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Abstract

Security of computers, networks and their communication protocols are vital in smart grid technol-
ogy operation and its management. This paper discusses a proposed Bayesian Neural Networks for
time-series TCP/IP packets intrusion detection and threats classification in a grid network. This ar-
chitecture termed SGtechNet detects invariants with maximized detection accuracy by applying a
robust method that approximates the variation in posterior weights of neural networks with varia-
tional inference to minimize the divergence between prior and true network posterior distributions.
Spatiotemporal feature engineering and uncertainty estimation in Bayesian modeling, were lever-
aged to learn novel attack features and classify attacks accordingly. This architecture reduced the
size of the proposed model to 25 % of the size of a pioneer model (AlexNet), hence, facilitating the
inference time compared to the baseline. SGtechNet was tested on NSL-KDD datasets using two
deep learning algorithms: CNN-LSTM and GRU, on two classification categories (binary and mul-
ticlass) with Accuracy, Precision, Recall, and F1-Score as the performance metrics. GRU algorithm
comparatively performed moderately well on both classification categories, unlike CNN-LSTM that
performed convincingly only on one test category. Comparing the result of the SGtechNet model
against a comparator model showed outstanding performance in both model size, computational
speed, and marginal improvement in terms of accuracy. Chi-Square Test analysis determined that the
degree at which the training accuracy differed with validation accuracy was statistically insignificant.

Keywords: Bayesian, Cyber Threat, Classification, Deep Learning, Intrusion detection, Neural Net-
works

1 Introduction

Security of smart grid is of great concern to researchers due to the importance of ensuring the reliabil-
ity and stability of power system operations. Cybersecurity threats are the most confronting challenge
facing smart grid networks with the business and economic disruption that occurs, and the potentially
huge economic losses likely. Technological advancement in energy sector has given Integrated circuits
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Figure 1: Communication Architecture of a Smart Grid

(ICs) and Supervisory Control and Data Acquisition (SCADA) key roles in smart grid infrastructure. Un-
fortunately, this has unintentionally exposed the power plant infrastructures such as advanced metering
infrastructure (AMI) which encompasses smart meters, communication networks and data management
systems [1] and sensors, to sophisticated cyber-attacks resulting to operational failure and loss of syn-
chronization in the grid. There have been incidences in the recent past of attacks targeting industrial
power plant like that of Siemens in 2010, Ukrainian power grid in 2015 by Russian hacker groups and
many others. These attacks have caused blackouts, destruction of sensitive equipment, and an increase in
energy costs and prices for access to the grids. It has been predicted that cybercrime damages will cost
the world $6 trillion annually by 2021 and that a business will fall victim of a ransomware attack every
14 seconds, from the current 40 seconds, somewhere in the world [2].

The historical background of cyber threats in the world can be traced back to the “Morris worm”, of
1988 [3]which ravaged America’s cyber space. Subsequently, various examples of malicious code have
emerged, disrupting computer programs, attacking the integrity and authenticity of data, resulting in the
theft or even destruction of sensitive data. In 2007, Stuxnet malware was used to attack the Iran nuclear
power station and was subsequently used in 2010 to exploit the vulnerabilities in the SCADA system’s
power-grid operation forcing the control center to malfunction. These attacks are possible only when
Internet’s Transmission Control Protocol/Internet Protocol (TCP/IP) networking environment of figure
1 and its security authentication process shown in figure 2 is flawed. Lack of intrusion-resistance in the
network has given leeway for possible compromise using different malicious codes during intrusions
by bad actors. SCADAs high dependence on open connectivity to corporate networks and the Internet,
for example, makes it particularly vulnerable to attacks. Ironically, software-defined network-enabled
smart grid emergence seems to have increased the level of vulnerability of power systems to cyber-
attacks. Based on this fact, the compromising of sensitive smart grid network data has become the
subject of increasing concern, necessitating a measure to detect potential intrusions and protect critical
power system infrastructures.
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Figure 2: Defensive Mechanism of a Smart Grid Network

One of the most effective preventive measures against the risks of cyberspace breach is the thorough
examination, or security risk audit, of the smart grid technologies before massive deployment [4]. In
this context, the SGtechNet model that is presented in this paper is focused particularly on smart grids
network given the greater volume of periodic traffic that they carry and their complex nature. Previous
research efforts paid little or no attention to understanding the nature of these threats, especially the
novel ones [5]. However, no defensive arrangement can guarantee protection without prior knowledge of
existing attack patterns. Therefore, a supervised Bayesian deep learning architecture is used for proper
analysis of grid network attack patterns to reliably estimate possible uncertainties. A time-frequency
features-representation analysis carried out using SGtechNet captured the dominant spatiotemporal fea-
tures in each attack types and approximates their prediction distributions over networks weights. Some
researchers have recently used various methods of feature extraction and have come up with success-
ful results. Improved model accuracy was achieved in [6] [7] [8] using extensive feature engineering
technology that expressed the semantic and contextual information in a data.

