
Application of Deep Learning on the Characterization of Tor
Traffic using Time based Features

Clayton Johnson1, Bishal Khadka1, Ethan Ruiz1,
James Halladay1, Tenzin Doleck2, and Ram Basnet1*

1Colorado Mesa University, Grand Junction, Colorado, USA
{cpjohnson, bkhadka2, elruiz, jehalladay}@mavs.coloradomesa.edu, rbasnet@coloradomesa.edu

2Simon Fraser University, Burnaby, CA
tdoleck@sfu.ca

Received: August 17, 2020; Accepted: February 11, 2021; Published: February 28, 2021

Abstract

The Onion Router (Tor) is a popular network, widely used by both political dissidents and cyber
criminals alike. Tor attempts to circumvent government censorship and surveillance of individuals
by keeping secret a message’s sender/receiver and content. This work compares the performance
of various traditional machine learning algorithms (e.g. Random Forest, Decision Tree, k-Nearest
Neighbor) and Deep Neural Networks on the ISCXTor2016 time-based dataset in detecting Tor traf-
fic. The research examines two scenarios: the goal of Scenario A is to detect Tor traffic while
Scenario B’s goal is to determine the type of Tor traffic as one of eight categories. The algorithms
trained on Scenario A demonstrate high performance, with classification accuracies > 99% in most
cases. In contrast, Scenario B yielded a wider range of classification accuracies (40-82%); Random
Forest and Decision Tree algorithms demonstrate performance superior to k-Nearest Neighbors and
Deep Neural Networks.

Keywords: Tor traffic, deep learning, machine learning, traffic identification, encrypted traffic

1 Introduction

The internet has revolutionized the world and no industry has been untouched by the changes brought
forth by the technology. Two key technologies the internet is built upon are Internet Protocol (IP) and
Transmission Control Protocol (TCP) together which allow for reliable high-speed communication be-
tween connected devices. IP is a network layer protocol used to deliver packets to client devices and
uses a unique address, known as an IP Address, to indicate the destination of incoming packets. TCP
sends packets to devices in a predictable and reliable manner through establishing connections that ver-
ify whether sent packets arrive at their destination, resending the packets if they do not arrive. As the
Internet has provided many benefits to the mass around the world, the same has also been constantly
exploited by cybercriminals [22][23][13].

In the emerging era of the Internet, privacy has become a chief concern among its users. Many
professionals who are critical to governance such as journalists, activists, and detectives can potentially
have their work tampered with, their investigations suppressed, and operations interrupted if their privacy
is compromised. The Onion Router (Tor) was released in 2004 in order to address the many privacy
concerns that non-technical day-to-day internet users previously had little control over [34]. According

Journal of Internet Services and Information Security (JISIS), volume: 11, number: 1 (February 2021), pp. 44-63
DOI:10.22667/JISIS.2021.02.28.044

*Corresponding author: Department of Computer Science and Engineering, Colorado Mesa University, 1100 North
Aveneue, Grand Junction, CO 81501 USA. Tel: +1 970 248 1682 Web: https://rambasnet.github.io

44

https://rambasnet.github.io

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

Figure 1: Tor Network and Traffic Flow

to the Tor Project [10], Tor implements the onion routing scheme providing maximum privacy to the
communicating parties over the Internet. The encrypted traffic is routed via many servers (analogous to
onion layers) maintaining the perfect forward secrecy and privacy [34][10].

Tor is a circuit-based low-latency service that can anonymize traffic over applications that use TCP
to communicate [34]. Tor lets users access websites without revealing their logical or physical locations
to those sites or outside observers [10]. Tor has various relays where sensitive traffic enters from the
entry node and the traffic gets encrypted in the internal nodes or diverse relays in numerous Tor servers
and gets out of the exit node. In this way, it is burdensome for third-parties to know where the traffic was
coming from and what it is requesting for thus maintaining anonymity as well as privacy.

With the advent of Tor Browser, Tor has become more accessible to regular internet users. Tor
Browser has become instrumental in providing Internet users with the highest level of anonymity and
unbreakable encryption in order to access critical resources, social media, and websites that may be
typically censored by nation states as witnessed during the Arab Spring in late 2010 [34][10].

Tor Browser works by having a 3-layer proxy. This allows for safe and anonymous data traffic
transmission. Tor browser connects randomly to a publicly listed entry node from the directory server,
bounces that traffic through a randomly selected middle relay, then it finally outputs the traffic through
the final exit node. Once the connection to the destination host is established, the secure and private
circuit is formed and the communication traffic flows back and forth using the same circuit during the
established session. Exit node doesn’t use the Tor encryption for the final segment of the connection to
the destination host, leaving it up to the host or the service provider. This is usually referred to as Onion
Routing and is the main functionality of Tor Browser. Onion routing is implemented by encryption in
each layer as well as at the application layer which is part of the communication (TCP/IP) protocol stack
[32]. Each node only knows the previous and the next node providing a local view of the complete
connection. Node is also referred to as the router. Figure 1 depicts a typical Tor network and traffic relay.

For our research, we used various traditional machine learning algorithms and deep-learning tech-
niques on time-based features to identify Tor traffic. More specifically, we wanted to classify Tor traffic
from regular internet traffic. The focus of our experiments has been split into two scenarios. The ex-
periments on scenario A demonstrate that time-based features can be effective identifiers for a variety of
machine-learning algorithms. The results using deep-learning techniques match or exceed the accuracy
of other techniques. Scenario B’s results demonstrate how Tor traffic can still be vulnerable to certain
introspection techniques. Despite the traffic being encrypted, the experiments demonstrate that it is pos-
sible to classify the content of the traffic based on inherent differences between the types of contents
being delivered.

45

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

This paper reveals the shortcomings of the Tor protocol when it comes to hiding Tor traffic. We also
compare the performance of deep-learning techniques to other traditional machine-learning techniques
that have previously been applied to this problem. Differentiating Tor from non-Tor traffic is shown to
be a solved issue. Further advances toward the classification of the content of Tor traffic are required.

