 22,836 52.72 O
APKRO-2 1,534,988 1,752,364 635,574 1,584 16,425 7,609 15,126 24,681 29,715 27,918 51.02 O
APKRP-2 1,132,953 837,296 605,379 944 9,299 4,121 8,893 15,780 19,248 19,975 49.19 O

Table 8: The analysis results of the original app (APKO-2) and its optimized and/or obfuscated apps.
(Original app: it.linuxday.torino 1.apk)

APK
size

.dex
size

Res
size

of
classes

of
methods

of
fields

of
nodes
(CG)

of
edges
(CG)

of basic
blocks
(CFG)

of
edges
(CFG)

Average
size of

methods
Executable

APKO-2 1,603,967 2.524.824 636 1,658 17,392 7,612 15,905 25,065 31,730 32,165 74.38 O
APKF -2 3,544,401 9,785,732 688,141 1,658 64,038 7,612 39,217 52,783 589,235 492,560 222.13 O
APKPF -2 2,093,434 3,801,988 688,141 1,658 63,090 7,510 38,302 52,792 83,767 38,190 55.02 X
APKRF -2 2,321,373 4,560,716 688,141 1,584 63,093 7,609 38,235 52,263 76,440 27,964 52.49 O

11

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

Table 9: The analysis results of the original app (APKO-3) and its optimized apps by R8 or ReDex.
(Original app: eu.veldsoft.ithaka.board.game 5.apk)

APK
size

.dex
size

Res
size

of
classes

of
methods

of
fields

of
nodes
(CG)

of
edges
(CG)

of basic
blocks
(CFG)

of
edges
(CFG)

Average
size of

methods
Executable

APKO-3 2,384,201 1,431,572 1,912,646 1,156 11,101 2,935 10,126 14,600 18,821 18,138 81.89 O
APKP-3 690,489 25,656 673,606 33 237 71 236 356 468 596 47.26 O
APKRO-3 2,342,769 1,062,464 1,912,646 1,098 10,502 2,932 9,669 14,254 17,652 15,711 46.97 O
APKRP-3 690,113 24,408 673,606 33 237 71 236 354 404 504 44.45 O

Table 10: The analysis results of the original app (APKO-3) and its optimized and/or obfuscated apps.
(Original app: eu.veldsoft.ithaka.board.game 5.apk)

APK
size

.dex
size

Res
size

of
classes

of
methods

of
fields

of
nodes
(CG)

of
edges
(CG)

of basic
blocks
(CFG)

of
edges
(CFG)

Average
size of

methods
Executable

APKO-3 2,384,201 1,431,572 1,912,646 1,156 11,101 2,935 10,126 14,600 18,821 18,138 81.89 O
APKF -3 3,830,524 7,404,280 1,912,894 1,156 52,656 2,935 25,194 32,758 383,193 296,773 187.74 O
APKPF -3 2,726,662 3,327,684 1,912,894 1,156 52,077 2,929 24,619 32,712 63,198 20,227 47.33 X
APKRF -3 2,975,136 3,585,440 1,912,894 1,098 52,065 2,932 24,522 32,261 59,238 15,729 45.86 O

7 Evaluation of DeGuard

To evaluate DeGuard’s deobfuscation performance, we experimented with Android apps APKP-1, APKP-
2, and APKP-3, which were obfuscated by the R8 compiler’s renaming process. Table 11 shows the
deobfuscation success rate and the ratio of correctly predicted libraries among the predicted libraries
when DeGuard deobfuscated symbols of the Android apps. As shown in Table 11, DeGuard produced
a good success rate in deobfuscating and predicting symbols. The renamed symbols (or renamed app
element names) in libraries were correctly predicted over 94%. The Android support library, such as
the ‘android.support.v4’ package, is mainly predicted correctly, however, the symbols in the user-
defined classes and methods within user-defined packages were not predicted correctly. The ratio of
correctly predicted libraries to mispredicted libraries is proportional to the deobfuscation success rate
shown in Table 11. Deobfuscation success rate represents the ratio of deobfuscating names of packages,
classes, methods, constants, and variables obfuscated to their original names. The ratio of correctly
predicted libraries is the ratio of correctly predicted libraries to the Android app’s whole library.

