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Abstract

The goal of a fault injection attack is to extract a secret key which is embedded in a cryptographic
device by injecting a fault during execution of the algorithm. In particular, an attacker can extract
the master key of the advanced encryption standard (AES) using only a one-byte fault injection. We
propose a new countermeasure method resistant to fault injection attacks by checking the differential
byte of the input and output in the encryption process and key expansion process, respectively. Based
on the result of computer simulations and practical experiments, we suggest that our proposed AES
implementation against fault attack has a superior error detection ability and improved efficiency
compared with previous existing methods.

Keywords: fault attack, countermeasure, AES, differential characteristic

1 Introduction

Many hardware implementations of cryptographic algorithm can be countered by various physical at-
tacks, especially fault injection attacks. A fault injection attack on a block cipher algorithm is usually
referred to as a differential fault analysis(DFA). These DFA attacks are actually a security threat for
cryptographic devices in which the secret key for encryption is embedded. The focus of a DFA attack
is to retrieve the secret key by analyzing the differences between the pair of correct and faulty outputs
obtained from a malicious error injection during execution of the algorithm. The DFA was first proposed
in 1997 by Biham and Shamir as an attack on DES [2]. Similar attacks have been proposed for AES
[15, 7, 13, 16], Triple-DES [8], and CLEFIA [4]. Especially, the AES [10] has been considered the main
target of DFA attacks because of its popularity and as a representative of a block cipher.

Most DFAs on the AES can be roughly classified into two types according to the injected location
of the fault model. In the first type of DFA, the intermediate data during the encryption is the target
to be corrupted by fault injection. Attackers use a fault propagation property in which a one-byte fault
injected before the MixColums function is diffused in the next four bytes by the MixColums function. As
an example of a well-known DFA result based on this fault model, the fault attack described by Piret and
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Quasiquater allows the extraction of a 128-bit secret key from two pair of correct and faulty outputs with
computation complexity of about 240 [15].

The second type is considered a fault propagation of the key expansion process. A fault injected
during the key expansion process passes through the three transformations of the key expansion and also
affects the AddRoundKey of the encryption process. Then a modification of the fault injected into the
key expansion process and a diffusion during the encryption process are analyzed. Giraud first proposed
a fault attack in which a one-bit fault on the encryption process or a one-byte fault on the key expansion
process can reveal the entire secret key [7]. In 2008, Kim and Quisquater introduced an enhanced method
to find the secret key with 8 pairs of correct and faulty output by a fault injection during the key expansion
process [13]. Recently, Tunstall et al. proposed DFA attacks in which a secret key can be extracted by
only a one-byte fault on the encryption process [16].

Various countermeasures have been introduced to protect AES implementation against DFA attacks.
At first, concurrent error detection (CED), which decrypts an ciphertext to compare with the original
plaintext, was introduced in terms of a hardware countermeasure [12]. Thereafter, many studies proposed
software-based countermeasures including the use of parity bit [11, 1, 17], CRC method [18], and error
detection methods based on the relation of the input and output of the multiplicative inversion [14, 6].
However, previous existing methods have a large amount of overhead when performing error detection,
and their error detection rates have been unsatisfactory.

In this paper, we present a new countermeasure method to prevent DFA attacks on AES efficiently.
Our proposed method is an error detection method that inspects the difference characteristic between the
input and output in the round level or algorithm level. By calculating the differential bytes against the
input and output of functions in the encryption process and key expansion process, we can discriminate
whether a fault is injected during the execution of the cryptographic algorithm. Finally, we verify our
proposed method in terms of its efficiency and the error detection ability against a DFA attack using
computer simulations as well as practical fault injection experiments.

2 Preliminaries

2.1 Advanced Encryption Standard

The FIPS-approved cryptographic algorithm AES is defined for 128-bit blocks and key sizes of 128, 192
and 256 bits [10]. The 128-bit plaintext is viewed as a 4× 4 byte matrix, called State byte corresponding
in some way to the elements of F28 .

The AES operates on the States by iterating transformation rounds as shown in Figure 1(a). The
initial round consists the AddRoundKey operation, the next rounds consist of applying successively the
transformations SubBytes, ShiftRows, MixColumns and AddRoundKey, but the last round omits the Mix-
Columns transformation. Defending on the key size, the number of rounds is altered as 10, 12 or 14. We
dealed with the 128-bit AES due to its widespread usage.