2 Related Work

Lashkari et al. [26] presented the ISCXTor2016 dataset and reported the performance of multiple ma-
chine learning algorithms on the binary classification task of Tor versus non-Tor packet data and multi-
classification task determining the type of data (audio-streaming, browsing, chat, file transfer, mail, peer-
to-peer, video-streaming, voice-over-ip) within Tor packets. The work reported that ZeroR, C4.5 decision
tree, and k-Nearest Neighbors (kNN) models performs as high as 0.99 precision and recall for the bi-
nary classification problem of classifying Tor from non-Tor traffic. Their multi-class classification using
Random Forest (RF), Decision tree (C4.5), and k-Nearest Neighbor (kNN) learning algorithms yields a
wider range of performance metrics from 0.60−0.84 precision and recall. Their primary contribution is
that they generated and labelled the dataset dubbed ISCXTor2016 making it publicly available.

Rao et al. [36] presented an improved clustering algorithm called the Gravitational Clustering Algo-
rithm (GCA) to identify Tor packets with high accuracy. The dataset contains packet data collected from
ExperimenTor, a testbed for application testing on an isolated Tor network [14]. This work reported an
average accuracy from GCA on the dataset of 80%, outperforming K-means, Expectation-Maximization
(EM), and Density-based Spatial Cluster of Applications with Noise (BDSCAN). Additionally, with the
introduction of a new feature, packet length distribution, GCA increases its average accuracy by almost
10%. The main contributions of [36] are the proposal of GCA and this new feature.

Soleimani et al. [38] also reported very high-performing models that accurately identify Tor packets
within the first 10-50 packets using only a few statistical features. Using Adaboost, RF, C4.5, and a Sup-
port Vector Machine (SVM) on a dataset containing Tor traffic from Obfs3, Obfs4, and ScrambleSuit Tor
pluggable transports and background traffic, these models perform nearly perfect due to the predictable
nature of the set-up sequence for Tor packets. The features that yielded highest performance are total
flow volume, mean packet length, and standard deviation of packet length.

Aminuddin et al. [12] presented a survey of the applications of machine learning in the identification
and classification of Tor packets from 2012 to 2018. They report that most of the methods used in the
field utilize flow and packet features, while circuit properties are used by relatively few research. Almost
all previous research used supervised models, whereas only a few used semi-supervised or unsupervised
models. The most-common methods in the field include C4.5, SVM, Naive Bayes, Bayesian Networks,
and RF. Few of the surveyed works (35%) used real-time methods or are tested in real-time. Fewer than
40% of the datasets used in the surveyed works are public and just over half of the methods used are
compatible with Tor [12].

Zhen Ling et al. [27] integrated a Tor exit router with an Intrusion Detection System (IDS) to detect
and classify malicious traffic routed through the exit router. The implementation, TorWard, then redirects
outgoing Tor traffic back into the Tor network in order to shield users from legal trouble. It was noted that
this could have detrimental effects on the performance of the Tor network. Analyzing the data provided
by TorWard, the team finds that up to 10% of Tor traffic triggered IDS alerts, discovering more than 200
different types of malware. Half of all Tor traffic was identified as Transport Layer Security (TLS) traffic,
which may be indicative of the growing popularity of Tor plugins and browsers.

Abdelberi Chaabane et al. [20] provided an in-depth analysis of the Tor Network through several
exit nodes using Deep Packet Inspection (DPI) technique to classify the traffic exchanged through the
nodes. The team employed cautionary privacy measures to restrict data analysis to happen on the fly with

46

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

no storage for exit logging, whereas, for entrance logging, the IP address connecting to the Tor node is
recorded. The analysis found that a large portion of Tor traffic is Peer-to-Peer (P2P) content and went
further to separate the traffic into categories based on which protocol is being used to deliver the content
over Tor.

Youting Liu et al. [28] used Intermittent Traffic Pattern (ITP) related features to detect video traffic
over encrypted web traffic. The work proposed using ITP features along with the kNN to differentiate
video from non-video traffic. A variety of unstandardized protocols, employed to deliver video flows,
posed a challenge to the team’s experiments. Due to traffic encryption, traditional methods such as Deep
Packet Inspection (DPI) are not available to identify video-based traffic. However, intermittent traffic
patterns are caused by fragmented transmissions, which are common features of many different video
streaming protocols. ITP features allow systems to identify video traffic regardless of whether the traffic
has been encrypted.

Kota Abe et al. [11] proposed a new method for launching a fingerprinting attack to analyze Tor
anonymity using a stacked denoising autoencoder (SDAE). They used the uWaterloo dataset that contains
100 monitored websites and 9,000 unmonitored sites. The method for testing was done by first having an
attacker collect training data for machine learning. Then the attacker accesses websites he or she wants
to monitor through Tor fingerprinting and then captures the traffic data multiple times. The attacker also
collects traffic data from many other websites. The attacker then extracts the Tor cells from the data and
it is then used as an input for the autoencoder. They then sort out the data to feed as an input into the
input vector for model training. The input vector took a simple input as 1, -1, or 0 and the results show
88% accuracy.

Park et al. [31] covered the different protocols that are used in peer-to-peer application traffic when
using Tor browser. The team identified different types of protocols used by applications and Tor traffic
usage. This paper used what is called a Traffic Clustering Scheme which refers to traffic workload char-
acteristics rather than protocol decomposition. They also use an Application Breakdown Scheme which
tries to identify the application being used when sending traffic. The traffic classification can classify
various types of traffic that are generated by a single application. The LCS-based (Longest Common
Subsequence) Application Signature Extraction (LASER) [32] algorithm requires sanitized packet col-
lection as its input data. The sanitized packets refer to packets belonging to the target application only.
The collecting agent divides the sanitized packets depending on each flow and stores them in a separate
packer dump file. The method for testing was done using the proposed classification scheme. They
chose an application called Fileguri which provides web browsing, searching, downloading, etc. The
classification accuracy results on the downloading portion were superior (70%−90%) compared to web
browsing (12%−14%).

Overall, the literature clearly indicates there has been substantial effort to detect and classify Tor traf-
fic across many datasets. As discussed in [12], there is a lack of a standardization for Tor traffic datasets
and a wide array of machine learning algorithms implemented with relatively high performance. Despite
this, there is little to no published work on the applications of deep learning within the context of detect-
ing and classifying Tor network traffic. Additionally, few works attempt to identify the characteristics
of Tor traffic that allow for such high detection rates. This work serves to investigate the applications
of deep learning and the presented features within the context of detecting and classifying Tor network
traffic.

