
Towards secure mobile P2P applications using JXME
Marc Domingo-Prieto

Internet Interdisciplinary Institute (IN3)
Universitat Oberta de Catalunya

Carrer Roc Boronat, 117
08018 Barcelona, Spain
mdomingopr@uoc.edu

Joan Arnedo-Moreno∗

Internet Interdisciplinary Institute (IN3)
Universitat Oberta de Catalunya

Carrer Roc Boronat, 117
08018 Barcelona, Spain

jarnedo@uoc.edu

Jordi Herrera-Joancomartı́
Escola Tècnica Superior d’Enginyeria
Universitat Autónoma de Barcelona

Campus de Bellaterra, Spain
jherrera@deic.uab.cat

Josep Prieto-Blázquez
Estudis d’Informàtica, Multimèdia i Telecomunicació

Universitat Oberta de Catalunya
Rambla del Poblenou, 156
08018, Barcelona, Spain

jprieto@uoc.edu

Abstract

Mobile devices have become ubiquitous, allowing the integration of new information from a large
range of devices. However, the development of new applications requires a powerful framework
which simplifies their construction. JXME is the JXTA implementation for mobile devices using
J2ME, its main value being its simplicity when creating peer-to-peer (P2P) applications on limited
devices. On that regard, an issue that is becoming very important in the recent times is being able
to provide a security baseline to such applications. This paper analyzes the current state of security
in JXME and proposes a simple security mechanism in order to protect JXME applications against a
broad range of vulnerabilities.

Keywords: peer-to-peer, security, JXME, JXTA, distributed systems, Java, J2ME

1 Introduction

Peer-to-peer (P2P) applications have become highly popular due to its great potential to scale and the
lack of a central point of failure. Slowly, they have evolved from simple file-sharing environments, such
as Gnutella [10], to more complex ones such as GIS (Geographic Information Systems) or e-learning
[33, 17]. However, currently, Internet has become witness to the transition from a desktop-centric envi-
ronment towards one based on the ubiquity of mobile devices [26]. Therefore, it was natural that the next
step in the evolution of P2P applications would be following this trend [27], since mobile environments
are based on node autonomy and decentralization, just like P2P.

There are different platforms that allow programmers to develop mobile P2P applications [15, 8],
among which JXME [29] can be found, the mobile version of the well known JXTA platform [28]. The
JXTA specification defines a set of generic protocols which allow peers to communicate and publish,
find or consume remote resources, independently of the actual transport layer and the implementation
language. Such protocols are generic enough so they are not bound to a narrow application scope, but
adaptable to a large set of application types. Nevertheless, JXTA was designed with desktop devices in
mind. Thus, JXME was developed in order to allow mobile devices to create standalone mobile JXTA
networks or to participate in a JXTA network using a mobile device.

Journal of Internet Services and Information Security (JISIS), volume: 2, number: 1/2, pp. 1-21
∗Corresponding author: Tel: +34934505342, Fax: +34934505201

1

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

The main characteristic of JXME is that it seriously takes into account the fact that a transition
from a desktop environment to a mobile one requires facing challenges such as maintaining the trade off
between scalability and efficiency, as well as the idiosyncrasies of mobile devices, such as power and
storage limitations. However, the maturity of research in the field of P2P and mobile environments has
pushed through new problems often neglected in a framework’s design: those related with security. Even
under the constraints of limited devices, a security baseline must be kept in any P2P system in order to
protect it against common network vulnerabilities.

Our purpose in this paper is twofold. First of all, we examine the current state of JXME security,
focusing in one of the two existing versions, JXME-Proxied. This study analyses basic peer operations
by taking into account the whole peer life cycle, instead of in an isolated manner. From this study, it is
possible to identify the available security mechanisms and how they operate, which may prove useful to
application developers. Once the current vulnerabilities have been identified, we propose JXME-PLAuth,
a simple protocol that bypass some of JXME’s security shortcomings while still taking into account that
it will be executed on limited devices.

The paper is organized as follows. Section 2, provides a brief overview of the JXME architecture.
In Section 3, we present a security analysis of JXME from a typical peer operation cycle standpoint.
Once current security has been assessed, Section 4 describes our proposal, JXME-PLAuth. The protocol
security is evaluated in Section 5 and Section 6 presents the experimental results on regards to its per-
formance on mobile devices. Finally, Section 7 summarizes the paper’s main contributions and outlines
further work.

2 JXME overview

As the response from the JXTA developer community to accelerate development in the wireless appli-
cations over mobile devices, Sun Microsystems presented a version of JXTA for Java 2 Micro Edition
(J2ME), called JXME, providing JXTA capabilities to mobiles devices [4]. In fact, two distinct versions
were developed, in order to accommodate to a broad set of scenarios. On one hand, the JXME-Proxied
version, with very limied devices in mind, which delegates all heavyweight work to a JXTA super-peer.
On the other hand, the JXME-Proxyless version is a straightforward port of JXTA, where peers may di-
rectly interact with the JXTA network. In this paper, we will mainly focus on the Proxied version, being
the one which actually takes into account mobile device limitations on its protocols and diverging from
the basic JXTA architecture, thus needing special consideration.

JXME is clearly based on JXTA, since they share the same basic specification. A detailed explanation
of JXTA’s generic protocols and services can be found in [30, 20] and in several papers in the literature,
such as [4, 14, 24, 31]. In both JXTA and JXME, the basic organizational foundation is the Peer Group,
a set of peers with common interests which agree on common services. Peer Groups are managed by the
Membership Service, one of JXTA’s core services, which manages the group members’ identities within
the group context. Identities are assigned by successfully completing an authentication process prior to
actually joining the group. The Membership Service is defined as generic in the JXTA specification,
leaving it up to developers to implement their own version, with the security level required by their
applications.

Once a peer has joined a Peer Group, any resource may be shared with other group members by
distributing its associated Advertisement, an XML metadata document describing the resource properties
and how it may be accessed. A network resource cannot be accessed without previously recovering its as-
sociated Advertisement. Advertisements are located and distributed using the Discovery Service. Every
time an Advertisement is retrieved by a peer, it is stored in a local cache and assigned an expiration date.
On that date, the Advertisement will be automatically flushed. Once a resource has been successfully

2

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

located, messaging may begin using JXTA pipes, abstract endpoints which provide an asynchronous
unidirectional communication channel.

Figure 1 shows the main components of the JXME architecture and how their devices are integrated
into a JXTA network. Devices using the Proxyless version may directly communicate with JXTA peers,
whereas those which use the Proxied version version are named Proxied Peers and, since they are as-
sumed to have very limited resources, cannot directly communicate with other peers.

Figure 1: JXME-Proxied architecture

All communications from a Proxied Peer are actually destined to a super-peer which will overcome
its limited capabilities, called Relay Peer, which implements the Relay and Proxy JXTA services. The
Relay Peer assigns JXTA PeerID to the Proxied Peer before it may interact with the JXTA network.
Furthermore, it translates or summarizes requests and responds to queries on its behalf.