The SGtechNet modeled the grid network traffic and classify novel attacks and non-attacks accord-
ingly. Looking specifically at the Software-Defined Network (SDN) architectures of smart grids (com-
prising SCADA, micro grids, substations), some causes of vulnerability, such as single point failure in
the SDN controller, or the inability to monitor and control flow dynamics, can be easily noticed. These
loopholes cause congestion that results in Denial-of-Service (DoS) attacks and the inability to detect and
respond to the attack. Large numbers of packets without matching rules in an OpenFlow network cause
saturation in the communication between a switch and the controller, resulting in a DoS attack. However,
applications in the security domain, that are based on artificial intelligence, have demonstrated that they
can surpass human intelligence in relation to classification, recognition and prediction tasks [9]. These
intelligent applications have also shown robustness in utilizing the knowledge learnt from the analysis
of historical data to perform complex computational tasks, enabling human experts to make informed
decisions. Deep Learning algorithms normally require a larger amount of data while machine learning
requires less data [10]. Larger data samples also enhance the model performance. Deep learning has
therefore become popular in security tasks such as malware detection, intrusion and spam detection, and
general network surveillance [11]. This popularity can be linked to its ability to use densely intercon-
nected networks of neurons to perform specialized tasks [9]. Combining Bayesian method and neural
network architecture for intrusion detection in smart grid networks has a greater advantage. This can
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enable the determination of statistical properties such as standard deviation and variance, so as to quan-
tify the behavioral characteristics [12]. This is very important if we must ascertain what ‘abnormality’
is, and how it differs from ‘normal’ data content at any given time. Importantly, our proposed model
is necessary due to the complex nature of often-hostile environments, such as SCADA networks where
numerous real-time devices are connected over a long period of time [10]. With this type of heavy data
traffic, the network and computer infrastructures are prone to incessant attacks by cyber criminals. Ma-
jor contributions of this paper include modeling of smart grid networks attacks patterns in a real-time,
optimization of supervised learning techniques used in predictive modeling using labeled training data
[13] and provision of defensive mechanism against malware and other malicious objects that manipulate
the operations of a grid network especially the cyber-physical systems.

2 Related Work

As a result of rising concerns about malicious attacks on the smart grid cyberspace, researchers have
delved into finding measures to minimize these damaging trends. [14] x-rayed deep learning-based
intrusion detection schemes in classifying malicious behaviours and categorize them accordingly. In
order to ameliorate the proliferation of cyber security attacks, a problem-solving approach, described
in [15], was created as the first vulnerability-assessment program to verify security settings through the
Internet. Over time, this challenge has led to the deployment of different machine learning algorithms
applying supervised, semi-supervised and unsupervised learning methods, to learn the attack patterns.
These have variously used, inter alia, logistic regression, SVM, clustering, and Boltzmann machines,
and deep neural networks. However, as continual efforts are being made to curtail possible malicious
attacks, the dynamics of the attacks keep changing over time, making the task very tedious for human
cyber security experts. Most statistical learning models in recent times are flawed when applied to
adversarial sample-based attacks, especially stealthy ones, due to its operational dynamism. Individuals
with malicious intent can easily circumvent deep learning-powered malware detection by exploiting
feature amplitude disequilibrium, but [5] was able to address this particular shortcoming using randomly
nullifying technique to reduce the effectiveness of the adversarial samples.

Recently, research efforts combining both statistical and neural networks methods like [16] were
made to identify possible DOS and DDOS attacks. [16] determined the difference between the metric
candidates and the attack labels in an IoT traffic data with statistical tools. A case study of attacks, in
2015, on a power station in Ivano-Frankirsk in Ukraine, where “BlackEnergy” was used to delete data
and destroy hard drives, but also asserted a DOS attack on the support phone numbers of the power station
managers, thereby preventing customers from notifying the utility company of the failure. This justified
the proposed Bayesian neural network method which seeks to contain the flexibility in DOS attacks
on the network devices which may include the theft of digital certificates and prevention of computers
and servers from booting. A report by the security firm, Kaspersky Labs shows that even customized
extensions and plugins like those seen in Microsoft and Linux can be used in carrying out DoS attacks,
stealing passwords, scanning ports, logging IP sources, covertly taking screenshots, gaining persistent
access to command-and-control channels, and destroying hard drives.