3 Our Approach

This section contains multiple subsections with the goal of thoroughly exploring all the steps taken to
gather data, train models, and evaluate the performance of various traditional machine-learning and deep-

47

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

Figure 2: Experimental Workflow

learning models. Experimental workflow is presented first, followed by sections examining the dataset,
discussing the Python modules, and the metrics used to present the results.

3.1 Experimental Workflow

The ISCXTor2016 [26] dataset contains time-based traffic features from real-world Tor traffic collected
through the Whonix Linux operating system. Whonix is based on Kicksecure, another security-driven
OS, that provides an isolated workstation and gateway for Tor usage by default [7]. Figure 2 depicts our
experimental workflow for binary and multi-class classification experiments to train and test machine
learning models.

The outgoing Tor network traffic from the Whonix workstation is sniffed using both Wireshark and
tcpdump. This packet sniffing process generates PCAP (packet capture) files that can be analyzed using a
variety of methods. In this process, Lashkari et al. [26] analyzed the PCAP files using the ISCXFlowMe-
ter (now CICFlowMeter) program from the University of New Brunswick.

This network traffic analyzer program generates traffic flows and calculates more than 80 statistical
features using the provided PCAPs [5]. A flow is defined as a series of packets that contain the same
source/destination IPs, source/destination ports, and protocol. Due to conflicts with Tor’s crypto relay
protocols and security design (i.e. preventing end-to-end tagging attacks and congestion issues), Tor
does not support UDP and will not for the foreseeable future [8]. As such, all the analyzed flows are
TCP. Once the flows are generated and these additional features are calculated, the data is separated into
training and testing datasets.

Stratified 10-fold cross validation is used to train the models on the given dataset. The stratification
of the folds ensures the proportionality of the target classifications in each fold is representative of the
overall dataset. This method was chosen over a validation dataset due to the low frequency of some target
classifications in Scenario B, allowing the team to better use all the data available for training and testing.

48

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

Table 1: Data Composition of Scenario A
File Tor NonTor Total
10s 8,044 59,790 67,834
15s 3,314 18,758 22,072
30s 1,771 14,651 16,422
60s 914 15,515 16,429
120s 470 10,782 11,252

Generally, the usage of 10 stratified folds appears to minimize the variance-bias problem compared to
other k-values or leave-one-out methods [18][25]. While every model is only trained on nine folds
and tested with the remaining tenth, the reported accuracy of each learning algorithm is the average
performance across all ten testing folds. Additionally, all confusion matrices and receiver operating
characteristic (ROC) curves are derived from the final fold models. This is because the learning model
objects were explicitly recreated and initialized for every fold to ensure the models were not training on
all the training data.

3.2 Dataset

A proper data set is pivotal in the field of data science. Traditional data (categorical, numerical) or big
data (categorical, numerical, digital audio/video signals, etc.) are labeled, scrubbed or cleansed, dealt
with missing values, and balanced in order to obtain the data set in which a precise prediction can be
made. Using those obtained data sets, data scientists will be able to obtain the highest predictive accuracy.

In this experiment, we use ISCXTor2016 [26] dataset. The dataset is plentiful and clean with very few
missing values or non-numeric values such as infinity and nan. The ISCXTor2016 dataset comprises two
scenarios: A and B that helped us experiment with binary and multi-class classification of Tor vs non-Tor
traffic as well as various categories of applications. The ISCXTor2016 dataset is publicly available from
the University of New Brunswick-Canadian Institute for Cybersecurity website [5].

In Scenario A, each sample is labelled as either Tor or nonTor traffic. In total, Scenario A contains five
datasets, each extracted using variable timeout values (10s, 15s, 30s, 60s, and 120s). The composition of
each dataset is provided in Table 1. Scenario A dataset is used as a binary-class classification problem.
Table 1 provides the number of samples that are presented in various files where each file represents the
data flow for various variable timeouts in seconds.

As seen in Table 1, Scenario A is imbalanced with the minority class composing < 5% of the data
in the extreme case. Because of this imbalance and as seen in the results, even a ZeroR solution would
achieve 95% accuracy and it’s likely that any model slightly more complex than ZeroR would perform
even higher. With the goal of presenting performance metrics with respect to a low-performing baseline
model, we created a separate dataset by downsampling Scenario A to balance the Tor and nonTor classes.
However, consequently, the balanced dataset is much smaller than the original dataset, allowing for bias
to be introduced. Table 2 below presents the dataset composition of the balanced Scenario A dataset.

All the data traffic presented (see Table 3) in Scenario B is Tor, however the labels indicate the actual
type of traffic for each sample. The types of Tor traffic are split into eight categories: Audio-Streaming,
Browsing, Chat, E-mail, File-Transfer (FTP), Peer-to-Peer (P2P), Video-Streaming, and Voice-over-IP
(VoIP). Similar to Scenario A, Scenario B contains five datasets, each extracted using variable timeout
values (10s, 15s, 30s, 60s, and 120s). Overall, the ISCXTor2016 dataset contains 10 original data files,
with five additional files being created for Balanced Scenario A.

49

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

Table 2: Data Composition for Balanced Scenario A
File Tor NonTor Total
10s 8,044 8,044 16,088
15s 3,314 3,314 6,628
30s 1,771 1,771 3,542
60s 914 914 1,828
120s 470 470 940

Table 3: Data Composition for Scenario B dataset
File FTP Browsing Video Audio VoIP Chat P2P Mail Total
10s 864 1,604 874 721 2,291 323 1,085 282 8,044
15s 480 227 598 46 1,509 243 71 186 3,360
30s 246 133 345 32 758 147 38 104 1,803
60s 125 73 177 22 381 84 20 54 936
120s 63 41 90 16 193 45 10 28 486

While the ISCXTor2016 dataset is originally in the attribute-relation file format (ARFF), it was con-
verted to comma-separated values (CSV) for ease of use outside of the Weka [6] framework. This
conversion does not change the data. There are 23 features derived and used from the CICFlowMeter
program such as forward and backward inter-packet arrival times, flow arrival times, time active and
idle, bytes and packets per second, with statistical features (std, min, max, and mean), and the duration
of a flow. While CICFlowMeter can provide more than 80 features from PCAP data files, this work is
focused on time-based features. Additionally, we are only using the features selected by Lashkari et al.
[26] to decrease noise and the feature-set in the dataset.

