
Short signature from factoring assumption in the standard model

Zhiwei Wang∗, Guozi Sun, and Danwei Chen
1. College of Computer,

Nanjing University of Posts and Telecommunications
Nanjing, 210046, China

2. State Key Laboratory of Information Security
(Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China)

{zhwwang, sun, chendw}@njupt.edu.cn

Abstract
Programmable hash functions (PHFs) is a new cryptographic primitive, which can mimic certain
programmability properties of random oracles. Due to these properties, PHFs are very useful to con-
struct short signatures in standard models. Based on (m,1)-PHF, we propose an efficient construction
of short signature from factoring problem. Our signature doesn’t require the generation of primes at
signing, and it can resist the information leakage to some extent.

Keywords: signature, factoring problem, Programmable hash functions, standard model, provable
security.

1 Introduction

Digital signatures are one of the most important fundamental cryptographic primitives, which can be
used to construct complex cryptographic protocols. However, most practical signatures [2][4] can only
be proved secure in random oracles[1][5], while signatures in standard model are often considered as less
efficient or based on the stronger assumptions, such as Strong RSA assumption[8][7][10][11], Strong q-
Diffie-Hellman assumption[11][3] et al. In Strong q-assumption, an attacker is provided with q random
“solved instances” (leaked information) and has to compute a given, fixed instance.

The concept of programmable hash function is proposed by Hofheinz et al.[10], which is an effi-
ciently computable function that maps binary strings into a group G. Programmable hash functions
(PHFs) is a keyed group hash function that can behave in two indistinguishable ways, depending on how
the key is generated. If the standard key generation algorithm is used, then the hash function fulfills its
normal functionality. If the alternative (trapdoor) key generation algorithm is used, the hash function out-
puts a key that is indistinguishable from the one output by the standard algorithm. The programmability
of PHFs is very similar to a scenario we are often confronted with in “provable security”, namely, we
know some of the hash outputs, but for some we do not. Hofheinz et al. construct a short signature from
RSA assumption in the standard model[11]. However, they leave a open problem that how to design truly
practical signatures from RSA or factoring problem without random oracles, especially do not require
the generation of primes at signing.

In this paper, based on (m, 1)-PHFs proposed by Hofheinz et al.[11], we propose a simple but very
efficient construction of short signature from factoring assumption in the standard model. Our signature
scheme doesn’t need to generate primes, and it can resist the information leakage to some extent. The
rest of this paper is organized as follows: In the next section, we review some preliminaries related to
our construction. Then, we propose our short signature scheme in Section 3. The security properties will
be analyzed in Section 4. We conclude in Section 5.

Journal of Internet Services and Information Security (JISIS), volume: 2, number: 3/4, pp. 110-117
∗Corresponding author: Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Xianlin Yadong New

Direct, Nanjing, 210023, China, Tel: +86-025-85866427

110

Short signature Wang, Sun, and Chen

2 Preliminaries

2.1 Some concepts in number theory

Let N = p× q be a composite modulus, where p and q are two large prime numbers. Let QN denote
the subgroup of squares in Z∗N . Then, it is well known that QN is a cyclic group with order φ(N)/4 =
(p−1)(q−1)/4 [12].
Factoring problem. given a k-bit composite N, which is a multiple of two large primes p and q, to
output p or q. Factoring problem is usually considered as a hard problem.
Theorem 2.1 Let a ∈QN , N = p×q, where p,q are large primes and p = 2p′+1, q = 2q′+1. p′ and q′

are also large primes. Then a2d ≡ a (mod N), where d = (N− p−q+5)/8.
Proof. Since d = (N−p−q+5)

8 = (p−1)(q−1)+4
8 = 4p′q′+4

8 , then a2d = ap′q′+1 = a (mod N).(We note that
φ(N)/4 = (p−1)(q−1)/4 = p′q′.)

Indeed, Theorem 2.1 provides a way to compute one square root of a quadratic residue a ∈QN .
Let N be a multiple of two large primes p,q and a ∈QN . If s1 and s2 are two square roots satisfying

s1 6= ±s2 (mod N), then N could be factored by computing GCD(s1 + s2,N) or GCD(s1− s2,N) as the
non-trivial divisor of N. However, if s1 = ±s2 (mod N), it will be no useful to the factorization of N.
Thus, if given two random square roots, the probability of factoring N is 1/2.