The SubBytes is a non-linear byte substitution in an SBox. This SBOX is the composition of two
transformations: an inversion in F28 and an affine transformation. Here, We denote this function as SB,
and we denote Inverse SubBytes as SB−1. ShiftRows is a cyclic shift operation on each of the four rows
of the state. The first row is unchanged, the second is cyclically shifted by one byte to the left, the
third by two bytes and the fourth by three bytes. We denote ShiftRows and its inverse as SR and SR−1.
MixColumns considers each column of the State matrix as coefficients of a degree three polynomial and
multiplies them modulo z4+1 with a fixed polynomial. We denote the MixColumns as MC and its inverse
as MC−1. AddRoundKey is a bit-wise XOR operation between the state and the round key. We denote
the AddRoundKey as ARK.
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(a) Encryption Process (b) Key Expansion Process

Figure 1: AES Structure

The 128-bit AES algorithm takes the master secret key, denoted as MK, and performs a key expansion
routine to generate 11 round keys. The key schedule has a recursive structure that uses a linear array of
4-bytes words, denoted W[i]. There are three transformation functions in the key expansion process as
follows. RotWord takes a word [a0,a1,a2,a3] as an input, performs a cyclic permutations. SubWord is a
non-linear function using a SB operation on a column. Rconr is a round constant with round number r.

Figure 1(b) shows the AES key expansion process. RK0 is the initial round key identical to the master
secret key and RKr is the r-th round key generated by the key expansion process.

2.2 Previous DFA Results on AES

There are two categorized DFA attacks on the AES algorithm according to the location of the fault
injection. The first type of DFA attack is when the State values during the encryption process are infected
by a fault. An attacker uses a fault propagation property in which one erroneous byte affects four output
bytes of the MC function. The other type of DFA attack injects a fault during the key expansion process.
Since the concept of a DFA attack has been introduced, DFA on AES under real environments was
proposed by Piret and Quisquater (P-Q) [15]. They described that an attacker can extract a 128-bit key
from at least two pair of correct and faulty outputs. The principle of the P-Q method is to inject a random
byte fault before the MC in the 8th round. The corresponding differential at the input of the last MC has
four non-zero bytes, one per column of the State array, as shown in Figure 2.

Meanwhile, Giraud proposed a DFA attack that finds the secret key with the assumption of a fault
model in which a one-bit error of the State occurs during the execution of encryption or a one-byte error
occurs in the key expansion process [7]. Based on [7], an attacker can extract the secret key with 50
faulty outputs which is injected as a one-bit fault during the encryption process. However, this fault
model have a limitation in feasibility since it is quite a hard and precise technique for inducing a bit-wise
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Figure 2: Propagation of a Differential Fault

fault. In the case of the byte fault model, an attacker can deduce the secret key using roughly 250 faulty
outputs. Continuously, Kim and Quasiquater proposed a DFA attack using a byte fault injection on the
key expansion process which needs 8 pairs of correct and faulty output to obtain the secret key. In 2009,
Tunstall et al. proposed an enhanced DFA method using a well-placed fault of one-byte [16]. Similar to
previous attack methods, an attacker induces a fault on a byte of the input in the 8th round to perform a
fault analysis. With one pair of correct and fault ciphertext, the secret key is recovered with computation
complexity of 28. For this DFA attack, it is now known that it needs the least number of faulty outputs in
terms of the fault model, which injects a fault during the encryption process.

2.3 Previous Countermeasures against DFA

The main progress for DFA on AES have been analyzing a faulty output which is corrupted during the
encryption process. Thus, countermeasures against DFA also focus on protecting the encryption process
rather than the key expansion. The typical countermeasure for AES, CED [12], consists of comparing
the original message with the decrypted output. Since this CED method dramatically increases the time
overhead, the error detection process takes a long time.

