
Detection and prevention of LeNa Malware on Android

Hwan-Taek Lee1, Minkyu Park2∗, and Seong-Je Cho1

1 Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
{htlee, sjcho}@dankook.ac.kr

2 Konkuk University, Chungju-si, Chungcheongbuk-do, Republic of Korea
minkyup@kku.ac.kr

Abstract

Smartphones contain security-sensitive information of a user such as contacts, SMS, photos, and GPS
information. Because smartphones are always turned on and ready to connect to the Internet, that
sensitive information is in danger of leakage. Various kinds of malware are more and more attack-
ing smartphones, especially Android phones. We propose a scheme that protects Android phones
against one of them, called LeNa. LeNa infects rooted Android phones and periodically leaks sensi-
tive information of the phone. LeNa also dominates the system and makes the phone a zombie which
can perform Distributed Denial of Service (DDoS) attack. The proposed scheme checks whether a
process is allowed to execute a requesting operation even after the process have acquired the root
privilege. This scheme can also protect smartphones from malware targeted for rooted phones.

Keywords: LeNa, malware, rooting, Android, root privilege

1 Introduction

On Android, rooting can make a user attain the root privilege, and the user can alter or replace system
applications and settings or perform operations unavailable to a normal Android user. In addition, the
user can modify the kernel and install custom firmware. On rooted smartphone, user can do a variety of
activities whatever he or she wants. Google has been much more relaxed about rooting than Apple has
been about jailbreaking, thereby many Android users root their phone. Many countries consider Android
rooting legal if the purpose is to run legal apps [9].
During rooting, an application named Superuser and a program su are installed. We can use su to open a
root-privileged shell. Superuser exchanges information with su and can identify the application, which
requested the open a root shell. Superuser also can ask a user whether she allow or deny the request of
su [2].
The malicious app LeNa (LegacyNative) also uses this su file to open a root shell. LeNa gets approving
the root privilege from a user as follows: LeNa is disguised as an antivirus tool that needs the root priv-
ilege, tells the user that if she approves the root privilege, it gives her game items for free, or unlocks a
paid application.
LeNa is a kind of social engineering attacks, which attacks rooted smartphones exploiting not vulnerabil-
ity in Android platform, but psychology of a user. The latest Android phone can be a victim if it is rooted.
The network solution company, Nominum, reports that LeNa is the greatest risk to mobile subscribers on
the third in 2013 [10].
We propose a new approach which can detect effectively LeNa. The approach utilizes the attack pattern
of LeNa and characteristics of Android framework and hooks the mount system call and prevents the
event that should not occur in a normal usage. Because LeNa needs to remount /system in a read/write

Journal of Internet Services and Information Security (JISIS), volume: 3, number: 3/4, pp. 63-71
∗Corresponding author: Room 105, Sanghuh research bldg., Department of Computer Engineering, Konkuk University, 268

Chungwon-daero, Chungju-si, Chungcheongbuk-do, 380-701, Republic of Korea, Tel: +82-(0)43-840-3559

63



Detection and prevention of LeNa Malware on Android Hwan-Taek, Minkyu and Seong-Je

mode, the approach effectively detects attacks by differentiating a normal mount operations and a mali-
cious intended one. We can detect a malicious intended mount operation by checking the mount point
and the process that invokes the mount system call. In addition, this approach can also detect malware
that target rooted smartphones, such as GingerMaster [7] and DroidKungFu [8], thus, can be adapted to
the lower versions of Android platforms.
This paper is organized as follows. Section 2 describes related work. In Section 3, we analyze a mali-
cious code called LeNa. Then,we explain the environmental features of Android that used in this paper
in Section 4, and propose a new method to prevent modification attacks on Android in Section 5. In
Section 6, we show the proposed method can also detect another malware. In Section 7, we carry out
some experiments to verify the effectiveness of our method. In Section 8, we conclude and give possible
future work.