Lemma 2.1. Given ω 6= 0, l > 0,a ∈ QN and X ∈ Z∗N such that aω = X2l
(mod N),ω < 2l , the square

root y of a can be computed efficiently (a = y2 (mod N)).
Proof. There exists two integers γ,δ such that ω = 2γ(2δ +1). From the conditions, we can derive that
(a2δ+1)2γ

= aω = X2l
(mod N), so a2δ+1 = X2l−γ

(mod N). Let y = X2l−γ−1
/aδ (mod N). Obviously, y

is the square root of a, since y2 = X2l−γ

/a2δ = a (mod N).

2.2 Generalized Birthday Bound

We will apply the following lemma [11] the security proof of our signature.

Lemma 2.2. Let A be set with |A| = a. Let X1, · · · ,Xq be q independent random variables, taking
uniformly random values from A. Then the probability that there exist m+ 1 pairwise distinct indices
i1, · · · , im+1 such that Xi1 = · · ·= Xim+1 is upper bounded by qm+1

am .

2.3 Definition of programmable hash functions

In this section, we will review the definition of programmable hash functions by Hofheinz et al.[10][11].
Programmable hash function is a group hash function H over a group G with input length k(k ∈ N is se-
curity parameter), which consists of two efficient algorithms PHF.Gen and PHF.Eval. The probabilistic
algorithm PHF.Gen(1k) generates a hash key κ . The deterministic algorithm PHF.Eval takes as input a
hash function κ and X ∈ {0,1}l , and outputting PHF.Eval(κ,X) ∈G.

Definition 2.1. We say H = (PHF.Eval,PHF.Eval) is (m,n,γ,δ)-programmable, if there exist an ef-
ficient trapdoor key generation algorithm PHF.TrapGen and an efficient trapdoor evaluation algorithm
PHF.TrapEval satisfying the following properties:

• The probabilistic trapdoor generation algorithm PHF.TrapGen(1k,g,h) takes as input group ele-
ments g,h ∈G, and produces a hash function key κ and a trapdoor information τ .

• For all generators g,h ∈G, the keys κ generated by PHF.Gen and κ ′ produced by PHF.TrapGen
are statically γ−close.

111

Short signature Wang, Sun, and Chen

• Taking as input X ∈ {0,1}l and trapdoor information τ , the deterministic trapdoor evaluation al-
gorithm PHF.Eval outputs aX ,bX ∈ Z, so that for all X ∈ {0,1}l ,

PHF.Eval(κ,X) = gaX hbX

• For all generators g,h ∈ G, all κ generated by PHF.TrapGen, and all X1, · · · ,Xm ∈ {0,1}l and
Z1, · · · ,Zn ∈ {0,1}l satisfying Xi 6= Z j for all i, j, then

Pr[aX1 = · · ·= aXm = 0 and aZ1 , · · · ,aZn 6= 0]≥ δ ,

where (aXi ,bXi) = PHF.Eval(τ,Xi) and (aZ j ,bZ j) = PHF.Eval(τ,Z j).

The trapdoor information τ generated by PHF.TrapGen depends on two (user-specified) generators g
and h from the group. This trapdoor information makes it possible to relate the output of the hash function
H to g,h. For the PHFs to be (m,n,γ,δ)-programmable, we need that for all X1, · · · ,Xm ∈ {0,1}l and
Z1, · · · ,Zn ∈ {0,1}l , it is true that Xi 6= Z j for all i, j, and it holds that aXi = 0 but aZ j 6= 0 with significant
probability. Thus, the number of X such that H(X) = hbX is controlled by m, while n controls the number
of Z such that H(Z) = gaZ hbZ for aZ 6= 0.

2.4 Definition of signature

A digital signature scheme consists of three algorithms: KeyGen, Sign, Verify.

KeyGen(1k) This algorithm generates a key pair (pk,sk).

Sign(m,sk) This algorithm takes as input a message m and the secret key sk, produces a signature σ .