2.1 Bayesian Neural Networks

This paper leverage on Bayesian neural networks known for estimating predictive uncertainty and prob-
abilistic interpretation of deep learning models’ distributions over weights. However, the idea of mod-
elling a distribution over weight, has been a challenge because of the runtime complexity of extremely
large models [17] commonly used in practical applications that incurs a significant cost, necessitating ap-
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proximations to the model posterior with variational inference [18]. This approximation therefore makes
Bayesian predictive distribution which contains all the uncertainty to be tractable. Stochastic random
process variables (with uncertainty at an instance of time), and discrete variables (features or attributes)
in attacks on a grid network can be assumed to be conditionally independent of the discrete-valued vari-
able C referred to as a class, which represents attack types. So, probability of an attack at an instant
of time could be determined with the knowledge of the stochastic variational inference of posteriors.
Gaussian process posterior computes acquisition function, α(x) of the random variables of x to decide
where to estimate f function next. Point estimation of a function often results in extrapolations with
unjustified high confidence in classification of uncertainty unlike distribution estimation. IP/TCP packet
for example is considered here since the concern was to confirm if the packet is an attack or not, as in
case of [19] where classification was based on binary class variables C. [20] proposed an entropy search
method that minimizes information about the class variables, and [21] addressed the computational dif-
ficulties by rewriting the entropy search acquisition function with symmetry of mutual information into
predictive entropy search. Similarly, to the case of multinomial classifications, where different types of
malicious attacks are classified, we can assume the binary conditionality to be random variables (x,y)
where each takes different numbers of discrete values, and features variables x0. . . xp which are assumed
to be the different network connection states, such as duration of the connection or connection attempts
rejected etc.

The joint probability that X = x; Y = y, can be denoted by p(x,y), expressed by the product rule in
Equation 1:

p(x,y) = p
(

y
x

)
P(x) (1)

where P(x) is the prior probability of X = x, irrespective of value Y , p(y/x) is the conditional prob-
ability of Y = y, given that X = x. This can be regarded as a function of C, called likelihood, expressed
by the product rule in Equation 2:

p
(

y
x

)
=

P(y/x)P(x)
P(y)

(2)

where p(x/y) is the posterior probability which plays a central role in pattern recognition. Applying
the sum rule, we have: p(y) = p(y/x), which is a normalizing factor that ensures that the probability on
the left-hand side of Equation 2 sums to one (in Equation 1), satisfying the probability function that a
variable must take one of the values at an instant time. Assuming a neural network model f w(x) consists
of sets of interconnected weights, w, predicting y from x can easily be achieved by optimizing the weights
through gradient descent and back propagation using loss function. In this network, weights are modeled
as distributions and prior distributions placed over them so that the posterior distribution of the weights
can be found with Bayesian Inference. Uncertainty is modelled using dropout sampling created and ran
multiple times at test time to create a distribution of outcomes. Predictive entropy for the classes in
categories of classification is therefore calculated to determine the prediction probability for each class.
The prior weights of the model were trained on standard categorical entropy loss and the loss function
was continuously adjusted until an improved prediction accuracy is achieved.

2.2 Deep Learning Approach to Network Intrusion

Defensive mechanisms can be implemented in deep learning either as network-based [17] or host-based
[22](depending on the choice and availability of resources, implemented using either signature-based,
such as Snort [23], or anomaly-based techniques such as Bro [24]. Signature-based intrusion detection

99



Cyber-Security Audit for Smart Grid Networks Ndife, Mensin, Rakwichian, and Muneesawang

techniques detect attacks by using known signatures or exploits the patterns of attacks on a knowledge-
based description platform. Cases where incoming traffic payloads are compared with stored signatures,
through the process of signature matching, has been very effective in detecting known threats but are
almost ineffective at detecting previously unknown threats. Nonetheless, signature-based detection is
widely implemented because it generates lower false alarm rates than anomaly-based techniques even
though signature matching processing time is a drawback. Delays in the signature matching process led
to overload packets, high consumption of computer resources, and false alarms. To address this, [25] used
an exclusive signature matching scheme to identify the mismatch in a signature rather than an accurate
match for the regular signature matching. [12] detect attacks in the network’s payloads by comparing the
similarity of the payload’s frequency distribution and standard deviation, and [26] reduced high dimen-
sional space features using feature selection method called Particle Swarm Optimization (PSO). On the
other hand, anomaly-based detection uses well-defined rules as a template for normal behavior, anything
outside those predefined rules is regarded as abnormal. Anomaly-based detection identifies an intrusion
by detecting deviations between current events and predefined normal profiles, which means that there
is a need to differentiate between events. This is a very difficult situation to model because of the na-
ture of network traffic, which is flexible and irregular. Machine learning methods are usually challenged
whenever complex data classification problems, such as data domain identification, and classification of
class types, are encountered. In order to mitigate memory requirement drawbacks that this type of task is
known for, [27] used Auto-encoder to learn the semantic similarities of the different features embedded
in latent representations. This helped to reduce the dimensionality of the features learned.