2 Related work

Android’s privilege escalation attack can occur in application level and kernel level. Permission delega-
tion attack [5], another form of privilege escalation attack, allows an application access the function that
it has not permission to use. An application, for example, has not permission to use, GPS service, but the
delegation attack make it use by binding it to the service of an authorized application. To prevent such
attacks, many studies have been conducted, including Kirin [4], Saint [11], QUIRE [3], and Xmandroid
[1].
Privilege escalation attack in the kernel level gets the root privileges by exploiting vulnerability of the
kernel and takes control of a smartphone. The attack code, then, issues a command to the smartphone
through Command and Control server and makes the smartphone a bot. This type of attack is especially
fatal to smartphones, because they maintain security sensitive information such as Address book, SMS,
and photographs.
Park et al. [13] proposed a scheme RGBDroid, which prevents malicious behavior after rooting using
two additional modules. The first module, pWhiteList, lists up all processes allowed to have the root
privilege and a process not on the list can never have the root privilege. The second module, CriticalList,
lists up resources that must not be altered in /system folder and prohibits the removal and change of the
resource on the list. The content of pWhiteList and CriticalList, however, must be modified according
to Android version and manufacturer added modules. The proposed approach detects and prohibits a
malicious act and is independent of Android version and manufacturers.
Park et al. [12] proposed another scheme, which added Private Data Protection (PDP) module to RGB-
Droid above. PDP hooks the open system call and checks UID of a process and UID of a file. If the
process with the root privilege tries to access resources of the user, PDP blocks the open system call.
This module prevents all processes with the root privilege from accessing user resources. The proposed
approach prevents access with the root privilege, because it targets smartphones rooted by a user herself.

3 LeNa

The LeNa (LegacyNative) is a variant of DroidKungFu that targets rooted smartphones. While Droid-
KungFu acquires root privileges by exploiting vulnerabilities in Android, LeNa does not attack vulnera-
bilities and is trying to directly attack smartphone rooted by a user. The LeNa installs the management
application Superuser and adds the root privileged program su /system/bin into /system/bin folder, Supe-
ruser and su are cooperative. When a process executes su, Superuser asks the user whether to give the
privilege to the process (Fig. 1).
The early LeNa tricks users into approving privilege escalation by displaying the message, which says

64



Detection and prevention of LeNa Malware on Android Hwan-Taek, Minkyu and Seong-Je

Figure 1: The message tricking a user into approving privilege escalation

“To use all the features of this application. You have to approve the request for permission”. As induc-
ing techniques continue to develop further,LeNa disguises itself as an antivirus tool that needs the root
privilege, tells the user that if she approves the root privilege, it gives her game items for free, or unlocks
a paid application. These tricks are similar to the one used by recent crack programs, which says “The
file must be excluded from virus scanning because antivirus tools consider it harmful”.
LeNa can open the root privileged shell after your approval. After opening the shell, LeNa replaces im-
portant files in /system folder with malicious codes. The top of Fig. 2 shows the LeNa application folder
and you can see the file .e1704501225d. The bottom of Fig. 2 shows the /system/bin folder. You can
find the sizes of important files are same as .e1704501225d, including vold, chown, ifconfig, mount, and
rm. The file move is newly added. The filename .e1704501225d is arbitrarily chosen on creation and is
deleted after its duty.
In Fig. 3, vold, debuggerd, and the system server have higher PID than LeNa (com.atools.cuttherope).
These processes start execution during the booting process and are usually assigned lower PID. After
getting the root shell, LeNa kills the vold and debuggerd daemon processes. The init process is the par-

Figure 2: LeNa application folder (top) and /system/bin folder (bottom)

65



Detection and prevention of LeNa Malware on Android Hwan-Taek, Minkyu and Seong-Je

Figure 3: Restarted debuggerd, vold, and system server

ent of both daemons. The init process receives the SIGCHLD signal when they are killed. The init restart
two daemons when receiving SIGCHLD. Because LeNa replaces these files with its malicious codes,
the malicious code is executed when they are restarted. The system server process is a child of zygote
process and usually assigned the PID of 1000 (system). LeNa changes the parent of system server to init
using .e1704501225d and thus UID of system server is changed into 0 (root).