In 2003, Karry et al. first introduced an error detection method based on a parity bit to protect
against a fault injection attack on symmetric cryptographic algorithms with a substitution-permutation
network(SPN) structure [11]. The parity bit is widely used for error-detection in a network. In the case
of the one parity bit method, error detection for one-bit is effective, but the defection of numerous bits
is too weak. Therefore, Bertoni et al. proposed a method using a multiple parity bit code instead of one
parity bit [1]. Continuously, the simultaneous detection method in the round level, which is designed as
one parity bit for each of the 16 SB functions, was also introduced by Wu et al. [17]. Since the detection
rate is determined by the number of parity bits, the designer can use more parity bits to improve the rate.
Since a present DFA on AES is able to recover the secret key from only a one-byte fault injection on the
encryption process, the countermeasure method based on parity bits is not sufficient to protect against
various types of DFA attacks.

Yen and Wu proposed an error detecting method based on an (n+1,n) cyclic redundancy check(CRC)
method [18]. The CRC method is a code used to detect accidental changes in transmitted data by a check
value. The value n of CRC code is decided among 4, 8 and 16, and a lower value of n increases the
number of parity bits and the detection rate. Since additional parity bits increase the overhead of the
AES implementation, the designer should consider deciding against the value n. Additionally, an extra
module to predict the CRC value adds to the overhead of the implementation.

In addition, there is another error detection method which compare the parity bits of input with the
output’s ones [14, 6]. A comparison process between a parity bit of the input of SB and a predicted
parity bit according to the input and another comparison process between a parity bit of the output and a
predicted parity bit of the output are performed simultaneously. However, these methods have a drawback
in that the error detection rate is low.
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3 A Novel Countermeasure against DFA on AES

In order to protect AES implementation against fault attacks, we propose a countermeasure based on
detection that implicitly checks whether a fault is injected, by inspecting the differential bytes of every
functions in the encryption process and key expansion process. Namely, in the case of the encryption
process, a calculation of the differential bytes between the input and output of the round functions such
as SB, SR, MC, and ARK is performed during the execution of the encryption, and is used to check
whether a corruption is occurred during the round.qh In the case of the key expansion process, we use
a fundamental principle of key generation to check for a fault injection on any round key by calculating
a differential byte between the last column array of the r− 1 round and the first column array of the r
round. To enhance understanding of the proposed countermeasure, we show the location of the input and
output of each functions in Figure 3. Here, a one-byte is represented by Ii or Oi.

Figure 3: Input and Output of AES Functions

For the efficiency of the check procedure, the proposed countermeasure do not require a space of 16
bytes for keeping the differences against the input and output during the encryption process. We use a
XORed result of two one-byte values; the first one is a result of the XOR calculation among 16 input
bytes, and the other value is the calculation result against 16 output bytes. The case of the key expansion
process also use a result of a one-byte, which is a result of the XOR calculation from among the elements
of the column arrays.

3.1 The Encryption Process

In this section, we explain the construction of a check element through the generation of the differential
byte for each round function, respectively.

3.1.1 The Differential Characteristic of the Round Functions

At first, we investigate the differential characteristic of SubBytes. We generate two one-byte of XORed
result of the 16 input bytes SB and the 16 outputs, relatively. Here, we denote the result of the input
bytes or output bytes by “a differential byte of the input or output,” and final check element, which is
a result of the XOR calculation between the differential byte of the input and output, is denoted by “a
differential byte of the SB function.” The differential bytes of the input and output of the SB function is
defined by Equation 1 and 2. The differential byte of SB function is given in Equation 3.

ISB = I0⊕ I1⊕·· · I15 (1)

OSB = O0⊕O1⊕·· ·O15 (2)

DSB = ISB⊕OSB (3)
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Table 1: Differential Table of SubBytes

According to Equations 1 and 2, DSB is represented by Equation 4.

DSB = (I0⊕O0)⊕ (I1⊕O1)⊕·· ·(I15⊕O15) = DSB0⊕DSB1⊕·· ·DSB15 (4)

It is necessary to store the pre-computed table of DSB consisted of the differential bytes corresponding
to the inputs, for checking whether the SB function operates without any corruption. A differential
table can be computed in advance shown in Table 1, since the input of the SB has bounds from 0 to
255. The check procedure consists of a calculation using Equation 3 between the input and the output
after the execution of the SB function, and then comparing it with a differential byte guessed by the
differential table with according to the inputs. If a fault is injected at any state in the SB function, a
XORed differential byte of the input and output and a XORed differential byte from differential table
are different in opposition to the Equation4.