Table 11: DeGuard’s deobfuscation success rate and the ratio of correctly predicted libraries.

APK Deobfuscation success rate
Ratio of correctoly predicted

libraries
APKP-1 81.33% 97.23%
APKP-2 74.67% 94.57%
APKP-3 77.48% 95.67%
(Deobfuscation success rate: Percent of correctly recovered obfuscated
element names)

8 Conclusion

This paper analyzed the performance of widely used tools for obfuscating, deobfuscating, and/or op-
timizing Android apps. We experimented with R8 and ReDex for optimization tools, DeGuard for a
deobfuscation tool, and R8 and Obfuscapk for an obfuscation tool. R8 is a tool for both optimization and

12

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

obfuscation. Our experiment with applying R8 to Android apps (APKP and APKF) showed significant
decreases in all aspects, including the number of classes, methods, and resources. ReDex also showed
decreases in all aspects but showed lower decreases than R8. APKP was installed on AVD successfully
because it was optimized and obfuscated by R8, however, APKPF was not installed on AVD successfully
because an error occurred in converting .dex when applying R8 to APKF . On the other hand, APKRO

and APKRF , obtained after ReDex optimized APKO and APKF , were executed successfully on AVD.
Lastly, DeGuard deobfuscated 77.83% of the symbols renamed of APKP on average. The accuracy is
competitive to the performance (79.1%) of the existing work for DeGuard.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foun-
dation of Korea(NRF) funded by the Ministry of Science and ICT (no. 2018R1A2B2004830) and the
MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center)
support program(IITP-2020-2015-0-00363) supervised by the IITP(Institute for Information & Commu-
nications Technology Planning & Evaluation).

References

[1] dex2jar. https://github.com/pxb1988/dex2jar [Online; accessed on Januay 20, 2021].
[2] F-Droid. https://f-droid.org/ [Online; accessed on January 20, 2021].
[3] Java-deobfuscator. https://github.com/java-deobfuscator/deobfuscator [Online; accessed on

Januay 20, 2021].
[4] Simplify – Generic Android Deobfuscator. https://github.com/CalebFenton/simplify [Online;

accessed on January 20, 2021].
[5] S. Aonzo, G. C. Georgiu, L. Verderame, and A. Merlo. Obfuscapk: An open-source black-box obfuscation

tool for android apps. SoftwareX, 11:100403, January-June 2020.
[6] R. Baumann, M. Protsenko, and T. Müller. Anti-proguard: Towards automated deobfuscation of android

apps. In Proc. of the 4th Workshop on Security in Highly Connected IT Systems (SHCIS’17), Neuchâtel,
Switzerland, pages 7–12. ACM, June 2017.

[7] B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev. Statistical deobfuscation of android applications. In
Proc. of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS’16), Vienna,
Austria, pages 343–355. ACM, October 2016.

[8] C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfuscation-tools for software
protection. IEEE Transactions on software engineering, 28(8):735–746, 2002.

[9] A. Desnos, G. Gueguen, and S. Bachmann. Androguard. https://androguard.readthedocs.io/en/l
atest/ [Online; accessed on Januay 20, 2021].

[10] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang, and K. Zhang. Understanding
android obfuscation techniques: A large-scale investigation in the wild. In Proc. of the 14th International
Conference on Security and Privacy in Communication Systems (SecureComm’18), Singapore, Singapore,
pages 172–192. Springer, August 2018.

[11] F. engineering. Optimizing Android bytecode with ReDex. https://engineering.fb.com/2015/10/0
1/android/optimizing-android-bytecode-with-redex/ [Online; accessed on January 20, 2021].