4 The environment of Android

4.1 Remounting /system folder

/system folder contains the critical files to running Android and must not be allowed to change indis-
criminately. Android mounts /system folder in read-only mode at the boot time and protects files against
deletion and change. If you want to change a file in /system folder, you need to remount in read/write
mode. Only a process with the root privilege can remount /system folder. Android grant the root privi-
lege to the kernel and a few core applications [6]. User application cannot change the content of /system
folder.

4.2 Zygote

Android supports the Java virtual machine on its own, Dalvik Virtual Machine (DVM). The Android
applications will run on this DVM. It incurs large overhead to initialize the resources needed to run the
DVM whenever applications are executed, especially on resource-limited smartphones. Android create
zygote process to efficiently manage resources.
Zygote is a process that has resources for the DVM in memory in advance. When an application is
executed, zygote forks a child process and adds only information about the applications into the child.
This approach does not require significant overhead. Therefore, the parent process of all applications
is zygote process. The system server also has zygote as a parent, thus, does not have the root privilege.
Process Hierarchy in Android is shown in Fig. 4.

Figure 4: Process hierarchy in Android

5 The Proposed Approach

After acquiring the root privilege, LeNa remounts the /system folder and replaces or creates some impor-
tant files with its own ones. It’s legal for the process with the root privilege to mount the /system folder,

66



Detection and prevention of LeNa Malware on Android Hwan-Taek, Minkyu and Seong-Je

Figure 5: The operation of the hooked mount() system call

but is illegal for a root shell executed by a user application to modify /system folder. To prevent the user
application from remounting /system folder, we hook the mount system call using Linux loadable kernel
module (Fig. 5).

To prevent a root shell executed by a user application from mounting, we must know which process
requests the operation and whether the process is a user application or not. We trace the parent process
of the requesting process.
Android is on top of the Linux kernel, so /proc filesystem exits. In the /proc filesystem, all running
processes has the directories named its PID. The directory contains status file, which stores the current
status of the corresponding process. The status includes process’s name, UID, GID, PID, PPID, etc. For
example, the content of the status file PID 2489 is shown in Fig. 6.

Figure 6: Process status with PID 2489

If we continue to trace the parent process, we finally reach the init process. Because the legal processes
with the root privilege and core system applications are not user applications, zygote cannot be their
parent process. Only user applications have the zygote process as a parent (see section 4.2). If we meet
the zygote process in the tracing the parent, we can know the requesting process is a user application.
Malware LeNa.a can be detected by just finding the zygote process during the trace. Malware LeNa.b
makes the init process the parent of the system server, but the zygote process should be its parent. If the
system server is the child of the init process, the fact indicates the system server is a malicious process.
The algorithm of the hooked mount() system call is shown in Fig. 7.
We verified the effectiveness of the proposed approach by running LeNa application on Android 4.0.4
(Ice Cream Sandwich) and Nexus S smartphone. In Fig. 8, the process com.atools.cuttherope is LeNa.
LeNa’s parent process has PID 82 and it is the zygote process. Remounting /system folder is blocked
and no malicious act occurs. Although LeNa is running, the legal root privileged processes except the
system server is not running (Fig. 9).