3.3 Features

Each of the cleaned dataset contains 79 features; out of which 2 (Destination Port and Protocol) are
treated as categorical using 1-to-n encoding and the rest are all numeric. The original dataset also con-
tains data with best feature selection; we do not use this data in our experiments, however. Some exam-
ples of the numeric features are Timestamp, Flow Duration, SYN Flag Count, Packet Length Min, Packet
Length Max, etc. More details about all the features can be found in [36].

4 Machine Learning Frameworks

All the modules described below were chosen for their accessibility, maintenance, and popularity within
the machine learning and deep learning field.

4.1 Scikit-Learn

Scikit-Learn (sklearn) is an open-source module created to allow for usage of high-level machine learn-
ing algorithms in the Python programming language [33]. Due to its consistent API, combined with the
high-level nature of Python, scikit-learn is extremely accessible for “non-experts” in machine learning.

50

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

1.2

9.5

7.2

2.9

3.3

4.5

0.04

0.330.330.330.33

0.25

0.10

0.12

0.16

softmax

Figure 3: Softmax Function Example

The sklearn classifiers used in this work include the DummyClassifier, RandomForestClassifier, Deci-
sionTreeClassifier, and kNeighborsClassifier. In the original work, Lashkari et al. [26] use Weka [6]
for the classification of the scenarios. The Weka-based classifiers used are ZeroR, C4.5, and k-Nearest
Neighbors algorithms for Scenario A and Random Forest [17], C4.5, and k-Nearest Neighbors algorithms
for Scenario B. Scikit-Learn’s Random Forest classifier implements a soft-voting mechanism instead of
a hard-voting mechanism as described in [4][3]. Additionally, instead of implementing a forest of ID3
trees, sklearn uses a forest of Decision Trees (DT), which implement an optimized version of the CART
algorithm as opposed to C4.5 [3]. Additionally, the ZeroR classifier in Weka is implemented through the
DummyClassifier in sklearn.

4.2 Keras

Keras is a deep learning framework for Python that allows for the implementation of both TensorFlow
and Theano in the backend [2]. While the Keras framework is not as accessible as FastAI, it provides a
high-level API with the goal of streamlining the process from an idea’s conception to implementation.
A Sequential model was used to create a deep neural network with multiple Dense layers in between.
The team finds that the overall dimensions of the neural networks, while affecting the performance of
the model, had a smaller effect than changing the activation functions and optimizers used. For the
hidden layers within the model, the rectified linear unit (ReLU) activation function (equation 2) is used
while the output layer utilizes the softmax activation function (equation 1). Softmax is typically used for
multi-classification problems because the range for the output is between 0 and 1, serving to act as the
likelihood for a given classification [29]. For gradient-based optimization, the model uses Adam due to
its lower computational cost for training, and tolerance for noisy gradients [24].

f (~xi) =
e~xi

∑
n
j=0 e~x j

(1)

f (~x) = max(0,~x) (2)

Figure 3 is an example demonstrating the softmax function implemented in Keras, where the input
vector is on the left-hand side, containing six values. These input values may originate from data or a
layer within the network preceding this layer. The output of the softmax function is on the right-hand
side, showing that the values have been scaled down to the range [0,1]. These values may now be

51

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

interpreted as the likelihood of each classification, as valued by the model. The darker cell is the chosen
classification because it has the highest output value from the softmax function.

While most of the metrics described below are implemented in Keras, generating confusion ma-
trices and receiver operating characteristic (ROC) curve and area-under-curve (AUC) metrics required
additional effort to implement.

4.3 fast.ai

fast.ai is a Python module that implements a high-level API to a PyTorch backend. The goal of fast.ai
is to easily allow for experts in other fields of science, such as virologists or astronomers, to implement
popular deep learning techniques within their respective settings. This framework has seen multiple
popular successes in research and industry [1].

Since the dataset is converted to CSV format, the fast.ai TabularList object is used to import the
data and train a tabular learner model. Due to the extremely high-level nature of fast.ai, there are few
hyperparameters to adjust the model.

5 Performance Metrics

The various metrics used to evaluate the models are described below. Typically, the performance of
the models is measured by accuracy (Acc), which is defined. This definition works for both binary and
multi-classification problems.

Acc =
T P+T N

T P+FP+T N +FN
=

correct predictions
total predictions

(3)

, where TP, TN, FP, FN are the true positives, true negatives, false positives, and false negatives,
respectively. While accuracy is helpful when trying to generally understand how a model is performing,
this metric does not offer any other insights into the performance of a given model. To improve the
general understanding of the model, sensitivity and specificity metrics are used.

Sensitivity (or Recall), ranging from 0−1, is inversely proportional to the number of false negatives
predicted by the model. On the other hand, specificity, ranging from 0− 1, is inversely proportional to
false positives. Precision is another metric commonly used that, similar to specificity, decreases with
increases in false positives.

Sensitivity =
T P

T P+FN
(4)

Speci f icity =
T N

T N +FP
(5)

Precision =
T P

T P+FP
(6)

The F1-score metric uses precision and recall (sensitivity) to evaluate a model. The equation for
F1-score is below.

F1 = 2∗ precision× recall
precision+ recall

(7)

The trade-off between sensitivity and specificity indicates some sort of optimal model performance.
The receiver operating characteristic (ROC) curve shows the trade-off between sensitivity and specificity

52

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

by presenting a curve with the cumulative distribution of sensitivity on the y-axis and cumulative distri-
bution of 1-specificity on the x-axis. From the ROC curve, another metric arises: area under the curve
(AUC), which ranges from 0−1 and represents the area under the ROC curve. Generally, the model with
a ROC curve closest to the top-left corner, or with the maximum AUC, is the most-preferable. Model
selection, however, depends on the problem. These concepts are more clearly illustrated when reporting
the results of Scenario B in the Results section.

Two additional metrics, micro-average and macro-average, are variations on F1-scores displayed on
ROC curves. The micro-average attempts to account for bias brought forth by imbalanced data while the
macro-average calculates the F1-score without any regard to the frequency of a given classification [30].
The equations for these are shown in 8 and 9.

Macro average = 2
(1

n ∑
n
i=1 Pi)(

1
n ∑

n
i=1 Ri)

(f rac1n∑
n
i=1 Pi +

1
n ∑

n
i=1 Ri

(8)

Micro average =
1
n

n

∑
i=1

2PiRi

Pi +Ri
, (9)

, where n is the number of classes, Pi is the precision of a given class, and Ri is the recall of a given
class. In this work, we show both the micro- and macro-average ROC curves. The final technique used to
report the performance of the deep learning models is the confusion matrix, which shows the performance
of a model on test data by showing the predicted classification for a given sample next to the correct
classification [9]. In conjunction with recall and precision, a confusion matrix easily demonstrates the
shortcomings or strengths of a proposed model and workflow, as described in the Results section.