The communication between the Proxied and Relay Peer is performed with a simplified protocol
based on HTTP. By default, a single Relay Peer can support up to 150 Proxied Peers. The main responsi-
bilities of the Relay Peer with regards to its Proxied Peers are to listen to and answer requests from them,
translate messages received to XML and retransmit them to the JXTA network, store messages received
from the JXTA network for Proxied Peers and summarize and translate XML messages from the JXTA
network into a simple format which Proxied Peers are able to understand.

Due to its limitations and reliance on a Relay Peer, the kind of operations that a Proxied Peer can
actually execute are limited to a very small set. First of all, Proxied Peers may join a group. Once the
peer has successfully performed this operation, it may interact with other group members by searching
or creating resources (such as Peer Groups or pipes), listening to a pipe to receive data, sending data to
a specific pipe, closing a pipe and polling the Relay Peer for messages from the JXTA network that have
the Proxied Peer as the final destination.

All message exchanges between a Proxied and Relay Peer share a special simple protocol encapsu-
lated using HTTP-POST. To reduce the number of messages sent to the Relay Peer, they are stored in a
queue at the Proxied Peer and each time a poll operation is performed, the first message in the queue is
actually sent to the Relay Peer.

In the communication between a Proxied and Relay Peer each message starts with a special header
where all namespaces are declared, and then is structured as a list of individual elements which contain
the request type and its associated parameters. Every element is formatted as simple text, in contrast
with standard JXTA, which uses XML, and always follows the same syntax. The element fields have the
following order and functionality:

• Starting, a jxel string.

• The element’s namespace identifier, chosen from the ones declared in the message header.

3

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

• An optional flag specifying additional element properties, such as content encoding.

• The element type, which is composed by two sub-fields: the type string length and the type itself.

• The element content, also composed by two sub-fields: the content string length and the type itself.

A sample message, is shown in Figure 2. All elements would actually be sent in a single line, but the
header and each element have been put in different lines and the text has been formatted for the sake of
readability. In this example, for instance, in the first element (second line), the namespace with id 2 is
used, the element type is request (a string 7 characters long), and the content is search (6 characters
long). This means that a search operation is being requested to the Relay Peer. The other elements are
the parameters associated to such kind of request, and will vary depending on the request type.

Figure 2: JXME-Proxied sample message

From this overview of the JXME, focusing on the Proxied version, it is obvious that the need for
Relay Peers is the main design divergence and limitation of this approach from original JXTA. The main
consequences are twofold. First of all, if a set of Proxied Peers join the network using a single Relay
Peer, then a central point of failure is created for all of them. However, and secondly, if a single Proxied
Peer simultaneously connects via different Relay Peers in order to avoid the former pitfall, it will be
assigned a different JXTA PeerId by each Relay Peer. Thus, the Proxied Peer, by simultaneously having
different identities, will be considered as several different peers within the JXTA network.

2.1 Related research on JXME security

As it has been pointed out, security is a key feature in current P2P middlewares. Unfortunately, to our
best knowledge, not many proposals exist in the literature for JXME.

Authors in [22] present an infrastructureless network composed of limited mobile devices called
Mobile Ad hoc NETworks (MANETs). For them, JXME is a significant attempt at designing middleware
for mobile devices.

On regards to the Proxyless version, since it is is a direct, though somewhat simplified, port of JXTA,
supporting the same protocols and architecture, proposals that apply to JXTA also apply to this version,
such as [3]. Nevertheless, an extensive survey on the state of the security in JXTA can be found here [2].

As far as the Proxied version is concerned, Kawulok et al. [14] show a framework which allows
wireless and remote peers to participate in a JXTA network. Authors describe the most interesting
implementation details of the framework as well as all changes made in the JXTA core and JXME
packages. The proposed framework adds a new authentication scheme based on certificates and PKI
[12]. This authentication is provided by the Relay Peer, which uses an external Sign and LDAP Server,
breaking completely the P2P model proposed by JXTA.

4

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

To sum up, JXME-Proxyless version maintains the same structure as JXTA and therefore can inherit
its improvements, such as new security schemes. Oppositely, JXME-Proxied version uses a simplified
protocol and cannot inherit directly security improvements from JXTA. And, to our best knowledge, there
is only one authentication proposal that tries to increase JXME-Proxied security baseline, but provides it
in a centralized manner.

3 JXME-Proxied Security analysis

A global security analysis on standard JXTA already exists in [2]. Since the Proxyless version operates
just like standard JXTA, most of its conclusions apply. However, it does not apply to the Proxied version
because of its divergence from the base JXTA model, by relying some operations on a Relay Peer. There-
fore, we will only focus on analyzing the security degree of the Proxied version. From this study, we
can identify and assess existing vulnerabilities. Nevertheless, the analysis follows the same methodology
proposed in the aforementioned study, where the typical peer life cycle is examined rather than isolated
peer actions.

In order to perform a security assessment, it is useful to identify and categorize the most common
types of attack in P2P networks. All attacks can be divided into two distinct groups, according to the
degree of involvement of the attacker [6]: passive attacks, where the attacker just monitors peer activity
and network traffic, and active attacks, where the attacker purposely interferes with data or network
activity. Each group can be further classified according to the particular action performed by the attacker.

Passive attacks which have been considered are Eavesdropping and Traffic analysis. The former
consists of searching in message exchanges for sensitive information, such as passwords, whereas the
latter analyzes traffic data looking for patterns and relevant peers.

Active attacks include Spoofing, Man-in-the-middle, Replay, Local data alteration and Software se-
curity flaws. Spoofing consists in impersonating another peer. Man-in-the-middle (MitM) intercepts the
communications between two parties transparently relaying forged messages to each one. Replay cap-
tures messages so they can be reused at a later time to simulate a real message exchange initialization.
Local data alteration modifies local data to corrupt the system behavior. Finally, Software security flaws
exploit vulnerabilities due to bugs in the source code, trying to obtain unexpected actions on the software.

This assessment will focus on the communications between the Proxied and Relay Peer, also taking
into account the way a Relay Peer stores and manages its subscribed Proxied Peers’ data. All commu-
nications between the Relay Peer and the rest of the JXTA network operate under the standard JXTA
security model, so it is out of the scope of ths paper since it has been deeply analyzed in [2].

The standard JXME peer general operation cycle can be summarized in the following stages: Plat-
form startup, Peer Group joining, Resource discovery and publication, Message exchange and Discon-
nection. The security analysis follows the actions performed by a Proxied Peer according to this lifecycle.

3.1 Platform startup

The first step during platform startup is loading the JXME libraries into the system. Unfortunately, no
security model has been considered in order to distinguish correct JXME binary releases from another
one with malicious code (Local data alteration).

Once the platform binaries have been loaded, but before a Proxied Peer may join the JXTA network, it
must associate with any available Relay Peer. During this process, according to the JXME specification,
the Relay Peer generates a new peer identifier, PeerId, and sends it back to the Proxied Peer. Such an
identifier is only used within the context of message exchanges between Proxied and Relay Peers and

5

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

has no prevalence in the general JXTA network. At this point a Proxied Peer joins (next operation) to a
default Peer Group, the NetPeerGroup, obtaining a JXTA PeerId.