Deep learning is an alternative to machine learning when addressing complex problems, having
proved its worth in image classification and recognition tasks involving more than conventional sequen-
tial data processing [17]. Various deep learning optimization techniques have been introduced, including
dropout for model regularization. This dropout technique can be likened to the Bayesian neural net-
work used in this study which placed a probability distribution of weights over convolution kernels in
the architecture for robustness in addressing model overfitting. [28] presented the first regularization
method that uses the stochastic model averaging technique to improve the performance of deep learning
models and tends to make classification less reliant on arbitrary units. [29] deployed a hybrid algo-
rithm: k-means and fuzzy rules for anomaly-based detection. [30][31] used the LSTM-RNN classifier,
and [32] modified the functionality of GRU using SVM as a classifier instead of conventional Softmax,
for computational efficiency. Similarly, [33] modelled five deep learning classifiers for intrusion detec-
tion and performed comparative analysis on the five classifiers. Some research efforts have applied a
slightly different approach, such as the Auto-encoder model that was applied in [27] to learn the latent
representation similarities in features to detect abnormalities in the network. However, the problem of
intensive computational time has not been adequately addressed in the literature until the recent use of
the Bayesian method which allows values of regularization coefficients to be selected only in training
thereby expediting the whole classification process. In our research, we leveraged a lightweight adaptive
architecture, and some other methods reported in the literature, to improve model performance. Our ma-
jor targets were to reduce over fitting and the computational complexity to hasten the detection process
as well as to improve validation accuracy.

2.3 Uncertainty Estimation

To estimate the level of uncertainty in the predictions, the neural network approach was used. Uncertain-
ties emanating in predictions of problems of this nature can either be because of noise in the dataset or
inadequacies in modeling (misspecification) or model uncertainty. For the purposes of this study, mod-
eling of uncertainty was based on inadequacies in modeling (epistemic), where weights w is modeled
as distributions. Instead of initializing our weights to perform optimization to get the final weights, a
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prior distribution was placed over the neural network weights (i.e., Gaussian prior), p(w) to compute the
posterior distribution to be used in quantifying the predictive uncertainty [34]. As in [35], the idea is to
model the posterior with variational inference distribution and fit such closely distribution’s parameters
to the true posterior by minimizing the Kullback-Leibler (KL) divergence from variational distributions
to the true posterior. [36] used approximation of model’s entropy to decide the data points that minimize
uncertainty about the model’s parameters while [20] proposed Entropy search that maximizes the infor-
mation search for class variables given a new data. Bayesian inference to find the posterior distribution
of the weights p(w|x,y)from Bayes theorem is shown below.

The posterior distribution of W can be computed as:

p(w/x,y) =
p(y/x,w)p(w)

p(y/x)
=

p(y/x,w)P(w)∫
p
(

y
x ,w
)

dw
(3)

where p(y/x,w) is the likelihood.
Therefore, to calculate p(y|x) we averaged this likelihood over all possible weights (marginaliza-

tion) which gave the integral. The posterior distribution, p(w|x,y) is thereafter obtained using Bayesian
approximation procedures (variational inference). This can be likened to the use of dropout units for
model regularization, which randomly sets weights to 0 or 1 in every weight layer during implementa-
tion. This method involves fitting a simple distribution q ∗ (w) parametrized by θ to the posterior dis-
tribution, replacing the intractable marginalization with an optimization task over the parameters of the
simple distribution; thereby minimizing the KL divergence between q∗ (w) and the true model posterior
p(w|x,y). Since we are interested in making our approximation distribution as close as possible to the
posterior distribution, we defined approximating variational distribution qw that can be evaluated analyti-
cally, thus minimizing the KL divergence between the variational distributions and posterior distribution:
KL(qw||p(w | x,y), to obtain an approximating predictive distribution:

p(y∗/x,x,y)≈
∫

p(y∗/x∗,w)q∗θ (w)dw =: q∗θ (y
∗/x∗) (4)

and its loss function would be,

L(θ , p) =− 1
N

N

∑
i=1

log.p
(

yi| f wi(xi)
)
+

1− p
2N

∣∣∣|θ |∣∣∣2 (5)