Secondly, we describe the differential byte of the SR and MC functions. Since the SR function is
a simple cyclic shift operation of the State, the result of the XOR calculation against the input and the
result against the output are equivalent. Thus, the differential byte of the SR function become zero.

DSR = 0. (5)

For calculating a differential byte of the MC function, to begin with, we consider a differential byte
against four output bytes of an one column and its input bytes.

O0 = 2I0⊕3I1⊕ I2⊕ I3,

O1 = I0⊕2I1⊕3I2⊕ I3,

O2 = I0⊕ I1⊕2I2⊕3I3,

O3 = 3I0⊕ I1⊕ I2⊕2I3. (6)

Continuously, we calculate the differential bytes of the input and output, respectively, and compare
the two results shown in Equation 7. The differential bytes of one column becomes zero, since the
differential bytes of the input and output are equal.

O0⊕O1⊕O2⊕O3 = I0⊕ I1⊕ I2⊕ I3 (7)

Applied to another columns as above result, a differential byte of the entire MC function becomes
zero.

DMC = 0. (8)

These results of a differential byte against SR and MC originate from the fact that the two functions
are a kind of linear function.
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Finally, we considered a differential byte of the ARK function. Since the function operates the XOR
calculation between each State and a round key, a differential result between a differential byte of the
input and output become the round key itself.

IARK = I0⊕ I1⊕·· · I15 (9)

OARK = O0⊕O1⊕·· ·O15 = I0⊕RK0⊕ I1⊕RK1⊕·· · I15⊕RK15 (10)

DARK = IARK⊕OARK = RK0⊕RK1⊕·· ·RK15 (11)

But be warned, if the input was already corrupted before the execution of a function, there is no way
to detect whether the round function operated correctly or not. In order to rise the range of the detection,
we consider extending our method to the round level.

3.1.2 The Differential Bytes in Round Level

Here, we extend the scope of the check element to a round level. As mentioned above, the differential
bytes of the SR and MC function are zero and the differential byte of the SB function is the result of the
XOR calculation of the pre-computed table value corresponding to the 16 inputs. In the case of the ARK
function, the differential byte become the result of the XOR calculation of the 16 bytes of the round key.
Thus, a differential byte of the round corresponding to the input and output containing four functions is
given by Equation 12. Here, IRnd and ORnd are the results of the byte-wise XOR calculation against the
input and output of the round.

DRnd = IRnd⊕ORnd = DSB⊕DSR⊕DMC⊕DARK = (
15⊕

i=0

DSBi)⊕ (
15⊕

i=0

RKi) (12)

The detection procedure against the round level is as follow:

1. Calculate the differential byte for IRnd , which corresponds to the input before the execution of a
target round.

2. Calculate both of the differential byte for the SB function (
⊕15

i=0 DSBi ) using the Table 1 and the
differential byte of the round key (

⊕15
i=0 RKi)s.

3. After the execution of the round, calculate the output differential byte for ORnd .

4. Check whether a XOR calculation between the results of the 2nd step is equivalent to IRnd⊕ORnd .
If these results are same, there is no infection on the target round.

Despite this consideration, the detection mechanism has a flaw that the input is corrupted during
transition to next round. For investigation among all the inputs, we need our method to extend entire
algorithm level. Before demonstrating the algorithm level, we analyze the generation of round key in
advance.

3.2 The Key Expansion Process

The proposed method for the encryption process can be extended to the key expansion process using a
property of the round key generation. The last column of the previous round key is performed by three
transformations such as RotWord, SubWord, and Rcon and then, operates the XOR calculation with the
first column of the previous round key shown in Figure 1(b). The main property of the key expansion
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process is that the next round key is generated by the previous round key. Therefore, the input for
calculating a difference value is the last column array of the previous round key and the output is the
value after performing three transformations. Thus, the differential value of the key expansion becomes
a word-wise value. In the case of first round key generation, the equations are given by as follows. Here,
we denote the result after three transformations as Wt .

W6 = W3⊕W7,

W5 = W2⊕W6,

W4 = W1⊕W5, (13)

Wt = W0⊕W4.