The PeerId generation process is very important, since the Relay Peer is only able to identify Proxied
Peers by their PeerId. However, we have found that, in the actual implementation, Proxied Peers can
freely generate their own PeerId and connect to the Relay Peer, skipping most of this process. In fact,
due to this occurrence, any peer may trivially impersonate others by self-assigning a PeerId already in
use.

The PeerId generation process is an exception to the JXME-Proxied message format described in
Section 2, since the request is sent using HTTP-GET. An example of an identifier request message is
shown in Figure 3. It can be recognized as such since the PeerId is specified as unknown-unknown in
the GET command.

Figure 3: Proxied Peer PeerId request message

Sending the PeerId requires an initial communication protocol, which makes Proxied Peers very
vulnerable at startup, since the identifier is transmitted in clear text over the network, allowing an attacker
to easily learn it (Eavesdropping). Furthermore, since no authentication exists between a Proxied and
Relay Peer, an attacker can also act as an invisible intermediate with the Relay Peer, redirecting HTTP
messages (Man-in-the-Middle). At this stage, reusing intercepted data (Replay) makes no sense, since
each peer starts the platform only once.

Even though JXME does not take into consideration a secure startup stage, an initial authentication
protocol based on PKI is described in the Trusted Group proposal [14], out of the scope of the JXME’s
specification. The mechanism provides unidirectional authentication, only the Proxied Peer authenticates
the Relay Peer, ensuring it is a legitimate one. However, this authentication is provided using a central
Sign Server and LDAP database, which partially breaks the P2P model.

3.2 Peer Group joining

A Proxied Peer may join any Peer Group through the Relay Peer. As a requisite to proceed with this
process, all group members must agree to use the same Membership Service implementation. This
is achieved by sending a message with a request element which contains the join string. Group
Membership parameters are included in the rest of the message elements.

The default Membership Service implementation in JXME-Proxied is the None Membership Service,
which is used in groups without any kind of authentication, where any peer may claim any identity. It
was designed for applications with no security requirements. As a result, all data exchanges based on
this Membership Service are completely insecure.

Since the information in transmitted messages is sent in clear text, an attacker may discover the group
any Proxied Peer is trying to join (Eavesdropping) and identify important peers by its traffic (Traffic
analysis). Also, an attacker may easily impersonate any peer by claiming the other peer’s identity within
the Peer Group (Spoofing). However, during the join operation, reusing a directly captured message

6

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

(Replay) is pointless since a Proxied Peer can only join once to a Peer Group during a single session.
Therefore, replay attacks are not a real concern.

In order to address some of these vulnerabilities, the proposal in [14] also extends its basic principle
to provide an additional implementation of a Membership Service, external to the JXTA specification.
An authentication mechanism is provided between the Proxied Peer and the Peer Group. However, in
this case, it is based on mutual authentication (the Peer Group itself may also be authenticated). This
authentication is based on certificates from both the Proxied Peer and the Peer Group and an external
Sign and LDAP server.

3.3 Resource discovery and publication

Resource publication and discovery are also fully managed by the Relay Peer. The Proxied Peer just
sends requests, using the HTTP-POST protocol, asking for Advertisements to be created or located.

Unfortunately, as a result of sharing the same simple protocol, an attacker can easily publish false
resources (Spoofing) and modify/delete the Advertisements (Man-in-the-middle) of any other Proxied
Peer, since no authentication is enforced. Any peer may create Advertisements on any other peer’s behalf
at leisure. Furthermore, an attacker can resend captured messages performing the original operation
several times (Replay) in order to produce multiple resource discovery queries.

Finally, Advertisements are transmitted without encryption and can be easily intercepted (Eavesdrop-
ping) by an attacker, which can recognize important peers, those sharing many resources, by analyzing
its traffic (Traffic analysis).

3.4 Message exchange

In JXTA, network messages are exchanged using pipes, briefly introduced in Section 2. Unfortunately,
Proxied Peers are not able to use pipes between them and the Relay Peers. Since pipe usage is a complex
mechanism which requires a non-negligible amount of system resources, it is the Relay Peer which,
again, actually manages pipes, connecting to services in the JXTA network on behalf of the Proxied
Peer. The communication between a Proxied and Relay Peer is performed using HTTP.

Pipe management requests are also based on a generic request element type. The element content
dictates the actual operation: create, to create the pipe, listen, to receive messages, and send, to
send messages. There is no specific element type to receive pipe messages. They are automatically
transmitted from the Relay Peer each time any request is received from the Proxied Peer, along with the
request reply.

As a result, different attacks can be performed: Eavesdropping, Traffic analysis, Spoofing, Man-in-
the-middle and Replay. These attacks mainly allow an attacker to send/receive and sniff messages, as
well as impersonate any peer. Moreover, an attacker can close legitimate peer pipes at will, abruptly
ending message exchanges.

3.5 Disconnection

Before a peer may disconnect from the JXTA network, all pipes should be previously closed. However,
the main limitation at this step is that no operation currently exists in JXME-Proxied for this purpose.
It is also the Relay Peer that has to decide when to unsubscribe a peer from a Peer Group. Therefore
the victim’s PeerId may be easily spoofed, stealing his open pipes, opening new pipes, preventing pipe
disconnection, and using all the groups previously joined.

7

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

Op./Threat Evs TAn Spf MitM Rp LDA SSF
Startup V(2) N/A V(4) V(2, 4) N/A V(1) P(OSS)

P(TGMS) P(TGMS)
Join V(2) V(3) V(4) V(2, 4) N/A N/A P(OSS)

P(TGMS) P(TGMS)
Publish/ V(2) V(3) V(4) V(2, 4) V(4) N/A P(OSS)
Discover
Messaging V(2) V(3) V(4) V(2, 4) V(4) N/A P(OSS)
Disconnect V(2) V(3) V(4) V(2, 4) N/A N/A P(OSS)

N/A: Non-applicable.
V(type): Vulnerability exists.
P(mechanism): Security mechanism used

Table 1: JXME-Proxied peer operation cycle security summary

3.6 JXME-Proxied security evaluation summary

Since JXME-Proxied is Open Source Software (OSS), supported by a community of developers, and
it is also very simple and small, it could be considered relatively safe from Software security flaws.
Furthermore, since Proxied Peers do not store data locally, they are not vulnerable at execution time to
Local data alteration.

The analysis of possible attacks and the existing security mechanisms of JXME-Proxied, classified
by peer operations, provides a vulnerability map summarized in Table 1.

The four main vulnerabilities found are:

• V(1): malicious executable code can easily be built and cannot be automatically discovered when
installed

• V(2): no encryption mechanism exists

• V(3): no data flow masquerading mechanism exists

• V(4): no actual authentication is enforced

The available security mechanisms are:

• P(OSS): Open Source Software

• P(TGMS): Trusted Group Membership Service [14]

4 A secure protocol extension for JXME-Proxied: JXME-PLAuth

The security analysis presented in Section 3 shows that the security mechanisms provided by JXME-
Proxied are still not sufficient to secure standard mobile applications. This is because the current version
is vulnerable to a wide range of attacks. However, some attacks can be prevented by simple schemes that
extend the basic protocols used in JXME-Proxied, adding only a bounded complexity. In this paper, we
present JXME-PLAuth (JXME-Proxied Light Authentication), a proposal to avoid Spoofing and Replay
attacks. This proposal does not try to solve every single vulnerability which was identified, which would
require a much broader set of security mechanisms, but provides a initial protection in the communication
by guaranteeing lightweight authentication. This is the first step in providing a secure mobile framework
for JXME.