3 Methodology

Modeling a dynamic network environment, such as smart grid cyber-attack intrusion, deserves a proactive
approach considering its capabilities and operational characteristics. Smart grids are a system-of-systems
that requires a comprehensive analysis of its efficient and secure infrastructures (devices, network pro-
tocols, and software application). A generic framework for performance optimization in terms of threat
detection and classification is developed (see figure 3), with its detection procedure in figure 4. The
threat analysis process started with a mathematical framework for measurement of uncertainties in smart
grid network based on Bayesian probability distribution. This is useful as our work entails characterizing
the relationship between attack steps (pattern) and detectors. The interleaving of the Bayesian distribu-
tion and the neural networks (NNs) approach used in data learning and prediction is necessary because
infinitely wide NNs with distributions placed over their weights easily converges to Gaussian processes
[37]. This method has helped to contain the problem of overconfident predictions in regions of sparse
data and overfitting in data training [38] even though it has challenging inference and computational cost.
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Figure 3: Architecture of the proposed neural network (SGtechNet)

3.1 Distribution of Weights in Layers

In this Bayesian neural network, everything, including the weights, are seen as probabilistic distributions.
It is this that makes Bayesian networks unique. This distributions over weights can be made flexible by
allowing only a distribution on certain level of subspace in each weight matrix to be learned instead of
the entire weight matrices to reduce dimensionality [39]. The posterior distribution of different values of
W can be computed as:

p(w = j/x1, . . . ,xp) =
P(x1, . . . ,xp/w = j)p(w = j)

P(x1, . . . ,xp)
(6)

Applying Bayes’ rule,

=
(Πp

i=1P(Xi/W = j))P(W = j)
(PX1, . . . ,Xp)

(7)

If the conditional independence assumption is invoked,

p(w = j/X1, . . . ,X2) =
1
α
(Πp

i=1 p(xi/w = j))p(w = j),1 < j < m (8)

where α is a proportionality constant independent of j. This implies that P(W = j/X1, . . . ,Xp) can
be computed as being proportional to a product of simpler individual terms p(xi/w = j) and, p(w =
j). To evaluate the posterior probability distribution in the multi-modal case, expressions for the prior
distribution p(w= j) and likelihood function p

(
W= j

X(1,. . . ,XP

)
will be needed. If we assume prior probability

is a zero-mean Gaussian function of weights of the form:

p(w = j) =
1

ZW= j(α )
Exp.(−α

2
||W = j||2) (9)

Normalizing factor ZC= j(α ) is given by

ZW= j(α ) =

(
2πW= j

2

α

)
(10)
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Figure 4: Proposed intrusion detection process

The performance of multinomial classification was evaluated by [40] using multilayer perceptron net-
works to assign classification probabilities where the first layer of the neural network contains the input
comprising 41 features and the final layer containing the output (for both binary and multinomial class
categories). All the intervening hidden layers were connected to the nodes in the adjacent layers. In
this case, variational inference performs the optimization over distributions instead of point estimates.
Uncertainties are assumed to exist even in the weights, so this network tends to model the weights as
distributions and a prediction of output (y) is done through optimization of the weights (via gradient
descent and backpropagation) using a loss function, as shown in Equations 9 and 10. In practical terms,
dropouts are used in such a way that a prior distribution is placed over the space of weights, integrat-
ing the weights to obtain a marginal probability for each set of corresponding network outputs. This
can be simply interpreted as performing approximate inference in a probabilistic interpretation of neural
network model.

3.2 Data Description and Pre-Processing

This work leveraged on the network intrusion simulated dataset NSL-KDD; an improved version of KDD
CUP’99 from the MIT lab repository as a benchmark dataset to train and test our network that contained
a synthetic attack data. The data contained 21 predicted labels records with 41 features for attacks and
normal. Each feature has 3 types of attribute values (normal, binary, and numeric). Attack classes were
categorized into DoS, Probing, U2R, and R2L. NSL-KDD contains about 75% reduction in redundant
recorded in the popular KDD’99 test set and have sufficient training set that includes attack-type labels
and difficulty level. The training set has a total of 125,973 records comprising attacks and normal, and
testing set has a total of 22,544 records for both attacks and normal as well. It contained a total of 24
training attack types, with an additional 14 additional attack types introduced in the testing data were
not from the same probability distribution as the training data, making the task a more realistic one since
novel attacks are believed to be variants of known attacks which means the signature of known attacks

103



Cyber-Security Audit for Smart Grid Networks Ndife, Mensin, Rakwichian, and Muneesawang

is enough to detect novel variants [41]. However, the dynamics of cyber-attacks on smart grids creates
attack patterns have complex characteristics. Therefore, the first step in this study was to extract attack
features that model detection of novel attacks in grid network. To achieve this, features were analyzed
in both time and frequency domains. The essence was to enhance the feature extraction process that
would accentuate the signature of various attack types. Empirical observations during the exploratory
data analysis showed that time affects some traffic-based features as well as frequency of occurrence on
most of the content-based features.