6 Results

In this section we present the results for both Scenario A and Scenario B experiments using our machine
learning classifiers. For Scenario A, the report shows the accuracies for the unbalanced and balanced
datasets. For Scenario B, accuracy, ROC, AUC, and confusion matrix metrics are presented to thoroughly
examine the models’ performance.

6.1 Scenario A

For the unbalanced Scenario A dataset, the models perform within a range of 84− 99+% accuracy,
overall. The highest-performing model is Decision Tree (modified CART algorithm), which maintains an
extremely high accuracy (> 99.9%) over all the data files, excluding the 10s timeout data file. However,
the DT and kNN algorithms both perform with exceptional accuracy. The DNN models appear to match
or nearly match the performance of DT and kNN in all datasets except 10s, however the keras model
suffers from lower performance on the 60s timeout data file. This model also demonstrates a noticeably
higher variance than the others. For all models, except for ZeroR, there is a clear, substantial drop in
performance for the 10s data file. With the unbalanced dataset, ZeroR performs well with very high
(> 95%) accuracy on the 120s data file and a minimum accuracy of 84.99% on the 15s data file. The
models appear to perform slightly better as the timeout value increases. Table 4 presents the classification
Accuracy Metrics from the ZeroR, DT, kNN, keras DNN, and fast.ai DNN models across all five timeout
values and datasets for unbalanced Scenario A, presented with one standard deviation of error from the
mean classification accuracy across ten folds.

Table 5 displays classification Accuracy Metrics from the ZeroR, DT, kNN, keras DNN, and fast.ai
DNN models across all five timeout values and datasets for balanced Scenario A, presented with one

53

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

Table 4: Classification Accuracies on Unbalanced Scenario A
File ZeroR (%) Decision Tree (%) kNN (%) Keras (%) FastAI (%)
0s 88.14 ± 0.01 95.45 ± 0.34 95.14 ± 0.32 88.14 ± 0.01 89.75 ± 1.82
15s 84.99 ± 0.02 99.91 ± 0.06 99.83± 0.10 99.97 ± 0.04 99.32 ± 0.25
30s 89.22 ± 0.02 99.88 ± 0.09 99.87 ± 0.07 99.80 ± 0.42 99.76±0.07
60s 94.44 ± 0.03 99.94 ± 0.05 99.83 ± 0.09 95.50 ± 2.20 99.86±0.05
120s 95.82 ± 0.00 99.88±0.10 99.92±0.11 99.98±0.06 99.93±0.05

Table 5: Classification Accuracies on Balanced Scenario A
File ZeroR (%) Decision Tree (%) kNN (%) Keras (%) FastAI (%)
0s 49.98 ± 0.01 91.27 ± 0.43 91.21±0.57 0.32 80.58±7.87 89.29±0.51
15s 49.94±0.03 99.74±0.23 99.55±0.25 99.88±0.19 98.61±0.54
30s 49.97±0.06 99.60±0.36 99.75±0.21 99.46±0.71 98.89±0.44
60s 49.78±0.12 99.51±0.31 98.96±0.79 94.64±1.64 99.04±0.44
120s 50.00±0.00 99.47±0.90 99.47±0.90 99.36±0.74 99.93±0.05

standard deviation of error from the mean classification accuracy across ten folds. Accuracy results (Ta-
ble 5 for the balanced version of the Scenario A dataset, there are some substantial differences compared
to the same from the unbalanced dataset (Table 4). First, the Keras DNN model has an extremely difficult
time with the 10s dataset. This is seen in the fact that the DNN has much higher standard deviation than
any other model in this experiment. The baseline model maintains an accuracy around 50%, which is
expected since each of the datasets is balanced. Similar to the previous experiment, DT and kNN perform
similarly and the DNNs either match accuracy or underperform. Outside of the performance drop with
the 10s dataset, there doesn’t appear to be a trend of accuracy with the timeout values in this experiment.

6.2 Scenario B

As the timeout values from the dataset increase, there is a near-universal drop in performance for the
models (see Table 6). The only model that does not match this trend is the fast.ai DNN model. In contrast
to the previous Scenario A experiments, there are higher standard deviation values and lower accuracies.
The best-performing model is RF, however DT shows accuracies that are only a few percentage points
lower. Table 6 demonstrates the classification Accuracy Metrics for the RF, DT, kNN, keras DNN,
and fast.ai DNN models across all five timeout values and datasets for Scenario B, presented with one
standard deviation of error from the mean classification accuracy across ten folds.

Table 6: Classification Accuracy Metrics on Scenario B
File ZeroR (%) Decision Tree (%) kNN (%) Keras (%) FastAI (%)
0s 81.99±1.25 77.61±0.87 72.87±1.00 72.61±1.55 40.21±1.85
15s 82.02±1.58 78.36±2.18 71.61±2.06 73.78±1.59 67.44±4.62
30s 80.81±1.97 77.31±2.23 67.50±2.57 71.10±2.93 61.16±12.29
60s 78.22±4.47 74.46±4.77 62.73±4.79 61.97±3.91 60.94±1.61
120s 75.74±3.36 72.66±5.16 59.67±6.26 58.63±6.28 56.84±2.93

54

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

Figure 4: Classification ROC Curves for Scenario B

6.3 ROC Curves

This section will focus on presenting the results from the ROC curves for each dataset. The two types of
ROC curves shown below are the ROC of the classes and ROC of the micro- and macro-averages. The
class-based ROC graphs contain all the ROC curves for all the classes, while the averages-based ROC
graphs show all the averages as discussed in the metrics section. As a recap, the micro-average calculates
F1-scores of a model by accounting for the classification frequency, while the macro-average calculates
the mean F1-score of all the classes, regardless of the class frequency.