The main vulnerabilities found in JXME-Proxied are produced by the insecure communication link
between the Proxied Peer and its associated Relay Peer. For that reason, the proposed scheme tries to

8

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

secure the common message protocol over HTTP between the Proxied and Relay Peer. A secure exten-
sion for this communication protocol is built. Under the assumption that a Proxied Peer is a very limited
device, the proposed protocol extension is based on lightweight cryptographic operations, mainly hash
functions. This approach has been successfully used in other proposals for MANET based environments,
such as [13].

Protection against Spoofing and Replay attacks may be obtained by securely identifying the Proxied
Peer using any well known authentication scheme. Our proposal relies on a lightweight scheme, since the
constrained resources of devices where Proxied Peers are executed must be taken into account. For that
reason, the protection against Spoofing and Replay is obtained not by linking messages to a particular
peer identity but by guaranteeing that, given a set of messages, all come from the same source peer,
whichever that source might be. Thus, once an identifier is assigned, it can be guaranteed no intruder is
able to insert false messages impersonating the source peer. To achieve such goal, we propose the use of
a hash-chain [16] based scheme to create a set of linked values which will be used as local identifiers.

Therefore, we propose a security extension to the basic PeerId generation protocol at the platform
startup stage in order to counter attacks regarding authenticity at every stage in a peer’s lifecycle.

Instead of obtaining a PeerId from the Relay Peer, Proxied Peers generate themselves a sufficiently
long hash-chain (taking into account available resources) and use each intermediate value as its PeerId
in each successive message exchange with its associated Relay Peer. In this way, the PeerId attached in a
message changes for each successive message in a manner that cannot be predicted by a possible attacker.
However, the Relay Peer will be able to easily track identifier changes and recognize each message as
originating from the same source. Using a changing PeerId allows us to use exactly the same original
protocol format, without the need to add additional fields.

4.1 Protocol initialization

The proposed scheme needs an initialization process executed during the Proxied Peer’s startup step and
boot operation. In this process, the hash-chain is created, values are stored in the Proxied Peer’s internal
memory and the first PeerId is transmitted to the Relay Peer.

The detailed initialization process is next described:

(1) At the startup stage, the Proxied Peer chooses a random seed, s.

(2) The Proxied Peer generates a hash-chain hc(s) = {h0(s), · · · ,hn(s)} by iteratively applying n times
the hash function h(·) on s, so that h0(s) = s and hi(s) = h(hi−1(s)). All values in hc are stored in
the peers’ local memory. Figure 4 summarizes this process.

Figure 4: Hash-Chain creation

(3) The Proxied Peer’s initial PeerId, initId, is created from hn(s), fulfilling the JXTA peer identifier
specification. A PeerId may be created from any value in hn(s) according to the following steps
(summarized in Figure 5):

• The PeerId starts with the string uuid−.

• The 16 most significant bytes, msb16(initId), are the NetPeerGroup identifier.

9

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

• From the 16th to the 31st byte the Peer UUID (from now on, summarized as as PUUID) is
specified. The 16 least significant bytes of the hash value, lsb16(hn(s)), are assigned.

• The 32th byte describes the ID type identifier. In this case, being a PeerId, the value 0x03 is
assigned.

Figure 5: initId generation

(4) A PeerId request message is sent to the Relay Peer using its well-known address. However, instead
containing an unknown-unknown string, as would be used in the original insecure protocol, initId
is announced.

(5) When the request is received, the Relay Peer randomly generates a new JXTA PeerId, jxtaID1, as
would be done in standard JXME. At this point, the Proxied Peer is considered associated to the
Relay Peer.

(6) The Relay Peer keeps track of the identifiers for its possible different Proxied Peers in a local
translation table Tproxied that contains two fields: lastId and globalId. The former contains
PeerId’s and the latter JXTA PeerId’s. The Relay Peer translates local PeerId’s to JXTA ones (as
explained in Section 2) when acting as some Proxied Peers behalf in the JXTA network. At this
point a new entry is added to the table, lastId = initId and globalId = jxtaID1, where initId is
considered the entry’s key.

4.2 Protocol execution

After the initialization process has been performed, secure communication between the Proxied Peer and
the Relay Peer can begin. Each message will use a new PeerId generated from the successive values ex-
tracted from the hc(s). These values are retrieved in the descending order from their generation, starting
from hn−1(s) and ending in s. That is, in the second message, the Proxied Peer will use the identifier:

newId = ”uuid− ”||NetPeerGroupUUID||lsb16(hn−1(s))||”03”

In general, the j-th message between the Proxied and the Relay Peers will contain the identifier:

newId = ”uuid− ”||NetPeerGroupUUID||lsb16(hn− j+1(s))||”03”

The identifier consumption from hc(s) and the translation between the changing PeerId and the static
JXTA PeerId is represented in Figure 6. To simplify this figure the identifier is represented as the PUUID
part of the Proxied Peer identifier, which is the only one which varies at each message exchange.

The verification process is executed at the Relay Peer, validating that all successive messages come
from the same Proxied Peer. This validation may be actually performed since, assuming that lastPUUID
is the PUUID section in the identifier from the last message sent from the Proxied Peer (stored in the

10

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

Figure 6: Hash-Chain consumption and identifier translation

lastId field of Tproxied), then the PUUID section from the current message’s identifier, currentPUUID,
must hold true that:

h(currentPUUID) = lastPUUID

The detailed verification process for the PUUID of the j-th message follows:

(1) The Relay Peer takes the message identifier currentId.

(2) The PUUID section of the identifier, currentPUUID, is extracted from currentId.

(3) If currentPUUID matches with Tproxied’s lastId field, it means that someone is trying to perform
a spoofing or replay attack. Therefore, this petition is obviated. Otherwise, the authentication
protocol continues.

(4) The Relay Peer calculates h(currentPUUID). From this value a PeerId is generated following the
steps described in Figure 5.

(5) The result is looked up among the currently stored values in Tproxied’s lastId field.

(6) If a match exists, the message is not a result of spoofing or a replay attack, since no other peer
would be able to predict the currentPUUID (hn− j+1(s)) from lastPUUID (hn− j+2(s)) and use it as
a portion of the message identifier. Only the legitimate hash-chain generator is able to calculate it,
from its hash-chain.

(7) The Relay Peer stores currentId into Tproxied replacing the old value matched in step (5). It be-
comes the entry’s new key.

(8) If, as a result of the received request, the Relay Peer needs to send messages towards the JXTA
network on behalf of the Proxied Peer, the value stored in the globalId field is used.

4.3 Hash-chain refresh

When a hash-chain is about to reach s, a new one must be generated and its initial value refreshed at the
Relay Peer so the new hash-chain values may be used. s will be used as the PUUID part of the PeerId in
the refresh message. To allow this process, the set of operations that a Proxied Peer can perform using
HTTP-GET is extended with a renew command. This new parameter is used to announce a refresh in

11

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

the hash-chain, containing as its associated parameter the new Id:

”uuid− ”||netPeerGroupUUID||hn(newSeed)||”03”

When the Relay Peer receives any message which contains a renew command, in step 6 of the verifi-
cation process, its content value (newId) is the one stored instead of the message’s currentId, initializing
the new set of local identifiers.