67



Detection and prevention of LeNa Malware on Android Hwan-Taek, Minkyu and Seong-Je

Figure 7: The algorithm of the hooked mount() system call

Figure 8: Detection of the illegal mount operation

Figure 9: No malicious act occurs by blocking remounting /system folder

6 Detecting malware targeting rooted smartphones

The proposed approach can be used to detect other malware that need to remount /system folder. It is
possible to detect them if we add one more check. a user application is not the direct child of the init

68



Detection and prevention of LeNa Malware on Android Hwan-Taek, Minkyu and Seong-Je

Table 1: Detection results of malware targeting rooted smartphones
Malware Kaspersky diagnosis Original Augmented
DroidDream Exploit.Linux.Lotoor.l O O

Backdoor.AndroidOS.KungFu.a O O
Backdoor.AndroidOS.KungFu.bw O O
Backdoor.AndroidOS.KungFu.eh X O

DroidKungFu Backdoor.AndroidOS.KungFu.ey X O
Backdoor.AndroidOS.KungFu.hb O O
Backdoor.AndroidOS.KungFu.z O O
HEUR:Backdoor.AndroidOS.KungFu.a X O

GingerMaster Exploit.Linux.Lotoor.z O O

process (Fig. 4). The zygote process is the direct child of the init process and user applications are direct
children of the zygote process. However, exploiting the vulnerability of udev of the init process, we can
directly execute a root privileged process from the init process. DroidKungFu use this method to run its
own malicious programs. To prevent this bypass, we must check whether the remounting process is in
/data/data folder.
DroidDream and DroidKungFu work only on version 2.2 or earlier versions of Android and GingerMas-
ter on 2.3.4 or earlier versions. We test the correctness for this case on H-AndroSV210 (HyBus SV210)
and Froyo 2.2. The Table 1 shows the detection result of the original algorithm and the augmented one
described above and Fig. 10 shows the detection screen of the augmented algorithm.

Figure 10: Detecting illegal remounting of DroidKungFu

7 Performance evaluation

We measured the execution time of the mount() system call before and after inserting the kernel module.
The module implements the original algorithm. We repeat the measurement 100, 1000, 10000, 100000
times and calculate the average. The measured execution time of the mount() system call is shown in
Table 2. The modified mount() system call takes twice the time than the unmodified one.
Unlike the mount common for processing either obtain the PID, to obtain the process name of the PID
is added, working time has increased mount when increasing the module. Looking at Table 2, it can be
confirmed that the overhead of about two times.

Table 2: The execution time of the mount() system call (s)
The number of repetition Before After overhead
100 0.062366 0.101363 0.038997
1,000 0.363235 0.809746 0.446511
10,000 3.377961 7.909293 4.531332
100,000 33.498014 78.804347 45.306333

69



Detection and prevention of LeNa Malware on Android Hwan-Taek, Minkyu and Seong-Je

8 Conclusion and Future Work

The proposed approach uses the information about the process that tries to remount the /system folder to
determine whether the mount is illegal or not. If a process tries to remount /system, we trace the parent
of the requesting process. Although a process has the root privilege, a user application process cannot
mount /system folder. Therefore, even if a user approved the grant root privileges to LeNa unconsciously,
no malicious act occurs. In addition this approach can also detect malware that target rooted smart-
phones, such as GingerMaster and DroidKungFu, thus, can be adapted to the lower versions of Android
platforms.
The proposed approach blocks all mount of /system folder of user applications. However, we must con-
sider the case where the user changes the /system folder directly. We can add the functionality of asking
the user whether she wants to allow the mount operation. By this asking, we can selectively block the
mount operation.

Acknowledgments

This research project was supported by Ministry of Culture, Sports and Tourism(MCST) and from Ko-
rea Copyright Commission in 2013, and by the MSIP(Ministry of Science, ICT and Future Planning),
Korea, under the ITRC(Information Technology Research Center) support program supervised by the
NIPA(National IT Industry Promotion Agency)”.

References

[1] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi. Xmandroid: A new android evolution to
mitigate privilege escalation attacks. Technical Report TR-2011-04, Technische Universität Darmstadt, April
2011.

[2] ChainsDD. FAQ. http://androidsu.com/superuser/faq/.
[3] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. QUIRE: Lightweight Provenance for Smart

Phone Operating Systems. In Proc. of the 20th USENIX Security Symposium, San Francisco, California,
USA, pages 347–362, August 2011.