6.4 ROC Curves of the Classes

One trend that is immediately noticeable in the ROC of the classes graphs is the downward trend in AUC
for almost all classes as the timeout value increases. While the AUCs for all classifications are > 0.90 for
the 10s dataset, most of these classes’ AUCs decrease to 0.75 for the 120s dataset. However, the models
appear to consistently perform extremely well when classifying for the Audio-Streaming, P2P, and VoIP
classifications. The area under the curve for the VoIP is reported the highest (> 0.99) for all timeout
values. While Audio-Streaming and P2P classifications are the most underrepresented in the datasets,
they appear to show some of the highest performance metrics, with both AUC’s ranging 0.90−1.00. In
sharp contrast, despite the fact that Video-Streaming - which reaches an AUC high of 0.91 and low of
0.68 - is one of the majority classifications in most of the datasets, it is one of the most poorly classified
categories in the dataset. Figure 4 represents various ROC Curves for the Classes across all five datasets
with varying timeout values.

55

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

Figure 5: Micro- and Macro-Average ROC Curves for Scenario B

6.5 ROC of the Micro- and Macro-Averages

The micro-average and macro-average ROC curves decrease with the increase in timeout value. This
result is expected since the micro-average and macro-average both take the recall and precision metrics
for each classification into account, as discussed above. The micro-average’s AUC has a maximum of
0.96 and decreases to 0.89 for the 120s timeout dataset. Starting from a high of 0.94, the macro-average’s
AUC decreases to 0.84; thus, it remains only slightly lower than the micro-average’s AUC result across
all five datasets. Receiver Operating Characteristic Curves for the Micro- and Macro-Averages across
all five datasets with varying timeout values are presented in Figure 5. Area under the Curve metrics
presented in the legend.

6.6 Confusion Matrices

Figure 6 represents various confusion matrices from Scenario B experiments with varying timeout values
from all five datasets. The numbers presented are from the final fold of each model’s testing. There is a
clear decrease in the size of the datasets as the timeout values increase, potentially reducing the quality
of interpretations. It can be clearly observed that the dataset’s quality quickly decreases as the timeout
values increase and the models over-classify for the Video-Streaming category. Despite the fact that the
VoIP classification is far more prevalent than most of the other classes in the datasets - to the extreme
of the dataset containing 4 times more VoIP than any other class - the models never over-classify VoIP.
This will be explored further in the Discussion section.

56

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

Figure 6: Confusion Matrices for Scenario B

7 Discussion

In this section, we attempt to further discuss the results described in the previous section, intuitively
demonstrating why the models from Scenario A perform extremely well while those from Scenario
B seemingly lack enough diversity within the data to accurately classify > 40% of testing samples.
The distributions of the features analysed, in addition to the classifications, are graphed in violin plots
in Figure 7. Almost all models trained on the balanced and unbalanced Scenario A datasets perform
with high accuracy of more than 98% except for the 10s latency dataset which still attained decent
accuracy results of little over 88%. We investigated the characteristics of the features in Scenario A to
understand and explain the discrepancy in the result. The 10s dataset’s poorer results follow along with
the observation made by Lashkari et al. [26] where they noted that the lower latency datasets were harder
to distinguish than the higher latency datasets.

The features chosen by the UNB-CIC work are selected for demonstration and each feature’s value
and classification distribution are presented below. The Forward IAT Min (min fiat), Backward IAT
Mean (mean biat), and Backward IAT Total (total biat) features generally show that non-Tor samples
are prone to lower values, however showing wider distributions overall. While the Backward IAT Max
feature distribution shows similar characteristics, it is to a lesser extent. This result strengthens the
research seen in [38] that the binary classification of Tor and nonTor packets is trivial given time-based
datasets.

Figure 7 shows various violin plots of four features from the Scenario A dataset across five timeout
values. These graphs show the probability distribution of the classification and values from each feature.
Note that the ’total biat’ feature is unavailable in the 60s and 120s datasets.

57

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

Figure 7: Scenario A Feature Class Distributions on Violin Plots

The only model trained on Scenario A that did not perform well was ZeroR with a maximum classi-
fication accuracy of 95.82% and 50.00% for the unbalanced and balanced datasets, respectively. These
results are expected and direct results of the datasets’ composition. Since ZeroR is a simple classifier
that always predicts the majority class in the dataset composition, there is a clear pattern seen in the
results. In the unbalanced Scenario A dataset, for example, 95% of the data is labelled as nonTor. The
balanced Scenario A dataset is, by definition, a 50-50 split of the nonTor and Tor samples. Thus, the
highest performance possible with stratified k-fold cross validation is 50%.

The models trained on Scenario B demonstrate mixed classification performance. As an ensemble
method of decision trees, RF typically outperforms DT. K-Nearest Neighbor performs moderately well,
considering there are only eight classes. Our experiments show that kNN performs worse than both DT
and RF despite the literature indicating otherwise in various settings [37][35][16], due to the colloquial
“curse of dimensionality” [15][39]. The dimensionality problem indicates that, as the dimensions of
a problem increase, the size of the training dataset should also increase, exponentially. Various works
also show similarity in the performance of kNN and DNN models [21][19]. These findings aligns with
the results presented within this work. The results from the fast.ai model are potentially a consequence
of poor data quality in the 10s dataset in conjunction with an overly-complex model. While the fast.ai
model performance on the testing set of the 10s dataset is extremely low compared to RF, DT, kNN, and
keras DNN models, classification accuracy is similar to the keras DNN model for the remaining datasets,
as expected.

For Scenario B, the graphs of the distribution of the features (Figure 8) clearly shows the source of the
difficulty the models are experiencing when classifying across all eight categories, however demonstrat-
ing the reasons for specific classifications (Audio-Streaming and VoIP) exceeding the mean performance
metrics.

The distribution of the Audio-Streaming class is non-conforming to most of the other classes in the
dataset. In each violin plot in Figure 8, this class can clearly be differentiated from the other categories
due to its generally wider distribution and - as seen in the duration feature - its lower values. The VoIP
class shows unique distribution behavior as well. However, this is derived from its consistently low
values and short distribution width.

From these graphs, multiple classifications, such as Browsing, Chat, and Video-Streaming, do not
stand out enough to classify, intuitively. While these models exceed the performance of human-based

58

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

Figure 8: Scenario B Feature Class Distributions on Violin Plots

classification, these distributions, and low data quantities, provide an insight into the low performance of
some of the models.

Figure 8 shows various violin plots of six features from the Scenario B dataset across five different
timeout values. These graphs show the probability distribution of the classification and values from each
feature. The classifications are each graphed from left to right as follows: Audio-Streaming, Browsing,
Chat, File-Transfer, Email, Peer-to-Peer, Video-Streaming, and VoIP, as indicated on the legend.