As it has been mentioned before, the proposed approach avoids Spoofing and Replay attacks. Further-
more, this proposal minimizes the modifications of the JXME protocols, since no additional request
type is defined. The renew command piggybacks inside any other naturally occurring request, such as
a listen request, just like an additional parameter, and will be processed along the original request.
Therefore, there is no need to send a single message with the sole purpose of transmitting hash-chain
data, reducing the overhead by taking advantage of existing transmissions. Furthermore, while no refresh
is needed, the secure scheme does not even impact on the HTTP-GET protocol, since the peer identifier
field is invisibly used, instead of using additional message element types.

On regards to the computational cost of this proposal, it is worth mention that the only cryptographic
operations used are hash value computations. Hash values are lightweight cryptographic operations
which can be efficiently computed even in constrained devices.

5 JXME-PLAuth security evaluation

JXME-PLAuth adds simple mechanisms to provide protection against Spoofing and Reply attacks. Other
attacks, such as Man-in-the-middle attacks, are not protected. This is because our proposal tries to be as
simple as possible. Also, these attacks are not expected in some scenarios, such as when communications
are direct.

The mechanism used to renew the hash-chain is authenticated using the same mechanism of hash-
chain identifiers, therefore it is as secure as normal authentication using hash-chains.

Some messages can be lost, this can be solved in several ways [23, 7]. An easy integration of this
mechanism in JXME-PLAuth can be done by adding a new parameter in exchanged messages containing
the position of the peer identifier in its hash-chain. Also, the Relay Peer has to store and maintain updated
this new information in its local translation table. Then, when the Relay Peer receives a message which
contains a peer identifier that does not match in the local translation table, it can perform further hashes
based on the identifier and the position in the hash-chain. If a matching is produced means that a previous
message has been lost, but by this mechanism the local table is updated and further messages of this
Proxied Peer can still be secure authenticated.

A security analysis similar as the one performed in Section 3 is conducted to our security proposal,
JXME-PLAuth. This analysis follows the same methodology as before and just the security in the com-
munications between the Proxied and the Relay Peer are analyzed.

5.1 Platform startup

In this stage the Proxied Peer becomes linked with its Relay Peer. Now it is safe of Spoofing attacks,
since no other peer can authenticate itself impersonating another peer.

If one Peer tries to do so, it is going to receive an error. This is explained in Section 4.2. Peers can
know current identifiers of other peers but cannot predict their next identifiers and therefore peers are
secure authenticated.

There are two possible scenarios potentially prone to suffer security threads:

12

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

(1) Two Proxied Peers use the same identifier but in different Relay Peers.

(2) A Proxied Peer (P1) is authenticated in a Relay Peer (R1). Another Proxied Peer (P2) capture P1’s
identities and authenticate itself in R1 but always using the previous identifier of P1.

Both scenarios are extreme but possible cases. To understand how this protocol deal with these
scenarios is important to have in mind Figure 6, where is shown that there are two identifiers: One
internal identifier between the Proxied Peer and the Relay Peer, and one global identifier inside the
JXTA Peer Group. This analysis, and in general all the paper, is only focused on the first identifier, the
internal one.

In the first scenario both Proxied Peers will have the same internal identifier but in different Proxied
Peers. And these peers will probably have different JXTA identifiers, but this is responsibility of the
JXTA Membership Service, outside of the scope of this analysis. Therefore, secure authentication is
provided.

In the second scenario both Proxied Peers (P1 and P2) will be authenticated at the same Relay Peer.
At any moment, P1 will have its identity based on hi(s) while P2 in hi+1(s) (previous P1’s identifier).
Therefore, both internal identifiers are different. P2’s identifier must always come, at minimum, one step
before P1’s identifier, otherwise P2 is going to receive an error when authenticating. Also, as previous
scenario, the JXTA identifier of both peers should be different.

5.2 Peer Group joining

A Proxied Peer has to send a message to its Relay Peer in order to request to join a Peer Group. In this
case, this operation is protected against Spoofing attacks since only the Proxied Peer can know the next
identifier in the hash-chain.

5.3 Resource discovery and publication

This operation is also performed by a Proxied Peer by sending a message to its Relay Peer. In this case
the Proxied Peer is also secured from spoofing attacks since non other peer different than it can send
a message with its next identifier to its Relay Peer to find or create a resource in its behalf. Also, the
message is protected against Replay attacks since when a message is resend with the same identifier, the
Relay Peer will discard it.

5.4 Message exchange

Performing this operation produces a similar message as the previous step. In this case, Spoofing and Re-
play attacks are as well secured since no one knows Proxied Peer’s next identifier and captured packages
will be discarded by the Relay Peer if replayed.

5.5 Disconnection

In this operation, when a Proxied Peer decides to leave the network, it still does not have a specific
operation to remove completely all its information stored in its Relay Peer. But using this authentication
scheme prevents that other peers could perform Spoofing attacks, like closing its open pipes. Also,
this mechanism guarantees that when a Proxied Peer disconnects from the network no one can steal its
information contained in its Relay Peer. This is because the authentication scheme will remain working
until the Relay Peer decides to remove Proxied Peer’s data.

13

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

Op./Threat Evs TAn Spf MitM Rp LDA SSF
Startup V(2) N/A P(JXME V(2) N/A V(1) P(OSS)

-PLAuth) P(TGMS)
P(TGMS)

Join V(2) V(3) P(JXME V(2) N/A N/A P(OSS)
-PLAuth) P(TGMS)
P(TGMS)

Publish/ V(2) V(3) P(JXME V(2) P(JXME N/A P(OSS)
Discover -PLAuth) -PLAuth)

Messaging V(2) V(3) P(JXME V(2) P(JXME N/A P(OSS)
-PLAuth) -PLAuth)

Disconnect V(2) V(3) P(JXME V(2) N/A N/A P(OSS)
-PLAuth)

N/A: Non-applicable.
V(type): Vulnerability exists.
P(mechanism): Security mechanism used

Table 2: JXME-Proxied using JXME-PLAuth extension peer operation cycle security summary

5.6 JXME-PLAuth security summary

The security analysis presented in this section verify that our security proposal JXME-PLAuth provides
an enough strong authentication mechanism that prevents Proxied Peers from Spoofing and Replay at-
tacks. From Table 1,

Table 2 has been generated in order to summarize this analysis. It shows that the vulnerability
produced by the lack of an authentication scheme (V(4)) has been patched. Therefore, those attacks that
were allowed only due to this vulnerability are avoided.

6 JXME-PLAuth experimental results

Some real experiments were done to test how the proposed security improvement to the JXME-Proxied
framework impacts its overall behavior. The actual performance of our proposal implementation has
been evaluated by assessing how the protocol extensions in this new security scheme would affect a
Proxied Peer in terms of resource utilization. A mobile device acts as a Proxied Peer and a computer acts
as a Relay Peer in these tests.