[4] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone application certification. In Proc.
of the 16th ACM conference on Computer and Communications Security (ACM CCS’09), Chicago, Illinois,
USA, pages 235–245. ACM, November 2009.

[5] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission Re-Delegation: Attacks and
Defenses. In Proc. of the 20th USENIX Security Symposium, San Francisco, California, USA, pages 331–
346, August 2011.

[6] Google Inc. Android Security Overview: Rooting of Devices. http://source.android.com/devices/
tech/security/index.html.

[7] X. Jiang. GingerMaster: First Android Malware Utilizing a Root Exploit on Android 2.3 (Gingerbread).
http://www.csc.ncsu.edu/faculty/jiang/GingerMaster.

[8] X. Jiang. Security alert: New sophisticated android malware droidkungfu found in alternative chinese app
markets. http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html.

[9] N. Kralevich. It’s not “rooting”, it’s openness. http://android-developers.blogspot.kr/2010/12/
its-not-rooting-its-openness.html.

[10] C. S. Nominum. Top mobile malware threats. http://nominum.com/blog/mobile-threats/.
[11] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich application-centric security in

android. Security and Communication Networks, 5(6):658–673, June 2012.

70

http://androidsu.com/superuser/faq/
http://source.android.com/devices/tech/security/index.html
http://source.android.com/devices/tech/security/index.html
http://www.csc.ncsu.edu/faculty/jiang/GingerMaster
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://android-developers.blogspot.kr/2010/12/its-not-rooting-its-openness.html
http://android-developers.blogspot.kr/2010/12/its-not-rooting-its-openness.html
http://nominum.com/blog/mobile-threats/


Detection and prevention of LeNa Malware on Android Hwan-Taek, Minkyu and Seong-Je

[12] Y. Park, C. Lee, J. Kim, S.-J. Cho, and J. Choi. An android security extension to protect personal information
against illegal accesses and privilege escalation attacks. Journal of Internet Services and Information Security
(JISIS), 2(3/4):29–42, November 2012.

[13] Y. Park, C. Lee, C. Lee, J. Lim, S. Han, M. Park, and S.-J. Cho. Rgbdroid: a novel response-based approach
to android privilege escalation attacks. In Proc. of the 5th USENIX conference on Large-Scale Exploits and
Emergent Threats (LEET’12), San Jose, California, USA, April 2012.

——————————————————————————

Author Biography

Hwan-Taek Lee received the B.S. degree in Computer Engineering from Dankook
University, Korea, in 2013. He is currently a M.E. student in the Department of Soft-
ware Security at the Dankook University. His research interests include computer
security, network security and smartphone security.

Minkyu Park received the B.E. and M.E. degree in Computer Engineering from
Seoul National University in 1991 and 1993, respectively. He received Ph.D. de-
gree in Computer Engineering from Seoul National University in 2005. He is now an
Associate Professor in Konkuk University, Korea. His research interests include op-
erating systems, real-time scheduling, embedded software, computer system security,
and HCI.

Seong-je Cho received the B.E., the M.E. and the Ph.D. in Computer Engineering
from Seoul National University, Korea, in 1989, 1991 and 1996 respectively. He
was a visiting scholar at Department of EECS, University of California, Irvine, USA
in 2001, and at Department of Electrical and Computer Engineering, University of
Cincinnati, USA in 2009 respectively. He is a Professor in Department of Software
Science, Dankook University, Korea, from 1997. His current research interests in-
clude computer security, operating systems, software protection, real-time scheduling,

and embedded software.

71


	Introduction
	Related work
	LeNa
	The environment of Android
	Remounting /system folder
	Zygote

	The Proposed Approach
	Detecting malware targeting rooted smartphones
	Performance evaluation
	Conclusion and Future Work