3.3 Model Design

The computational method to predict the likelihood of a given data sample belonging to a predefined
class i.e., normal or attack, was achieved using a Bayesian neural network with deep learning algorithms.
This supervised learning approach to intrusion detection considered four different complementary threat
perspectives in software-defined network-enabled smart grid: method, target, software, and identity.
Features indicating network intrusions were carefully selected from the TCP dump and analyzed against
novel invariants. The dataset used for both training and testing of the model contained both continuous
and categorical data.

3.3.1 Network Architecture

Smart grid mesh networks connect remote smart meter mesh networks to the utility through either wired
or wireless infrastructure. The level of complexity and volatility of this cyber-physical system is sig-
nificant. In this context, we look to the deep network-like ensemble method only inasmuch that no
combination of predictions from individual classifiers and weights are modeled as a distribution. To
achieve major objectives of this study, which is reducing model’s size and overfitting, approximation
distributions were placed over the kernels before the convolutional process.The down-sampling opera-
tion, using pooling size 2, worked very well in reducing the model size (by 4 times) compared to existing
architectures, without necessarily affecting the model accuracy. To capture the spatiotemporal series
patterns over different time-steps of newly formed features emanating from Maxpooling operation in
convolutional layer, the newly constructed feature map vector (see Figure 5) is fed to LSTM and GRU
algorithms to learn the long-range temporal dependencies.

Figure 5: Spatiotemporal Feature Extraction Module
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This data learning process was made in such a way that the output of the first CNN network data
compression process became an input to the LSTM in a serial manner, as shown in Figure 3, although
not without a data reshaping process. The network was modeled using CNN-LSTM and validated on
GRU to ascertain the efficiency of both classifiers and their effectiveness as relates to the depth and
complexity of symbolic sequences.

3.3.2 Model Training

For the purposes of probabilistic modeling, binary variables for each input point were sampled for each
network unit in each layer (excluding the last layer). Each binary variable takes value 1 with probability
pi for layer i, dropping a unit (i.e., setting its value to zero) where binary variable takes value 0. In
principle, this placed a prior distribution over each kernel which sets the kernels to zero for different
patches, and approximately integrates each kernels-patch pair with Bernoulli variational distributions.
Dropout were used after every convolution layer before the pooling operation and approximation of the
predictive distribution helped immensely in its scaling. During network parameter tuning of the model
for optimal performance, various network topologies with varying filters and lengths were experimented
with before choosing the 64-kernel size with a min batch size of 128, as shown in Table 1. The optimal
value of the regularization hyperparameter (λ ) was found to be 0.5 due to the largeness of the network.
Reducing the activations of the layers by half facilitated the learning process and allowed the network
to learn different redundant representations. Validation testing, using the GRU algorithm, had a dropout
optimal value of 0.1. The learning rate as shown in Table 2 was fixed at 0.001 throughout the training
period over 20 epochs and EarlyStopper was set to terminate training after five (5) consecutive decreases
in validation accuracy.

Two activation functions, ReLU and Softmax, were used at different points. ReLU was used in the
hidden layers due to its computational efficiency and Softmax was used in the last layer of the network
because of its doggedness in defining the probability distributions over classes. This made it very useful
especially in the multinomial classification performed. We tested the adaptability of the classifiers in
detecting novel variants by introducing some specific attacks into the holdout data that were not in the
training data and then performing different categories of classifications.
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3.4 Implementation

We created a training dataset as X and loaded its label as target Y and fed it through the network. The
network estimates each current state variables with uncertainties and loss generated is used for the com-
putation of the gradient. The network weights for the model were then adjusted continually until a better
gradient was obtained. In principle, the approximations to the model posterior with variational infer-
ence was achieved by adding dropout layers after certain weight layers in our network. By this method,
our Bayesian neural network reduces to performing a dropout after every layer with an approximating
distribution in the cause of networking training.