Verify(pk,m,σ) This algorithm takes as input a message m, the public key pk, and the signature σ ,
outputs a decision b ∈ {accept,re ject}.

Let’s review the standard security definition of signature, which is called existential unforgeability
against chosen message attacks (EUF-CMA)[9]. This definition can be defined by a game between a
challenger C and an attacker A .

Setup: The challenger C runs KeyGen(1k) to get (pk,sk), and sends pk to A .

Queries: The attacker A may adaptively ask C to sign a number of messages. For a message mi, the
challenger C returns a signature σi under sk.

Forgery: Finally, the attacker A outputs a forgery signature σ∗ on message m∗. We say that the attacker
A wins the game, if the following conditions are satisfied.

1. Veri f y(pk,m∗,σ∗) = accept.

2. m∗ 6= mi for all i.

If the success probability of all probability polynomial-time A is negligible, then we say that the
signature scheme is EUF-CMA secure.

112

Short signature Wang, Sun, and Chen

3 Our short signature scheme

Let N = p · q, p and q are both safe primes. Let G = QN be the group of quadratic residues modulo N.
Let l = l(k) and λ = λ (k) be polynomials. Let

H = (PHF.Gen,PHF.Eval)

be a group hash functions over G with input length l. We define the signature scheme SigF [H]=(KeyGen,
Sign, Verify) as follows:

KeyGen(1k): This algorithm selects two large safe k/2-bit primes p and q, and computes N = pq. Then
it generates a group hash function key κ for the group G = QN from the algorithm PHF.Gen.
Finally, it computes d = (N− p− q+ 5)/8. The public key is pk = (N,κ), and the secret key is
sk = (p,q,d).

Sign(sk,M): On input of the secret key sk, and message M ∈ {0,1}l , the signing algorithm selects a
random value s ∈ {0,1}λ , and computes

σ = (H(M)ds
(mod N).

We write H(M) shorthand for PHF.Eval(κ,M). The signature is (σ ,s) ∈ ZN×{0,1}λ .

Verify(pk,M,(σ ,s)): Taking as input the public key pk, message M and signature (σ ,s), this algorithm
returns accept if

H(M) = σ
2s

(mod N),

otherwise returns re ject.

Correctness. If σ =H(M)ds
(mod N), then σ =H(M)

1
2

s
(mod N). So we have σ2s

=H(M) (mod N).

Analysis. Our signature is very simple but efficient, which does not require the generation of primes.
The signature only involves one element in ZN and a small integer. However, we should note that for
a message M, if the random value s has been used to generate the corresponding signature, then any
random value such that ≤ s cannot be used after that.

4 Security proof

From we discussed in Section 2.3, PHFs is useful in groups with hard discrete logarithms and when the
trapdoor key generation algorithm does not know the discrete logarithm of h to the basis g. We can
program the hash function such that the hash values of all possible choices X1, · · · ,Xm of m inputs do
not depend on g, which is due to aX = 0. At the same time, we can arrange that the hash values of all
possible choices Z1, · · · ,Zn of n do depend on g, since aZ 6= 0. If n = 1, this situation is very similar
to the “provable security”. The knowledge of discrete logarithms of some hash queries can be used to
simulate the leaked information to an attacker, and finally, the attacker produces a signature on its own.
If this signature corresponds to a hash query that we do not know the discrete logarithm, we can use it to
break an underlying computational assumption. In this section, we will use PHFs to derive proofs of the
adaptive security of our signature.

Theorem 4.1 Let H be a (m,1,γ,δ)-programmable hash function.If there exists a (t,q,ε)-attacker A
breaking the existential forgery under adaptive chosen message attacks of SigF [H], then there exists a

113

Short signature Wang, Sun, and Chen

challenger C that (t ′,ε ′)-solves the factoring problem with t ′ ≈ t and ε ≤ q(2ε ′+γ)
δ

+ qm+1

2mλ
.

Proof. We first give a brief outline. As [11], two types attackers should be distinguished. For the
type I attackers, the forged signature of the form (M∗,σ∗,s∗) with s∗ = si for some i ∈ {1, · · · ,q}. A type
II attacker returns a signature with a fresh s∗. We must remark that in the proof of both type I and type
II attackers, s∗ should not be less than si for all i ∈ {1, · · · ,q}. Otherwise, H(Mi)

(1
2)

si will provide direct
help to attacker’s eventually forgery, which means that attacker’s finally forgery can not be used to solve
the factoring problem.