[12] F. engineering. Redex - An Android Bytecode Optimizer. https://fbredex.com/ [Online; accessed on
January 20, 2021].

[13] F. engineering. ReDex – Docker Container Deployments. https://fbredex.com/docs/docker [Online;
accessed on January 20, 2021].

13

https://github.com/pxb1988/dex2jar
https://f-droid.org/
https://github.com/java-deobfuscator/deobfuscator
https://github.com/CalebFenton/simplify
https://androguard.readthedocs.io/en/latest/
https://androguard.readthedocs.io/en/latest/
https://engineering.fb.com/2015/10/01/android/optimizing-android-bytecode-with-redex/
https://engineering.fb.com/2015/10/01/android/optimizing-android-bytecode-with-redex/
https://fbredex.com/
https://fbredex.com/docs/docker

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

[14] F. engineering. Open-sourcing ReDex: Making Android apps smaller and faster, 2016. https://engineer
ing.fb.com/2016/04/12/android/open-sourcing-redex-making-android-apps-smaller-an

d-faster/ [Online; accessed on Januay 20, 2021].
[15] Google. Android Studio – Android Gradle plugin release notes. https://developer.android.com/st

udio/releases/gradle-plugin#3-4-0 [Online; accessed on January 20, 2021].
[16] Google. D8 dexer and R8 shrinker. https://r8.googlesource.com/r8 [Online; accessed on January

20, 2021].
[17] Google. Git repositories on android. https://android.googlesource.com/platform/dalvik/+/092

39e3/dexdump [Online; accessed on Januay 20, 2021].
[18] Google. Shrink, obfuscate, and optimize your app. https://developer.android.com/studio/build

/shrink-code[Online; accessed on January 20, 2021].
[19] J. Kim, I. Kim, C. Min, H. K. Jun, S. H. Lee, W.-T. Kim, and Y. I. Eom. Static dalvik bytecode optimization

for android applications. ETRI Journal, 37(5):1001–1011, 2015.
[20] H. Liu, C. Sun, Z. Su, Y. Jiang, M. Gu, and J. Sun. Stochastic optimization of program obfuscation. In Proc.

of the 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE’17), Buenos Aires,
Argentina, pages 221–231. IEEE, May 2017.

[21] J. Park, H. Kim, Y. Jeong, S.-j. Cho, S. Han, and M. Park. Effects of code obfuscation on android app simi-
larity analysis. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications,
6(4):86–98, December 2015.

[22] P. Software. JEB. https://www.pnfsoftware.com/ [Online; accessed on Januay 20, 2021].
[23] TutorialsPoint. Compiler Design - Code Optimization. https://www.tutorialspoint.com/compile

r design/compiler design code optimization.htm [Online; accessed on January 20, 2021].
[24] S. K. Udupa, S. K. Debray, and M. Madou. Deobfuscation: Reverse engineering obfuscated code. In Proc.

of the 12th Working Conference on Reverse Engineering (WCRE’05), Pittsburgh, Pennsylvania, USA, pages
45–54. IEEE, November 2005.

[25] D. Wermke, N. Huaman, Y. Acar, B. Reaves, P. Traynor, and S. Fahl. A large scale investigation of obfusca-
tion use in google play. In Proc. of the 34th Annual Computer Security Applications Conference (ACSAC’18),
San Juan, Puerto Rico, USA, pages 222–235. ACM, December 2018.

[26] Wikipedia. Program optimization. https://en.wikipedia.org/wiki/Program optimization

[Online; accessed on January 20, 2021].
[27] B. Yadegari. Automatic deobfuscation and reverse engineering of obfuscated code. PhD thesis, The Univer-

sity of Arizona, 2016.
[28] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. A generic approach to automatic deobfuscation

of executable code. In Proc. of the 2015 IEEE Symposium on Security and Privacy (S&P’15), San Jose,
California, USA, pages 674–691. IEEE, May 2015.