Then, Wt is represented as
Wt =W0⊕W1⊕W2⊕W3⊕W7. (14)

The differential value of the first round key is the difference between W3 as the input and Wt as the
output. Thus, it is given as

Wt ⊕W3 =W0⊕W1⊕W2⊕W7. (15)

Because of the property of the key expansion process, the differential value is in effect equivalent to
the round level of the encryption process. Thus, we can generate 10 differential value corresponding to
each round. Entire differential bytes of the round key are given by

D1 = Wt1⊕W3 =W0⊕W1⊕W2⊕W7,

D2 = Wt2⊕W7 =W4⊕W5⊕W6⊕W11,
... (16)

D10 = Wt10⊕W39 =W36⊕W37⊕W38⊕W43.

The check procedure whether a fault is injected is the comparison of the XOR calculation for all the
round keys with the XOR calculation for all the differential words corresponding to the round keys. The
check element DT and DW are given as

Dt = D1⊕D2⊕·· ·⊕D10,

Dw = W0⊕W1⊕W2⊕W4⊕·· ·⊕W39⊕W43, (17)

Dw = Dt .

Dt is the differential value between the input and output of SubWord. For simplifying the calculation
for differential value, we perform the XOR calculation between 4 elements of the array to obtain one-byte
differential value since the column array word consists of 4 bytes of the State. Thus, we can represent
Dt as by DBt,0||DBt,1||DBt,2||DBt,3. Additionally, for lowering the computation overhead, we use the
pre-computed difference table of SB instead of SubWord’s one.

The byte-wise differential value DBT is given by

DBT =
3⊕

j=0

DBt, j,

= (
10⊕

r=1

3⊕
j=0

DSBr, j)⊕ (
10⊕

r=1

3⊕
j=0

DRconr, j). (18)
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Figure 4: Countermeasure Architecture for the Key Expansion Process

We also represent Dw as by DBw,0||DBw,1||DBw,2||DBw,3 and W [i] as by WBi,0||WBi,1||WBi,2||WBi,3.
Then the XOR calculation result for all the round keys are given as Equation 19 in word-wise and byte-
wise, respectively.

DBW =
3⊕

j=0

DBw, j,

=
43⊕

k=0

(
3⊕

j=0

WBk, j),where k 6= 3,40,41,42. (19)

In short, the check procedure for the key expansion process is the comparison between DBT and
DBW . The differential byte DBT is computed during the key expansion process. On the other hand, DBW

is computed after the entire round key generation. If two values are same, there is no corruption during
the key expansion. Then the algorithm performs the encryption process in succession. However, if the
two values are different, the AES implementation stops operating instantly and returns an error message.

The remaining round keys are checked by the following equations separately.

WB3 = WB6⊕WB7,

WB40 = WB41⊕WB37,

WB41 = WB42⊕WB38,

WB42 = WB43⊕WB39. (20)
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Figure 5: Secure AES Architecture with Fault Detection

During the calculation of the differential byte DBT , the differential byte of RotWord is zero since
this function is just a cyclic rotation. The case of RCon which does computations with the fixed round
constants can be pre-computed. The entire procedure of the proposed secure AES implementation for
the key expansion process is described in Figure 4.

3.3 Entire Algorithm Level

In order to protect AES algorithm regardless of a corruption of the input during passing to the following
round, we apply our proposed method to an algorithm level, which inspects the entire inputs and output
of AES algorithm. Since our method in the round level can detect any corruption during the execution of
round process, it also is impossible to obtain the faulty output in terms of the algorithm level. If a certain
input of any round was corrupted, a checking procedure using the input and output of the algorithm can
detect in opposition to the round level. A proposed countermeasure against fault injection attack adapted
to the algorithm level is described in Figure 5. Here, we assumed that a validation test of round key,
which mentioned above, may perform during the key expansion process.

As shown in Figure 5, a differential byte between the differential bytes of a plaintext as the input and
a ciphertext as the output is given by Equation 21.

DAlg = IAlg⊕OAlg = (
15⊕

i=0

Ii)⊕ (
15⊕

i=0

Oi) (21)

According to Section 3.1, a validation test in the round level constructs the XOR calculation between
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Algorithm 1 Secure AES Algorithm with Fault Detection
Input: Plaintext(I), Master key(MK)
Output: Ciphertext(O) or Error message(ERROR!)