In the proof of adaptively secure, we need to put up a simulation that is able to generate q signatures
(Mi,σi,si)i∈{1,··· ,q} for the attacker’s adaptively chosen message Mi. However, for a type I attacker, we
have to prepare one or more signatures of the form H(Mi)

(1
2)

si for the same si = s∗ that the attacker
eventually uses in his forgery. We resolve this complication by using the programmable properties of H.
Namely, we first choose all si and i such that si = s∗. Then, we prepare H with generators g and h such
that we know all 2s j th roots of h(for all j), and all 2s j th roots of g(for all s j 6= si). Thus, when a type I
attacker asks the signature of the message M j with s j = si, we can make ai = 0, then H(Mi) ∈< h >, so
we can compute H(M j)

(1/2)s j . With this capability, we can simulate the leaked signature information to
the attacker. At the same time, H(M∗) /∈< h > has a nontrivial g-factor, so we can get a secure root of g
from attacker’s forgery, which will be used to factorize N.

Compare the type I attacker, it is easier to treat a type II attacker. To do this, we choose all si in
advance. Then, we prepare PHF H using PHF.TrapGen, but relative to generators g and h for which
we know 2si th roots. This allows to leak signatures for the attacker, and while the attacker outputs a new
signature, it essentially outputs a fresh 2s∗ th root of ga∗ , from which a square root of g can be computed
efficiently (lemma 2.1).

Now, we prove Theorem 4.1 by proving the following two lemmas.

Lemma 4.1 Let A be a type I attacker can (t,q,ε)-break the existential forgery under adaptive cho-
sen message attacks of SigF [H], then there exists a challenger C that (t ′,ε ′)-solves the factoring problem
with t ′ ≈ t and ε ′ ≥ 1

2(
δ

q (ε−
qm+1

2mλ
)− γ).

Proof. In the interaction game, the attacker A is only allowed to make q Sign oracle queries. If at-
tacker A can outputs a successful forgery eventually, then we can construct a challenger C that solves
the factoring problem with a non-negligible probability. Given a challenge N, C ’s goal is to output the
factorization of N.

Setup: Challenger C chooses ĝ, ĥ ∈ Z∗N , and sets g = ĝ2∑t∈E∗ t
and h = ĥ2∑t∈E t

, where E =
⋃q

i=1{si}
and E∗ = E \ {s∗}. Then it runs PHF.TrapGen(1k,g,h) to generate hash key κ and the trap-
door information τ . Since H is a (m,1,γ,δ)-programmable hash function, hash key generated by
PHF.TrapGen and PHF.Gen are statically γ-close. Challenger C sends (N,κ) to A as the public
key.

Queries: When A makes a signing queries on message Mi, C selects a random value si ∈ {0,1}λ , and
runs PHF.TrapEval(τ,Mi) to get (ai,bi). If ai 6= 0 for some i ∈ {1, · · · ,q} with si = s∗, then C
aborts. Otherwise, C computes

σi = ĝai·2
∑t∈E∗i

t

ĥbi·2∑t∈Ei
t

= H(Mi)
(1/2)si

,

where Ei = E \{si} and E∗i = E∗ \{si}. Then C returns (σi,si) as the answer to A .

114

Short signature Wang, Sun, and Chen

Outputs: Eventually, A outputs a valid forged signature (σ∗,s∗) on message M∗. If s∗ < si for some
i ∈ {1, · · · ,q}, then C aborts. Otherwise, C extracts the solution to the factoring problem as
follows. C first runs PHF.TrapEval(τ,M∗) to get (a∗,b∗), and computes z = σ∗

ĥb∗·2∑t∈E∗ t . Observe
here that

z2s∗
= (

σ∗

ĥb∗·2∑t∈E∗ t)
2s∗

=
H(M∗)

hb∗

=
ga∗hb∗

hb∗

= ga∗ (mod N).