The mobile device needs network connectivity to exchange data with the Relay Peer and an open
operating system which allows the execution of J2ME applications and obtaining information about the
state of its resources, such as memory or battery usage. There are many operating systems for mobile
devices, such as iOS [1], WebOS [21], Windows Phone 7 [19] or Android OS [11], but the one that
fulfilled most our requirements was the Android OS. The main reason is the fact that this mobile operating
system is based in a modified version of the linux kernel, which allows a high degree of customization
and direct access to device resources. In addition, Android OS is becoming very popular and is being
used in a large range of devices. Finally, although it does not allow to natively run J2ME applications,
it natively supports Java. But, since native Android OS applications are being more popular than J2ME
ones, it motivates us in spending some effort in customizing JXME-Proxied to be able to execute it in
the large amount of devices that run Android OS.

The mobile phone chosen was the HTC Hero. This device was one of the most popular Android
mobile phones at the moment of selecting a device for our tests but compared with new mobile phones
its hardware is obsolete. Therefore, if JXME-PLAuth can be handled by this device, new devices will
deal with it better. The HTC Hero has a processor Qualcomm MSM7200A 528 MHz, 512 MB of ROM,

14

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

288 MB of RAM, display of 3.2-inch TFT-LCD touch-sensitive with 320x480 HVGA resolution, Wi-Fi
IEEE 802.11 b/g and rechargeable Lithium-ion battery with 3.7 V and 1350 mAh of capacity.

On regards to the computer, it has to be powerful enough to act as a Relay Peer and addressable,
to receive communications from the Proxied Peer. Most of today’s computers meet these requirements.
The chosen computer has been a laptop computer, a MacBook Pro, which can be addressed through Wifi
or Ethernet.

The communication channel used was Wi-Fi, since it is the one shared between both devices, and a
wireless router was used in order to connect them.

The tests have to provide an idea of the overhead produced in a Proxied Peer implementing security. It
is also assumed that a minimum overhead will be produced in the Relay Peer, but since it is expected that
it has enough capabilities to deal with the extra work, these tests are not going to focus on it. The main
test consisted in assess the behavior of a real JXME-Proxied application, a chat application, comparing
a version which implements security with one which does not.

6.1 Test application

This test assessed the impact of the proposed security mechanism in a real application. The goal of this
test is to detect the general influence of using security in the JXME messaging service.

The default JXME-Proxied distribution comes with a couple of sample applications to show the
potential of this framework. One of these applications is a simple chat, which allows Proxied Peers to
exchange messages between them.

This chat was chosen as the application for this test for many reasons:

• Message exchange is a typical operation in mobile devices. Until recently, this operation has been
done using Short Message Service (SMS).

• With the extension of having access to the Internet network from mobile devices, some chat appli-
cations [32, 18] are getting really popular in this environment.

• This application is focused in communication rather than in computation, which allows an inten-
sive test of JXME.

• The core structure of a chat application is simple.

However, since this chat is written in J2ME language and the Android OS cannot run it directly, some
modifications have been performed. This is because while Android applications are written in Java, there
is no Java Virtual Machine in the platform and Java bytecode cannot be executed. Java classes get re-
compiled into a Dalvik executable and run on a Dalvik virtual machine. Dalvik is a specialized virtual
machine designed specifically for Android and optimized for battery-powered mobile devices with lim-
ited memory and CPU. The modifications done in this chat application are basically the graphical user
interface (GUI) and the J2ME framework specification used in the class responsible of the communica-
tion, the HttpMessenger Java class.

JXME-Proxied supports both CLDC and CDC J2ME frameworks specifications. The use of a differ-
ent framework specification only affects in the HttpMessenger class, which is the one responsible for the
communication. By default, JXME-Proxied uses CLDC, but Android does not support the classes used.
Fortunately, all the classes used in CDC are supported by Android. Therefore, in our chat application, we
have chosen the CDC version of the HttpMessenger class. Theoretically, all versions of this class should
have worked properly, but the tests performed showed that the CDC version was not working correctly.
However, after some small changes (always using the CLDC version as a model) the behavior of this
class was fixed.

15

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

In this test the measured and compared resource was the battery consumption. Figure 7 shows some
snapshots of the chat application running in Android.

Figure 7: Chat Proxied GUI

6.1.1 Experimental results

This test measures the impact of JXME-PLAuth in a real application. Some considerations were taken:

• Screen light: Set to the minimum, since it is enough in most of the environments.

• Message exchange rate: A chat application is used in this test and we want to run it according to
an average usage. This data is extracted from [5], where an analysis of the typical characteristics
in instant messaging is conducted. The conclusion is that, typically, a message is sent each 10
seconds and the average size of each message is 32 chars.

• Hash function: SHA1 [9] has been used as the hash function, but any other hash function can be
used.

The main test compares the application with and without security. In both cases the time interval
between polls (operation performed by the Proxied Peer to send and receive messages to/from the Relay
Peer) has to be defined. When security is activated, the size of the hash-chain also has to be specified.

Based on the poll time used in sample applications, and the time it takes to compute hash-chains of
different sizes , the poll interval values that are considered significant are 1, 5 and 10 seconds (15 seconds
are not considered since in this application the time between sent messages sent is 10 seconds). Different
hash-chain sizes can be used for each test, but a logical restriction has been applied: The maximum
time required to compute the hash-chain must be smaller to the time between polls. Table 3 shows the
different possible combinations.

In Figure 8 the accumulated energy consumption of the chat application when using security and
different time poll intervals and hash-chain sizes is presented (just trend lines are shown for the sake of

HC size
Poll interval (s) 50 250 500
1 X × ×
5 X X ×
10 X X X

Table 3: Combination of values of time between poll intervals and size of hash-chain used for the tests

16

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

readability). This shows that, in general, increasing poll time intervals and hash-chain sizes decreases
the consumption of the battery. Having a constant hash-chain size and increasing the poll time interval
always decrease the consumption. If the hash-chain size is 50 the percentage decrease of consumption
for 1 and 5 seconds of poll interval is 10,77%, and for 5 and 10 seconds is 55,54%. Whereas when
using a hash-chain of 250 elements the percentage decrease of consumption is 84,28% for 5 and 10
seconds. But having a constant poll time and increasing the hash-chain size not always decreases the
battery consumption. If we use a poll interval of 5 second, the percentage decrease of consumption is
1,14% for hash-chains of 50 and 250 elements (this small difference between these two scenarios causes
that in the Figure 8 both green lines are overlapped). And if 10 seconds is used, the percentage decrease
of consumption is 17,15% for hash-chains of 50 and 250 elements, and -49,81% for hash-chains of 250
and 500 elements. The increase of consumption in this last case we think that is caused because the hash-
chain is too big and does not fit into the L1 cache of the mobile phone (32 KB) and therefore more energy
and time is required to calculate and consume the hash-chain. These values indicate that increasing the
poll time intervals has higher impact in decreasing the consumption than increasing the hash-chain size.

It shows that renewing less and computing a longer hash-chain is more efficient than doing it more
frequently.