1: (precomputation) Calculate the differential bytes of the input and output of SubBytes and Store.
2: Perform the key expansion process with validation
3: If the key expansion process is valid, begin the encryption process. If not, halt the execution of AES

algorithm.

4: Calculate the differential byte of the plaintext(input) (IAlg =
15⊕

i=0

Ii).

5: Calculate the differential byte of the initial round key RK0 (DX0 =
15⊕

i=0

RK0,i).

6: During the execution of rounds, calculate the differential bytes of the SubBytes and round keys,

respectively (DX r
SB
=

15⊕
i=0

DSBr,i , DX r
RK

=
15⊕

i=0

RKr,i ,where 1≤ r ≤ 10).

7: Calculate the check element DX (DX =
10⊕

r=1

(DX r
SB
⊕DX r

RK
)⊕DX0)

8: Calculate the differential byte of the ciphertext(output), and XOR computation with IAlg to obtain

the differential byte of entire algorithm DAlg (OAlg =
15⊕

i=0

Oi, DAlg = IAlg⊕OAlg).

9: Compare DX to DAlg, and then return ciphertext O if two values are equal. If not, return the error
message.

the differential bytes of SB and RK of the target round. In order to check throughout entire rounds,
thus we need to calculate XOR calculation between the differential bytes of SB and RK of each rounds
cumulatively. A check element for confirming whether entire round process execute correctly is denoted
by Equation 22. Here, r(1≤ r ≤ 10) means the number of rounds, and i(0≤ i≤ 15) means the number
of byte for the State.

DX =
10⊕

r=1

{(
15⊕

i=0

DSBr,i)⊕ (
15⊕

i=0

RKr,i)}⊕
15⊕

i=0

RK0,i (22)

If a fault is injected at any point in the algorithm, DX and DAlg are different, so that the algorithm
indicates a fault and returns an error message. If not, the architecture returns a correct ciphertext. The
entire procedure of the proposed secure AES implementation against fault injection attack is described
as Algorithm 1.

However, there have been some fault attacks using multiple fault injections. These kind of fault
models assumed that several faults are injected on various locations of the target algorithm during the
execution. In our proposed method, if the XOR calculation of the entire fault, which is injected during the
execution of the same function, is equal, then it is impossible to detect the fault injection. That means,
the differential byte of the corrupted function is zero. Fortunately, this kind of fault model is hard to
implement in real environments, since the cryptographic device cannot endure multiple fault injections
and the measurement for timing and location of the fault injection is complicated. Thus such kind of
fault techniques against AES implementation have not been practically presented yet. Thus in this paper,
we considered the fault attack based on a single fault model only, and our proposed countermeasure can
detect any fault corruption in terms of single fault model.
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Table 2: Simulation Results - Error Detection Rate

4 Performance Evaluation and Practical Experimental Results

In this section, we present the simulation results of our proposed countermeasure and the aforementioned
protected AES implementations such as the parity based method [1] and CRC method [18] to evaluate the
performance of error detection. The first stage was performed by simulation to compare the effectiveness
and efficiency of the proposed implementation with another methods. The second stage consisted of
experiments using a laser on a decapsulated surface of a microprocessor to induce a fault.

4.1 Simulation Result and Evaluation

The simulation set up consisted of three different AES implementations: parity-based countermeasures,
the CRC method, and our countermeasure for the algorithm level. Table 2 shows the error-detection
rate for each of the countermeasures in terms of the error detection rate. We assumed that a fault could
affect only one byte of the State during the execution of the AES algorithm because the most effective
fault attack among previous existing attacks on AES is assumed as a byte-wise fault injected on the State
during the encryption process. We simulated all of the possible cases such as various size of the fault
within 8-bits and various locations of the fault was inducted for every round, functions, and State. For
example, in the case of a 2-bits fault injection, there were 40 instances for the operation of functions
and 16 bytes of the State during the execution of 10 rounds. Then we simulated the error-detection
rate through 17920 (= 40 ∗ 16 ∗C2

8) instances of fault injections with the simulation environments as
described in [3].