Due to lemma 2.1, we can compute a square root y of g from z2s∗
= ga∗ (mod N). As discussed

above, ĝ2∑t∈E∗ t−1
is another square root of g. If y 6= ±ĝ2∑t∈E∗ t−1

, C can factorize N by computing
GCD(y− ĝ2∑t∈E∗ t−1

,N) or GCD(y+ ĝ2∑t∈E∗ t−1
,N). Since ĝ is randomly chosen from Z∗N , then the

probability of y 6= ĝ2∑t∈E∗ t−1
is 1/2.

Probability analysis: We assume that the attacker A can win the above game with the probability
of ε . Since H is a (m,1,γ,δ)-programmable hash function, from lemma 2.2 we can deduce that chal-
lenger C can solve the factoring problem through A ’s forgery with the probability of 1

2(
δ

q (ε−
qm+1

2mλ
)−γ).

Lemma 4.2 Let A be a type II attacker can (t,q,ε)-break the existential forgery under adaptive chosen
message attacks of SigF [H], then there exists a challenger C that (t ′,ε ′)-solves the factoring problem
with t ′ ≈ t and ε ′ ≥ δ (ε−γ)

2 .

Proof. The proof for type II attackers proceeds similarly. If attacker A can outputs a successful forgery
eventually, then we can construct a challenger C that solves the factoring problem. C ’s goal is to output
the factorization of N.

Setup: Challenger C chooses ĝ, ĥ ∈ Z∗N , and sets g = ĝ2∑t∈E t
and h = ĥ2∑t∈E t

, where E =
⋃q

i=1{si}. Then
it runs PHF.TrapGen(1k,g,h) to generate hash key κ and the trapdoor information τ . Since H is a
(m,1,γ,δ)-programmable hash function, hash key generated by PHF.TrapGen and PHF.Gen are
statically γ-close. Challenger C sends (N,κ) to A as the public key.

Queries: When A makes a signing queries on message Mi, C selects a random value si ∈ {0,1}λ , and
runs PHF.TrapEval(τ,Mi) to get (ai,bi). C computes

σi = ĝai·2∑t∈Ei
t

ĥbi·2∑t∈Ei
t

= H(Mi)
(1/2)si

,

where Ei = E \{si}. Then C returns (σi,si) as the answer to A .

Outputs: Eventually, A outputs a valid forged signature (σ∗,s∗) on message M∗. If s∗ < si for some
i ∈ {1, · · · ,q}, then C aborts. Otherwise, C extracts the solution to the factoring problem as
follows. C first runs PHF.TrapEval(τ,M∗) to get (a∗,b∗), and computes z= σ∗

ĥb∗·2∑t∈E∗ t . Obviously,

z2s∗
= ga∗ (mod N). As lemma 2.1, we can compute a square root y of g, and ĝ2∑t∈E t−1

is another
square root of g. If y 6= ±ĝ2∑t∈E t−1

, C can factorize N by computing GCD(y− ĝ2∑t∈E t−1
,N) or

GCD(y+ ĝ2∑t∈E t−1
,N). Since ĝ is randomly chosen from Z∗N , then the probability of y 6= ĝ2∑t∈E t−1

is 1/2.

115

Short signature Wang, Sun, and Chen

Probability analysis: We assume that the attacker A can win the above game with the probability of
ε . Since H is a (m,1,γ,δ)-programmable hash function, we can deduce that challenger C can solve the
factoring problem through A ’s forgery with the probability of δ (ε−γ)

2 .
This completes our proof.

Note: With (m,1)-programmable hash functions, we can simulate the leaked signature information to the
attacker. The above proof shows that our signature scheme can resist the information leakage to some
extent. Furthermore, our signature scheme is proved secure under factoring problem, while Hofheinz
et al.’s construction is proved secure under RSA. However, the hardness of RSA problem and factor-
ing problem are not identical. It is generally believed that RSA assumption is stronger than factoring
assumption[6].

5 Conclusion

Programmable hash function is a new cryptographic primitive, which can be plugged into the construc-
tion of signatures. The (m,1)-programmable hash functions are very similar to the random oracle, by
which some short signature schemes have been proposed. We propose a simple but efficient short signa-
ture scheme from factoring problem based on (m, 1)-PHF, which does not need to generate primes, and
can resist the insider information leakage to some extent. Compared with the previous schemes, it may
be a truly practical signature scheme in the standard model.