While Audio-Streaming, P2P, and Video-Streaming have high AUCs, most of the datasets in Scenario
B suffer from extremely imbalanced classes and overall low counts of samples. We attribute the decrease
in the quality of the models to the decrease in size of the datasets as the timeout values increase. An
important consequence of this is clearly shown in Scenario B’s composition, with only a few samples
for most of the classifications present. For the 120s Scenario B dataset, the five classifications with
the lowest count, 63% of the available classifications, take up only 29% of the samples. Similarly, the
top two majority classifications (25% of the classes) contain 58% of the samples. Considering how the
datasets were collected and generated [26], this seems to be an unavoidable issue and the performance
drop is expected with all models.

8 Conclusion and Future Work

This work analyzed the performance of four machine learning algorithms (ZeroR, Random Forest,
CART, and k-Nearest Neighbors) and two deep learning frameworks (Keras and fast.ai) on the ISCX-
Tor2016 datasets for two different scenarios. Scenario A classifies Tor from non-Tor traffic with a very
high accuracy of more than 99%. The experiment results from Scenario A align with prior work in that
the differentiation between Tor and nonTor network traffic is trivial using only time-based features. All
six learning models performed with > 99% accuracy, even with the balanced dataset.

59

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

The classification of various Tor traffic presented in Scenario B dataset is still an unsolved prob-
lem. RF and DT classifiers demonstrated superior performance in Scenario B, moreover increased data
features such as the amount of packets in a flow and other statistics may improve performance for all
models.

While Tor traffic is resistant to classification, third parties are able to easily detect Tor traffic, poten-
tially endangering users. Experimental results show that if the Tor Project intends on protecting users
from external entities, then more effort must be expended on reducing the time-based fingerprints left by
the Tor protocol. Additional research could more systematically investigate the features within the IS-
CXTor2016 dataset and experiment with other successful deep learning models such as the convolutional
neural network.

Acknowledgment

This research project was supported by the state of Colorado through funds appropriated for cybersecurity
law dubbed “Cyber Coding Cryptology for State Records.” Any opinions, findings and conclusions, or
recommendations expressed in this paper are those of the authors and do not necessarily reflect the views
of the funding sources.

References

[1] fast.ai — about. https://www.fast.ai/about [Online; accessed on July 29, 2020].
[2] Keras — about keras. https://keras.io/about/ [Online; accessed on August 5 2020].
[3] Scikit-learn - 1.10. decision trees. =https://scikit-learn.org/stable/modules/tree.html [Online; accessed on

July 12, 2020].
[4] Scikit-learn - 1.11 ensemble methods. https://scikit-learn.org/stable/modules/ensemble.html

[Online; accessed on July. 29 2020].
[5] University of new brunswick canadian institute for cybersecurity — applications. https://www.unb.ca/

cic/research/applications.html [Online; accessed on July 18, 2020].
[6] Weka 3 - data mining with open source machine learning software in java. https://www.cs.waikato.ac.

nz/ml/weka/ [Online; accessed on July 30, 2020].
[7] Whonix - design and goals. https://www.whonix.org/wiki/About [Online; accessed on August 5,

2020].
[8] Tor project, “udp over tor,” tor project, 2012. https://trac.torproject.org/projects/tor/ticket/

7830 [Online; accessed on July 18, 2020], 2012.
[9] fastai. https://docs.fast.ai/ [Online; accessed on August 29 2019], 2019.

[10] Tor project — anonymity online. https://www.torproject.org/ [Online; accessed on July 15, 2020],
2020.

[11] K. Abe and S. Goto. Fingerprinting attack on tor anonymity using deep learning. In Proc. of the 13th APAN
Research Workshop (APAN’16), Hong Kong, China, pages 15–20. Asia-Pacific Advanced Network, March
2016.

[12] M. Aminuddin, Z. Zaaba, M. Singh, and D. Sing. A survey on tor encrypted traffic monitoring. International
Journal of Advanced Computer Science and Applications, 9(8), 2018.

[13] R. B. Basnet, R. Shash, C. Johnson, and T. Doleck. Towards detecting and classifying network intrusion traffic
using deep learning frameworks. Journal of Internet Services and Information Security (JISIS), 9(4):1–17,
2019.

[14] K. Bauer, M. Sherr, D. McCoy, and D. Grunwald. Experimentor: A testbed for safe and realistic tor ex-
perimentation. In Proc. of the 4th Workshop on Cyber Security Experimentation and Test (CSET’11), San
Francisco, California, USA. USENIX Association, August 2011.

60

https://www.fast.ai/about
https://keras.io/about/
=
https://scikit-learn.org/stable/modules/ensemble.html
https://www.unb.ca/cic/research/applications.html
https://www.unb.ca/cic/research/applications.html
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.whonix.org/wiki/About
https://trac.torproject.org/projects/tor/ticket/7830
https://trac.torproject.org/projects/tor/ticket/7830
https://docs.fast.ai/
 https://www.torproject.org/

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

[15] R. Bellman. Dynamic Programming. Dover Publications, 2003.
[16] A. Bilal, W. Jian, and M. Shafiq. Intrusion detection by using hybrid of decision tree and k-nearest neighbor.

International Journal of Hybrid Information Technology, 9(12):201–208, December 2016.
[17] L. Breiman. Random forests. Machine Learning, 45:5–32, October 2001.
[18] L. Breiman and P. Spector. Submodel selection and evaluation in regression - the x-random case. Interna-

tional Statistical Review / Revue Internationale de Statistique, 60(3):291–319, December 1992.
[19] B. Bromley. Neural-network and k-nearest neighbor classifiers. Technical report, AT&T Bell Laboratories,

August 1991.
[20] A. Chaabane, P. Manils, and M. A. Kaafar. Digging into anonymous traffic: A deep analysis of the tor

anonymizing network, September 2010.
[21] A. Eskanadarinia, H. Nazapour, M. Teimouri, and M. Ahmadi. Comparison of neural network and k-nearest

neighbor methods in daily flow forecasting. Journal of Applied Sciences, 10(11):1006–1010, 2010.
[22] H. J. Jeong, W. Hyun, J. Lim, and I. You. Anomaly teletraffic intrusion detection systems on hadoop-based

platforms: A survey of some problems and solutions. In Proc. of the 2012 15th International Conference
on Network-Based Information Systems (NBiS’12), Melbourne, Victoria, Australia, pages 766–770. IEEE,
September 2012.