[29] G. You, , S.-j. Cho, H. Han, and K. Suh. De-obfuscating android apps obfuscated by proguard and obfuscapk.
In Proc. of the 6th International Conference on Next Generation Computing (ICNGC’20), Busan, Republic
of Korea. Korean Institute of Next Generation Computing, December 2020.

[30] G. You, , S.-j. Cho, H. Han, and K. Suh. Performance comparison between r8 compiler and redex in code op-
timization of android apps. In The 6th International Conference on Next Generation Computing (ICNGC’20),
Busan, Republic of Korea. Korean Institute of Next Generation Computing, December 2020.

[31] G. You, G. Kim, J. Park, S.-j. Cho, and M. Park. Reversing obfuscated control flow structures in android
apps using redex optimizer. In Proc. of the 9th International Conference on Smart Media and Applications
(SMA’20), Jeju Island, Republic of Korea. ACM, September 2020.

——————————————————————————

14

https://engineering.fb.com/2016/04/12/android/open-sourcing-redex-making-android-apps-smaller-and-faster/
https://engineering.fb.com/2016/04/12/android/open-sourcing-redex-making-android-apps-smaller-and-faster/
https://engineering.fb.com/2016/04/12/android/open-sourcing-redex-making-android-apps-smaller-and-faster/
https://developer.android.com/studio/releases/gradle-plugin#3-4-0
https://developer.android.com/studio/releases/gradle-plugin#3-4-0
https://r8.googlesource.com/r8
https://android.googlesource.com/platform/dalvik/+/09239e3/dexdump
https://android.googlesource.com/platform/dalvik/+/09239e3/dexdump
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
https://www.pnfsoftware.com/
https://www.tutorialspoint.com/compiler_design/compiler_design_code_optimization.htm
https://www.tutorialspoint.com/compiler_design/compiler_design_code_optimization.htm
https://en.wikipedia.org/wiki/Program_optimization

A Comparative Study on Optimization, Obfuscation,
and Deobfuscation Tools in Android You, Kim, Cho and Han

Author Biography

Geunha You received a B.E. degree in Dept. of Software Science from Dankook
University, South Korea, in 2020. He is currently a master’s student in Dept. of Com-
puter Science and Engineering from Dankook University, South Korea. His current
research interests include computer security, mobile security, reverse engineering and
embedded system.

Gyoosik Kim received a BE in Applied Computer Engineering, and an ME in Com-
puter Science and Engineering from Dankook University, South Korea in 2016, and
2018, respectively. He is currently a research engineer in infra R&D Lab at Ko-
rea Telecommunication. His current research interests include computer security and
software intellectual property protection.

Seong-je Cho the B.E., M.E. and Ph.D. degrees in Computer Engineering from Seoul
National University in 1989, 1991 and 1996, respectively. In 1997, he joined the fac-
ulty of Dankook University, Korea, where he is currently a Professor in Department of
Computer Science & Engineering (Graduate school) and Department of Software Sci-
ence (Undergraduate school). He was a visiting research professor at Department of
EECS, University of California, Irvine, USA in 2001, and at Department of Electrical
and Computer Engineering, University of Cincinnati, USA in 2009 respectively. His

current research interests include computer security, mobile app security, operating systems and software
intellectual property protection.

Hyoil Han is an Associate Professor in the School of Information Technology at Illi-
nois State University, USA. She obtained her BS and MS degrees in Electrical En-
gineering from Korea University and Korea Advanced Institute of Science and Tech-
nology. She worked for Samsung Electronics and Korea Telecom before obtaining
a Ph.D. in Computer Science and Engineering from the University of Texas at Ar-
lington in 2002. Her research interests include machine learning, natural language
processing, big data management, and applying AI to security.

15

	Introduction
	Background
	The R8 compiler
	The ReDex optimizer
	Obfuscapk
	DeGuard (de-obfuscator)

	Related Work
	Methods and Analysis tools
	Evaluation of R8 and Obfuscapk
	Evaluation of R8 and ReDex
	Evaluation of DeGuard
	Conclusion