Acknowledgments.

This research is supported by State Key Laboratory of Information Security (Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093), the Natural science fund for colleges
and universities in Jiangsu Province No. 11KJB520015, and Program for Excellent Talents in Nanjing
University of Posts and Telecommunications under Grant No.NY209014.

References
[1] M. Bellare and T. Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete

security for Waters’ IBE scheme. In Proc. of Advances in Cryptology - EUROCRYPT 2009, LNCS, volume
5479, pages 407–424. Springer-Verlag, December 2009.

[2] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA and Rabin. In
Proc. of Advances in Cryptology - EUROCRYPT’96, Saragossa, Spain, LNCS, volume 1070, pages 399–416.
Springer-Verlag, May 1996.

[3] D. Boneh and X. Boyen. Short signatures without random oracles. In Proc. of Advances in Cryptology -
EUROCRYPT 2004, Interlaken, Switzerland, LNCS, volume 3027, pages 56–73. Springer-Verlag, May 2004.

[4] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In Proc. of Advances in Cryp-
tology - ASIACRYPT 2001, Gold Coast, Australia, LNCS, volume 2248, pages 514–532. Springer-Verlag,
December 2001.

[5] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited (preliminary version).
In Proc of the 30th Annual ACM Symposium on Theory of Computing, Dallas, Texas, USA, pages 209–218.
ACM, May 1998.

[6] Z. Cao, H. Zhu, and R. Lu. Provably secure robust threshold partial blind signature. Science in China Series
F: Information Sciences, 49(5):604–615, May 2006.

[7] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. In Proc of the 6th
ACM Conference on Computer and Communications Security (CCS’99), Kent Ridge Digital Labs, Singapore,
pages 46–51. ACM, November 1999.

116

Short signature Wang, Sun, and Chen

[8] M. Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited. In Proc. of the 6th International
Workshop on Theory and Practice in Public Key Cryptography (PKC’03), Miami, USA, LNCS, volume 2567,
pages 6–8. Springer-Verlag, December 2003.

[9] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

[10] D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. In Proc. of Advances in
Cryptology - CRYPTO 2008, Santa Barbara, California, USA, LNCS, volume 5157, pages 21–38. Springer-
Verlag, August 2008.

[11] D. Hofheinz and E. Kiltz. Programmable hash functions and their applications.
http://eprint.iacr.org/2011/296, October 2011.

[12] S. V. A Computational Introduction to Number Theory and Algebra. Cambridge University Press, 2005.

Zhiwei Wang is an associate professor in the college of computer, Nanjing Univer-
sity of Posts and Telecommunications. Zhiwei Wang received his BS. degree in the
Computer Science from East China University of Science and Technology, Shang-
hai and the Ph.D. degree in the Cryptogaphy from Beijing University of Posts and
Telecommunications. His recent research interests include: Digital signature, Prov-
ably Security, Multivariate public key cryptography, Network security, Cloud security.
He has published more than 20 papers in the area of information security. He was the

TPC member for MobiPST 2011, MobiPST 2012, ACSA-Summer 2012, ICITIS 2012, MIST 2012.

Guozi Sun is a Professor in the College of Computer, Nanjing University of Posts and
Telecommunications. He received his Ph.D. degree in Computer Engineering from
Nanjing University of Aeronautics and Astronautics. His recent research interests
include: Wireless sensor network security, Cryptography protocol, Software security
etc, He has published many papers in these area.

Danwei Chen is a Chairman and Professor in the College of Computer, Nanjing Uni-
versity of Posts and Telecommunications. He received his PhD. degree in the Electri-
cal Engineering from Nanjing University of Aeronautics and Astronautics. His recent
research interests include: Network security, Software security, Internet of Things
security etc, He was a editor of Journal of Nanjing University of Posts and Telecom-
munications.

117

	Introduction
	Preliminaries
	Some concepts in number theory
	Generalized Birthday Bound
	Definition of programmable hash functions
	Definition of signature

	Our short signature scheme
	Security proof
	Conclusion