[23] C. Johnson, B. Khadka, R. B. Basnet, and T. Doleck. Towards detecting and classifying malicious urls using
deep learning. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications
(JoWUA), 11(4):31–48, 2020.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. https://arxiv.org/abs/1412.

6980v9 [Online; accessed on July 13, 2020], 2015.
[25] R. Kohavi. ”a study of cross-validation and bootstrap for accuracy estimation and model selection”. In Proc.

of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), Montreal, Quebec, Canada,
page 1137–1143. Morgan Kaufmann Publishers Inc., August 1995.

[26] A. H. Lashkari, D. G. Gil, M. Mamun, and A. Ghorbani. Characterization of tor traffic using time based fea-
tures. In Proc. of the 3rd International Conference on Information Systems Security and Privacy (ICISSP’17),
Porto, Portugal, pages 253–262. SciTePress, February 2017.

[27] Z. Ling, J. Luo, K. Wu, W. Yu, , and X. Fu. Torward: Discovery of malicious traffic over tor. In Proc. of the
2014 IEEE Conference on Computer Communications (INFOCOM’14), Toronto, Ontario, Canada, pages
1402–1410. IEEE, April-May 2014.

[28] Y. Liu, S. Li, C. Zhang, C. Zheng, Y. Sun, and Q. Liu. Itp-knn: Encrypted video flow identification based
on the intermittent traffic pattern of video and k-nearest neighbors classification. In Proc. of the 20th Inter-
national Conference on Computational Science (ICCS’20), Amsterdam, The Netherlands, volume 12138 of
Lecture Notes in Computer Science, pages 279–293. Springer, Cham, June 2020.

[29] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Comparison of trends in practice and research for
deep learning. https://arxiv.org/abs/1811.03378 [Online; accessed on July 29, 2019], 2019.

[30] J. Opitz and S. Burst. Macro f1 and macro f1,. https://arxiv.org/abs/1911.03347v2 [Online; accessed
on July 12 2020], 2019.

[31] B. Park, J. W.-K. Hong, and Y. J. Won. Toward fine-grained traffic classification. IEEE Communications
Magazine, 49(7):104–111, July 2011.

[32] B. Park, Y. Won, M. Kim, and J. Hong. Towards automated application signature generation for traffic
identification. In Proc. of the 2008 IEEE Network Operations and Management Symposium (NOMS’08),
Salvador, Brazil, pages 160–167. IEEE, April 2018.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(85), 2011.

[34] N. M. R. Dingledine and P. Syverson. Tor: The second-generation onion router. https://pdfs.

semanticscholar.org/bdc8/7add980372e7cf8c27e1af47d7ce282092c8.pdf [Online; accessed on
July 13, 2020], 2014.

[35] H. Rajaguru and S. Chakravarthy. Analysis of decision tree and k-nearest neighbor algorithm in the classifi-

61

https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1811.03378
https://arxiv.org/abs/1911.03347v2
https://pdfs.semanticscholar.org/bdc8/7add980372e7cf8c27e1af47d7ce282092c8.pdf
https://pdfs.semanticscholar.org/bdc8/7add980372e7cf8c27e1af47d7ce282092c8.pdf

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

cation of breast cancer. Asian Pacific Journal of Cancer Prevention, 20(12):3777–3781, December 2019.
[36] Z. Rao, W. Niu, X. Zhang, and H. Li. Tor anonymous traffic identification based on gravitational clustering.

Peer-to-Peer Networking and Applications, pages 592–601, June 2017.
[37] T. Saragih, D. Fajri, and A. Rakhmandasari. Comparative study of decision tree, k-nearest neighbor, and

modified k-nearest neighbor on jatropha curcas plant disease identification. Kinetik: Game Technology,
Information System, Computer Network, Computing, Electronics, and Control, 5(1):55–60, February 2020.

[38] M. Soleimani, M. Mansoorizadeh, and M. Nassiri. Real-time identification of three tor pluggable transports
using machine learning techniques. The Journal of Supercomputing, 74:4910–4927, February 2018.

[39] C. Taylor. Applications of Dynamic Programming to Agricultural Decision Problems. CRC Press, 2019.

——————————————————————————

Author Biography

Clayton Johnsongraduated from Colorado Mesa University (CMU) with a BS in
Computer Science and a Professional Certificate in Cybersecurity in 2020. He’s
currently pursuing his PhD in Cybersecurity at the University of Colorado Boul-
der.

Bishal Khadka is a senior undergraduate student pursuing his Bachelor’s in Com-
puter Science and Professional Certificate in Cybersecurity degrees at Colorado Mesa
University (CMU). Bishal is currently the president of Cybersecurity club and a re-
search fellow at the Cybersecurity Center at CMU.

Ethan Ruiz graduated with a Bachelor’s in Computer Science and a Professional Cer-
tificate in Cybersecurity from Colorado Mesa University (CMU) in 2020. He is the
former treasurer of the Cyber Security Club at CMU.

James Halladay is a junior undergraduate pursuing his Bachelor’s in Math and Com-
puter Science at Colorado Mesa University. His research interests are in Complex
Analysis, Machine Learning, Front-end Design, and Graph Theory.

62

Deep Learning Tor Traffic Johnson, Khadka, Ruiz, Halladay, Doleck, and Basnet

Tenzin Doleck received his PhD from McGill University in 2017. He is a Canada
Research Chair and Assistant Professor at Simon Fraser University.

Ram B. Basnet is an associate professor of Computer Science and Cybersecurity at
Colorado Mesa University (CMU). He received his BS in Computer Science from
CMU in 2004 and MS and PhD in Computer Science from New Mexico Tech in
2008 and 2012, respectively. His research interests are in the areas of information
assurance, machine learning, and computer science pedagogy.

63

	Introduction
	Related Work
	Our Approach
	Experimental Workflow
	Dataset
	Features

	Machine Learning Frameworks
	Scikit-Learn
	Keras
	fast.ai

	Performance Metrics
	Results
	Scenario A
	Scenario B
	ROC Curves
	ROC Curves of the Classes
	ROC of the Micro- and Macro-Averages
	Confusion Matrices

	Discussion
	Conclusion and Future Work