Figure 8: Accumulated consumption when running the chat application with security and different poll
intervals and hash-chain sizes

To provide some perspective on energy consumption, the device’s battery capacity is 1350mAh and
its voltage is 3.7V. Just multiplying both values (converting the hours to seconds) we get that the battery
has about 17982 Joules. When the device is functioning at maximum bright screen, the consumption is
22,5 J/min, which amounts to 6750 Joules/5hours, 13500 J/10h or 20250 J/15h. Therefore, even in the
most intensive scenario (P1s HC50), the consumption is very similar to having the device idle with the
maximum bright screen.

Figure 9 compares the accumulated battery consumption between using security or not in JXME-
Proxied when running the chat application at different poll time intervals. When security is used, the
hash-chain size which produces the better result in terms of battery usage is chosen for the different poll
time intervals. This figure shows that in general the overhead produced by utilizing security is low. This
overhead was expected because some security measures were used, but this impact also depends on the
poll time. The percentage increase of consumption when using security and 1, 5 or 10 seconds as poll
time interval is respectively 0,86, 48,77 and 2,3. And in the worst case, 5 seconds, the overhead produced
can be reduced by playing with the size of the hash-chain.

17

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

Figure 9: Accumulated consumption when running the chat application with security (continuous line)
and without security (dashed line)

6.2 Evaluating the performance compared to HTTPS

All previous performance experiments have been done over our light authentication proposal, JXME-
PLAuth. But is also important to compare the obtained results with the overhead produced with one of
the typical authentication scheme, such is HTTPS [25]. Fist of all, It has to be pointed out that HTTPS
additionally of guaranteeing authentication also provides encryption. But a trusted entity is required to
manage certificates to guarantee this security level.

A experiment was conducted in order to compare the behavior of the system when using HTTPS in-
stead of simple HTTP in the same scenario used in Section 6.1. The results showed that while the battery
consumption of using HTTPS instead of HTTP is quite similar, the time required to perform HTTPS is
enormous. Establishing connection and sending data in HTTP in average only took 0.5 seconds, while
in HTTPS it took 26 seconds.

6.3 Tests conclusions

Previous tests analyze the impact caused by using security in mobile devices. These tests show that
in general the overhead produced by JXME-PLAuth is low and acceptable. This overhead depends
basically on the time between polls and the size of the hash-chain used. Increasing the time between
polls always reduce the overhead. However, increasing the size of the hash-chain does not always reduce
the overhead. For this reason, is important to chose a long hash-chain in order to reduce the times
the hash-chain has to be renewed, but not too long that modify memory access patterns. Using higher
authentication schemes, such as HTTPS, produces an important overhead, which justify the usage of
simpler authentication schemes.

7 Conclusions and Future Work

JXME is the JXTA simplification that allows to run P2P applications using the JXTA milddleware when
some peers are mobile devices with computational constraints. As we have analyzed in this paper, such
simplification takes an extreme effect in the JXME-Proxied version, where the mobile device constraints
imply that some of the tasks cannot be performed by the platform installed in the mobile peer and should

18

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

be delegated to a Relay Peer with more computational resources.
From the security point of view, we have performed an analysis that shows the relevance of the link

between the Proxied Peer and its Relay Peer. Without properly securing such link, a wide range of attacks
can be performed, from passive attacks, like Eavesdropping or Traffic analysis to more active ones such
as Spoofing, Replay or Man-in-the middle.

The security analysis performed has allowed us to understand the nature of such vulnerabilities and
then we have been able to provide an effective mechanism that allows to protect the communication be-
tween the Proxied Peer and its Relay Peer from Spoofing and Replay attacks. The obtained protection
has been achieved using the concept of hash-chain in order to offer linkability between different com-
munication sessions performed between the Proxied Peer and the Relay Peer. Using the onewayness of
hash functions, linkability can be obtained at a low computational cost.

Such computational saving is translated in an affordable energy consumption, a really important
feature when dealing with mobile devices. As it has been shown in the presented experimental results,
in a standard mobile application like a messaging service running over an Android OS mobile device the
inclusion of the proposed security mechanism does not impact significantly on the energy consumption
of the device. Furthermore, the proposed solution does not imply to define new message protocols in
JXME, since it can be implemented using standard JXME messages.

As we have discussed, other attacks rather than Spoofing and Replay can be performed on a JXME-
Proxied implementation, and for that reason further research has to be performed in order to achieve the
desired protection, a difficult task since the obtained solutions must be consistent with the constrained
computational environment of a Proxied Peer device.

Acknowledgments

This work is partially supported by the Spanish Ministry of Science and Innovation and the FEDER
funds under the grants TSI2007-65406-C03-03 E-AEGIS, CONSOLIDER CSD2007-00004 ARES and
TIN2010-15764 N-KHRONOUS.

References
[1] Apple Inc. iOS. http://www.apple.com/ios/, 2008.
[2] J. Arnedo-Moreno and J. Herrera-Joancomartı́. A survey on security in JXTA applications. Journal of Systems

and Software, 82(9):1513–1525, 2009.
[3] J. Arnedo-Moreno and J. Herrera-Joancomartı́. JXTA resource access control by means of advertisement

encryption. Future Generation Computer Systems, 26(1):21–28, 2010.
[4] A. Arora, C. Haywood, and K. Pabla. JXTA for J2ME, extending the reach of wireless with JXTA technology.

Technical report, SUN Microsystems, Inc, March 2002.
[5] D. Avrahami and S. E. Hudson. Communication characteristics of instant messaging: effects and predic-

tions of interpersonal relationships. In Proc. of the 20th Anniversary Conference on Computer Supported
Cooperative Work (CSCW ’06), Banff, Alberta, Canada, pages 505–514. ACM Press, November 2006.

[6] D. Brookshier, D. Govoni, N. Krishnan, and J. Soto. JXTA: Java P2P Programming - Chapter 8: JXTA and
Security. Sams, 2002.

[7] C. Cano, M. Guerrero, and B. Bellalta. Secure and efficient data collection in sensor networks. In Proc. of 4th
International Workshop of the EuroNGI/EuroFGI Network of Excellence, LNCS, Barcelona, Spain, volume
5122, pages 37–48. Springer-Verlag, January 2008.

[8] B. Christensen. Experiences developing mobile P2P applications with lightpeers. In Proc. of the 6th IEEE
International Conference on Peer-to-Peer Computing (P2P’06), Cambridge, UK, pages 229–230. IEEE,
September 2006.

19

http://www.apple.com/ios/

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

[9] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). IETF RFC 3174, September 2001. http:
//www.ietf.org/rfc/rfc3174.txt.

[10] J. Frankel and T. Pepper. Gnutella. http://rfc-gnutella.sourceforge.net, 2000.
[11] Google Inc. Project Android’. http://code.google.com/intl/es/android, 2007.
[12] R. Housley, W. Ford, W. Polk, and D. Solo. Internet x.509 public key infrastructure. IETF RFC 2459, January

1999. http://www.ietf.org/rfc/rfc2459.txt.
[13] H. Janzadeh, K. Fayazbakhsh, M. Dehghan, and M. Fallah. A secure credit-based cooperation stimulating

mechanism for MANETs using hash chains. Future Generation Computer Systems, 25(8):21–28, 2009.
[14] L. Kawulok, K. Zielinski, and M. Jaeschke. Trusted group membership service for JXME (JXTA4J2ME). In

Proc. of IEEE International Conference on Wireless And Mobile Computing, Networking And Communica-
tions (WiMob’05), Montreal, Quebec, Canada, volume 4, pages 116–121. IEEE, August 2005.