When an odd bit error occurred, the countermeasure of Bertoni et al. [1] allowed for the detection
of an error with 100 percents certainty, since this method is based on the even parity bit perceiving an
error. When an even bit error occurred, the method using the even parity bit could not detect the error
well, but the error propagation property of the MC operation helped the method to detect the error with
probability. The CRC method [18] was able to detect all possible errors with a 100 percent success rate
for the condition n = 4 shown in Table 2. However, the computation complexity was much greater than
the parity based method since an extra module to predict the CRC values is more complicated.

In our proposed method, the XOR calculation of the differential bytes for each of the inputs of SB,
DSBi , and the XOR calculation for each of the round keys were needed. And a temporal or permanent
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(B=Byte XOR, b=Bit XOR, M=Affine Multiplication)

Table 3: The Costs of AES Implementation with Fault Detection

memory space was required to store predicted differential table of SB. As shown in Table 3, we tabulate
the comparison test against algorithm level by referring results described in [18], which investigated
the computational cost in the operation level. Despite of some additional memory, our method looks a
reasonable countermeasure due to superiority on the computational speed between other methods. In a
time overhead, averaged execution time of our proposed method is 37ms in comparison with naive AES
implementation as 31ms. But it may be a tiny overhead in opposition to other methods such as parity
based method is 71ms. As the results, our proposed method is quite efficient in terms of countermeasure
against single fault model.

4.2 Practical Fault Experiment and Results

In real environments, we assumed an unknown random single-byte fault model to verify the security of
our countermeasure method against DFA attack. Therefore, we applied to the P-Q attack to our protected
AES implementation using an ATmega128 microprocessor with a practical fault injection.

To implement a physical fault injection, we implemented the protected AES method on the At-
mega128 microprocessor [5]. Our implementation followed the structure shown in Figure 5. Then, we
corrupted a State in the 8th round before execution of he MC function by the injection of a fault. We
used the fault injection tool EZ Laze 3 [9], which can target a laser beam on the surface of a decapsulated
chip. Figure 6 shows our experimental setup.

During the experiments, we monitored the power signal using a digital oscilloscope, and controlled
several I/O signals to distinguish between the operations and the number of rounds. Figure 7 shows the
power signals of a normal execution of the protected AES implementation and a faulty AES encryption
process.

According to Figure 7(a), the entire AES encryption process took 8.6ms shown in the low state of
the first I/O signal. As shown in Figure 7(b), the second I/O signal showed the period of the 8th round,
which was followed after the 7th round, and the lower circled area indicates the fault injection. Despite
several trials of fault injection, we obtained only correct ciphertexts or error messages shown in Figure
8(b) .

In Figure 8, “39 25 · · · 0B 32” is the correct ciphertext of the example input and key given in
Appendix B of FIPS 197 [10]. In the case of the naive AES implementation, an attacker can obtain an
intended faulty output “B6 6D · · · EC 5E” shown in Figure 8(a). However, in the case of our proposed
implementation, an attacker indicates a successful fault injection by the error message but cannot obtain
any intended faulty outputs. As shown in Figure 8(b), the other messages that consist of “FF” were
regarded as an error message, which is implemented in order to represent the error. Thus, the proposed
method can defeat the DFA attack in a practical random byte fault.
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(a) Experimental Setup (b) Decapsulated Atmega128

Figure 6: Experiment Setup and Target Chip

(a) Protected AES Encryption (b) Fault Attack on AES Encryption

Figure 7: Captured Power Signal of Proposed AES Implementation

5 Conclusion

In this paper, we present a novel countermeasure that protects all the variables of the AES algorithm
against fault injection attacks. Our countermeasure is based on an infective computation strategy that
checks the correctness of the intermediate values at the algorithm level. An attacker cannot obtain any
faulty outputs since all of values during the encryption process and key expansion process will typically
be protected. The efficiency and security of the proposed method against DFA attack was verified by
computer simulation as well as by practical fault injection experiments. As we demonstrated, our pro-
posed method is adequate in protecting AES implementation against fault attacks with low additional
overhead and superior error detection.
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(a) Naive AES Implementation (b) Protected AES Implementation

Figure 8: Outputs from the Target Chip
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