3.4.1 Experiments

Figure 5 showed how the number of feature vectors from previous convolution was convolved after the
MaxPooling layer and compressed by half using a 1x1 kernel size filter placed before a 1x1 and 3x3
kernel filters. It convolutes with a smaller number of features and their output filter banks concatenated
into a single output vector before recursively expanding for the next layer. This convolution process
created the new feature maps fed to the classifier. Implementation was done in an NIVIDIA GeForce
GTX1080 TI GPU enabled TensorFlow. Intel (R) Xeon (R) E5-2683 v3 @ 2.00GHz 56 Core CPU, 64
GB RAM and NVIDIA Tesla K80 GPU running on the Ubuntu Server 16.04.3. Because our network
needs to match the prior distribution for both training and testing data, the Adam optimizer was used for
updating the posterior distributions using the prior distribution and the likelihood until they converge.
From table 1, our proposed model and its comparator share similar parameters. The model is tasked with
simultaneous classification of invariants into binary class (normal or attack) and multinomial class.
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4 Results Analysis

Performance analysis of this study is based on accuracy as a quintessential evaluation metrics suitable
for both binary and multiclass classification especially on models having same sample and model con-
figuration. Based on the validation accuracy results shown in Figures 11 and 13, CNN-LSTM and GRU
classifiers performed well.Almost all the models experienced an unstable training trajectory, and it was
observed that the validation of the best performing model i.e., GRU, attained the Point of Diminishing
Returns between epochs 16 and 20 at the 2-class and 5-class categories, respectively. This fluctuation
occurring after the Point of Diminishing Returns could be likened to overfitting resulting from dropouts
applied after convolutions. However, this was contained by using predictive distribution from samples,
in the region of space surrounding the synthetic data that was later tested. However, the highest training
loss was recorded in the 5-class category. CNN-LSTM had the best training accuracy in both categories
tested. Figure 6 shows the training and validation accuracies of the CNN-LSTM classifier in the binary
classification with the highest accuracy recorded immediately after commencement of the model vali-
dation, towards epoch 1. As the training accuracy increased over the increasing epochs, the validation
accuracy decreased over five consecutive epochs, resulting in abrupt termination. Similarly, Figure 7 de-
picts its training and validation accuracies in multiclass. Figure 8 shows training and validation accuracy
of the GRU classifier in the binary class category. The training accuracy increased successively together
with the validation accuracy until epoch 6 when it became unstable because of suspected overfitting.
Even though GRU accuracy fluctuated in the 2-class category, it became more stable in the 5-class.

Furthermore, the validation accuracy of the GRU classifier outperformed CNN-LSTM in both clas-
sification categories (see Figure 10 and 11). In Figure 9, the validation accuracy of the GRU multiclass
increased correspondingly with the training accuracy until epoch 19, where it decreased slightly before
the termination point. Figure 10 and 11 respectively showed the validation accuracies in the binary and
multiclass classification category for the models. R2 value of figure 6 for CNN-LSTM showed that more
than half of observed variation can be explained by the model’s inputs from holdout dataset used for
model validation. GRU has a relatively low and stable R2 in both test categories. Adaptiveness of this
network architecture to other areas of potential attacks other than smart grid network was tested by intro-
ducing a synthetic attack features depicting attacks from real-time internet environment. The accuracy
achieved was almost the same with that of NSL-KDD dataset.

4.1 Discussion

One major limitation of the model compression technique implemented is that, as the model size is
reduced, the number of parameters slightly increased which results in a marginal increase in financial
burden in terms of implementation. Therefore, further work is proposed to develop a systemic method
of reducing the model size without necessarily increasing the number of model parameters. We would
expect that this will guarantee the cost effectiveness and light weight expected of a good model. The
compression was achieved by modifying the hidden layer of the network through the addition of a 1x1
kernel size filter before the 3x3 kernel size filter that was used in the baseline model, and the output of
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the layers was squeezed by half (1/2). Instead of using 1x1 and 3x3 convolutions like [42] for feature
extraction 1x1 and 1x3 kernel filters were used before convolution operation and another 1x1 and 1x1
used before, and after convolutions respectively as shown in figure 5. However, this approach has not
changed the size of the data, but rather has simply compressed it to fit. By this convolutional process,
sequential data is thoroughly learned, and feature map created. The choice of small filters is to reduce
both the number of network parameters and the processing time. Large filters are most appropriate in
image data where it is necessary to determine the central position of the image. Furthermore, due to
the fact the frequent problem of misclassifications in image and time series problems are the result of
inappropriate feature encoding and vectorization, the data mining aspect of this work was thoroughly
handled.

4.2 Chi-Square test

We used the Chi-Square statistical analysis tool to determine the degree at which the training accuracy
differed from the validation accuracy and to further investigate how additional features in the test data
affected the classification accuracy in the multinomial class category. This classical tool is mostly used
in complex data analysis due to its precision. The Chi-Square test was conducted using a spreadsheet
developed by the Mathematics, Science and Technology College of the Education University of Illinois,
USA[].Experimental results were approximately distributed as Chi-Square samples.