[15] G. Kortuem. Proem: a middleware platform for mobile peer-to-peer computing. Mobile Computing and
Communications Review - SIGMOBILE, 6(4):62–64, 2002.

[16] L. Lamport. Password authentication with insecure communication. Communications of the ACM,
24(11):770–772, November 1981.

[17] K. Matsuo, L. Barolli, F. Xhafa, A. Koyama, and A. Durresi. Implementation of a JXTA-based P2P e-learning
system and its performance evaluation. International Journal of Web Information Systems, 4(3):352–371,
2008.

[18] Meebo Inc. Meebo. http://www.meebo.com/android/, 2008.
[19] Microsoft. Windows Phone 7. http://www.microsoft.com/windowsphone/, 2010.
[20] Oracle. JXTA java standard edition v2.5: Programmers guide. https://jxta-guide.dev.java.net/,

2007.
[21] Palm Inc. WebOS. http://developer.palm.com/, 2009.
[22] G. Paroux, I. Demeure, and D. Baruch. A survey of middleware for mobile ad hoc networks. Technical

Report Technical Report 2007/D004, Ecole Nationale Supérieure des Télécommunications, 2007.
[23] A. Perrig, R. Canetti, and I. T. J. Watson. Efficient authentication and signing of multicast streams over lossy

channels. In Proc. of the 2000 IEEE Symposium on Security and Privacy (SP’00), Berkeley, California, USA,
pages 56–73. IEEE, May 2000.

[24] T. Piedrahita and E. Montoya. Performance analysis of JXTA/JXME applications in hybrid fixed/mobile
environments. Revista Colombiana De Computación, 7(1):5, 2006.

[25] E. Rescorla. HTTP Over TLS. IETF RFC 2818, May 2000. http://tools.ietf.org/html/rfc2818.
[26] L. Shou, X. Zhang, P. Wang, G. Chen, and J. Dong. Supporting multi-dimensional queries in mobile P2P

network. Information Sciences, 181(13):2841–2857, 2011.
[27] Skype. Skype on your mobile. http://www.skype.com/mobile, 2004.
[28] Sun Microsystems. Project JXTA. http://www.jxta.org, 2001.
[29] Sun Microsystems. Project JXME. https://jxta-jxme.dev.java.net, 2003.
[30] Sun Microsystems. JXTA v2.0 protocols specification. https://jxta-spec.dev.java.net/nonav/

JXTAProtocols.html, 2007.
[31] T. Tahsin, L. Choudhury, and L. Rahman. Peer-to-Peer mobile applications using JXTA/JXME. In Proc.

of the 11th International Conference on Computer and Information Technology (ICCIT’08), Busan, Korea,
pages 702–707. IEEE, December 2008.

[32] WhatsApp Inc. WhatsApp. http://www.whatsapp.com/, 2009.
[33] J. Zhu, J. Gong, W. Liu, T. Song, and J. Zhang. A collaborative virtual geographic environment based on P2P

and Grid technologies. Information Sciences, 177(21):4621–4633, 2007.

20

http://www.ietf.org/rfc/rfc3174.txt
http://www.ietf.org/rfc/rfc3174.txt
http://rfc-gnutella.sourceforge.net
http://code.google.com/intl/es/android
http://www.ietf.org/rfc/rfc2459.txt
http://www.meebo.com/android/
http://www.microsoft.com/windowsphone/
https://jxta-guide.dev.java.net/
http://developer.palm.com/
http://tools.ietf.org/html/rfc2818
http://www.skype.com/mobile
http://www.jxta.org
https://jxta-jxme.dev.java.net
https://jxta-spec.dev.java.net/nonav/JXTAProtocols.html
https://jxta-spec.dev.java.net/nonav/JXTAProtocols.html
http://www.whatsapp.com/

Towards secure mobile P2P applications using JXME
Domingo-Prieto, Arnedo-Moreno,

Herrera-Joancomartı́, and Prieto-Blázquez

Marc Domingo-Prieto holds the degree of Computer Systems and the master in Com-
puter Architecture, Networks and Systems from Universitat Politècnica de Catalunya
(UPC). He is doing his phd at Worldsensing company about wireless sensor networks
(WSN) communications security. Also, he is a research assistant in the Kryptography
and Information Security for Open Networks (KISON) research group in the Open
University of Catalonia (UOC). His research interests include scalable distributed al-
gorithms and applications, energy efficient and security in WSN, mobile and peer-to-

peer applications.

Joan Arnedo-Moreno is a lecturer at Estudis d’Informàtica, Multimimèdia i Tele-
comuncicació in the Open University of Catalonia (UOC) and works as a part-time
assistant at the Universitat Politènica de Catalunya (UPC). From the latter, he earned
his degree in Computer Science in 2002 and his Ph.D. degree in 2009. He has pub-
lished several papers in international conferences and journals and has been invited
as keynote speaker at several conferences. Both his teaching and research interests
are related to the fields of networking and security, more specifically in peer-to-peer

systems.

Jordi Herrera-Joancomartı́ is an associate professor at Department of Information
and Communications Enginneering in the Universitat Autòma de Barcelona. He is
graduated in Mathematics by Universitat Autòma de Barcelona in 1994 and he re-
ceived his Ph.D. degree in 2000 from Universitat Polit?nica de Catalunya. His re-
search interests include topics in the field of computer security and more precisely in
privacy in social networks and security in distributed networks and RFID systems. He
has published more than 80 papers in national and international conferences and jour-

nals and he has been main researcher in several research projects. He is now with the SeNDA research
group.

Josep Prieto-Blázquez completed his Ph.D. degree in Computer Science in 2009
from the Universitat Oberta de Catalunya and received his Masters in Computer Sci-
ence from the Universitat Politecnica de Catalunya in 1993. Since 1998 he has worked
as a lecturer in the department of Computer Science, Multimedia and Telecommuni-
cation at the Universitat Oberta deCatalunya, where he has been a Director of the
Computer Engineering (CE) programmesince 2001 and a Vice-Dean, in the same de-
partment, since 2009. His line of research centres on exploratory and application

technology in the field of ICT. He has also participated in the wireless, free software and virtual learning
environments projects and he is also a member of the Kriptography and Information Security for Open
Networks (KISON) research group.

21

	Introduction
	JXME overview
	Related research on JXME security

	JXME-Proxied Security analysis
	Platform startup
	Peer Group joining
	Resource discovery and publication
	Message exchange
	Disconnection
	JXME-Proxied security evaluation summary

	A secure protocol extension for JXME-Proxied: JXME-PLAuth
	Protocol initialization
	Protocol execution
	Hash-chain refresh

	JXME-PLAuth security evaluation
	Platform startup
	Peer Group joining
	Resource discovery and publication
	Message exchange
	Disconnection
	JXME-PLAuth security summary

	JXME-PLAuth experimental results
	Test application
	Experimental results

	Evaluating the performance compared to HTTPS
	Tests conclusions

	Conclusions and Future Work