Chi−Test = ∑
(E−0)2

E
(11)

where E is expected, while O is obtained. The Chi-Square results shown in Table 7 indicate that the
discrepancy between the training and validation accuracies is not statistically significant. It also shows
that the frequency at which the training and validation outcomes could differ sufficiently to produce
values that are as large or larger than the Chi-Square value per model, is highest in both GRU test
categories: 3.7 and 9.2 respectively, with the lowest in the CNN-LSTM in 2-class (marked with asterisks).
However, the overall percentage of difference is 10.7% for CNN-LSTM and 8.9% for GRU.

4.3 Comparative Analysis of Model

Table 8 compares our proposed model implemented in TensorFlow, using deep learning classifiers on
the NSL-KDD, with the comparator model [41] (A Detailed Analysis of the KDD CUP 99 Data Set)
based on K-means classifier, with spark on the NSL-KDD dataset. This is necessary because the model
utilized linear combinations of models in the same way as in our method and was also tested on the same
dataset. There were substantial reductions in terms of model size and processing time as well as marginal
improvements in terms of validation accuracy. Importantly, [33] demonstrated how this response time
could enable attackers to determine whether the target network is using SDN or not to leverage launching
an attack. So, processing time is a good consideration for smart grid network intrusion detection model,
and that justifies the computational speed of our proposed model.
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We went further to a performance comparison of our model with another work using a different
dataset (Kyoto) as shown in table 9. The purpose was to demonstrate performance improvement using
our model since both datasets share very similar attributes/features. The result was that our model showed
proven superiority in both training and validation accuracies as well as computational time. And can
easily detect sophisticated attacks such as “BlackEnergy” [?] etc. Comparing the performances of the
two classifiers (CNN-LSTM and GRU) as shown in Table 8 and Table 9 is basically to determine whether
increase in the model’s depth results to better memorization. The analysis result showed that GRU
and CONV-LSTM networks performed very well on low complexity and high complexity sequences
respectively, as depicted in binary class and multiclass classification tasks.

Figure 6: Plot of validation accuracy over training
iterations in CNN-LSTM 2-class.

Figure 7: Plot of validation accuracy over training
iterations in GRU 2-class
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Figure 8: Plot of validation accuracy over training
iterations in CNN-LSTM 5-class.

Figure 9: Plot of validation accuracy over training
iterations in GRU 5-class

Figure 10: Plot of validation accuracy of CNN-
LSTM in all the classes.

Figure 11: Plot of validation accuracy of GRU in
all the classes

5 Conclusion

We investigated the effectiveness and adaptability of applying the Bayesian deep learning method in
detecting and classifying attacks, termed as zero-day (unknown), capable of causing a systemic manipu-
lation and forgery of meter measurements, or injection of falsified data that could compromise confiden-
tiality of a smart grid network. Firstly, a smart grid network intrusions is modeled as a set of probability
distribution uncertainties, and neural network-based architecture termed ‘SGtechNet’ developed to detect
and classify potential attacks in two different categories. This model combined the flexibility, scalability,
and probabilistic approach to model distribution over the neural networks models’ weights by approxi-
mating the models’ posterior probability with the variational inference. It was demonstrated empirically
that this architecture can easily detect invariants and other resistant adversarial by approximating the pre-
diction distribution over weights in such a way that posterior variational inference distribution is made to
have little or no variation from the true model posterior. SGtechNet is tested on NSL-KDD and synthetic
attack data, and the performance showed robustness and very adaptive to other threat environments that
operates in a real-time. The model size reduction achieved by SGtechNet reduced the inference time and
computer resources than the baseline model, without necessarily affecting the accuracy. Its robustness
was demonstrated through its ability to classify threats in both the binary class and multi-classes with
high-performance accuracy and high computational speed. The network was tested on CNN-LSTM and
GRU classifiers which showed that the CNN-LSTM performed optimally in detecting unknown attacks
in the binary class although it was surpassed by the GRU in terms of multi-class classification. The
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overall comparative analysis showed that the GRU demonstrated the best validation accuracy in both
attack categories. Further analysis to determine the level of variance between the training and validation
accuracies, using Chi-Square test, showed that the variation between the training and validation results
is statistically insignificant. The most significant outcome of this research, however, is the cost effec-
tiveness of the model to real-time applications as well as its adaptiveness. SGtechNet is lightweight, so
it is considered for complex network like smart grid requiring fast-to-evaluate approximation, to hasten
the processing speed of the packets entering the network traffic. In the future, we hope to detect invari-
ants using SGtechNet in a smart grid network traffic modeled outside adhoc networks to mitigate the
challenges encountered in periodic traffic flow.
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