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Abstract

In information security field underlying cryptography, random sequences, which are the base of sys-
tem security, play a very important role. Random sequences with high security are often needed in
cryptography field. From the view of security, real random sequences should be completely unpre-
dictable and reliable. In many circumstances, a random number not only need to be random, but also
need to be verifiable. So verifiable random number is much needed in cryptography. Using linear
equations in finite field, a method for constructing verifiable random number is proposed. It enjoys
advantages of high efficiency and no error. Then the security properties such as unpredictability and
unmanipulability are analyzed, and an example is given to show the feasibility of the method. Finally,
a way for fast generation and verification of VRN with large amounts of data is given.
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1 Introduction

In development of cryptography research, cryptographic techniques plays an increasingly important role
in this field. The application of the random number is one of the most important aspects of cryptographic
techniques, such as, key management, protocol of cryptography, digital signatures, and authentication.
As the rapid development of technology of information security, new requirements for random sequences
are emerging. In many circumstances, data should not only be random or pseudo-random, but its ran-
domness should be verified for all participants so that they can believe that random data is not controlled
by anyone.

In order to achieve verification, verifiable random function (VRF) [8] is proposed firstly by Micali,
Rabin and Vadhan in 1999 [2]. Then some of other schemes are proposed. However, there is relatively
less research on verifiable random functions and its applications. Most of the schemes are based on
the assumptions of RSA and BDH [6, 1] difficult problems, such as the schemes in [2, 11, 3]. These
researches give prototype theory of VRF, and the security is reliable. But there are much complex mod-
ular exponentiation in these schemes, the operational efficiency is low. VRF is impractical in electronic
commerce.

Random number is essential in electronic commerce, so verifiable random number (VRN) is more
practical in e-business activities. In this paper we propose a generation way for VRN based on linear
equations. Linear equations are widely used in the mathematics. But the solutions to linear equations
are always inexact in real number field. To restrict the domain to a finite field, there is no error to the
solutions. For the high efficiency operation of homogeneous linear equations, we use it to generate VRN.
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1.1 Related Work

Random sequences has played an important role in cryptography. In a sense, the security of whole
system is depend on the security of random numbers. So security random numbers are highly required
in cryptography. For the security, the only true random sequence is the most reliable, because it is
completely unpredictable, and any random sequence is impossible to speculate other numbers. In real
world, the operations about real random sequences, such as generate, copy and manipulate, are difficult
to achieve. Therefore, in practical applications pseudo-random sequences and unpredictable sequences
are usually used.

In many circumstances, we need random numbers, and we also need it can be verified for all par-
ticipants, so that participants can believe that random number is not manipulated. So verifiable random
number comes out. The idea of VRN is derived from VRF. It has good applications in e-voting and
e-lottery schemes. VRF is proposed firstly by Micali, Rabin and Vadhan in 1999. Goldreich-Levin trans-
formation is used in this scheme. But the efficiency of this transformation is very low, and the output
range is very small. In order to avoid the low efficiency of Goldreich-Levin transformation, a more ef-
ficient scheme based on Diffie-Hellman problem is proposed by Lysyanskaya [6]. Then a new scheme
is proposed by Dodis and Yampolskiy [1] based on bilinear group. Security hash functions are used in
this scheme, and the input space is unlimited expanded. In the following years, some significant work is
given in [2, 1, 7, 5, 10]. Some schemes about verifiable random functions with a shorter key and evidence
based on bilinear group is proposed by Dodis and Yampolskiy [2]. Then Dodis [1], Naor, Pinkas and
Reingold [7] propose a distributed way to generate verifiable random functions. Liu, Chen, and Wu [5]
give the security proof of a verifiable random functions. After that, by the research of verifiable random
functions, Liu, Ye, Cao [10] give a fast way to generate VRN with large amounts of data over finite field,
in 2010. Then in 2012, a scheme for the fast generation of VRN based on interpolating polynomial [9]
is given by Ye [4].

1.2 Our Contributions

In the scheme of VRN, we need the data, which given by all the participants, play a role in the generation
of VRN, and the participants can verify whether the random number is generated from these data. Most
of the schemes for the generation of VRN are based on RSA and BDH problems. But much complex
modular exponentiations are used in the scheme, this leads to the low efficiency of the schemes. A new
way to generate VRN based on linear equations is proposed in this paper,which is simple, convenient
and efficient, and can achieve fast generation and verification for a large number of data.

The organization of this paper is as follows. Some preliminaries are given in Section 2. The verifiable
random number based on linear equations is given in Section 3, and an example is also given to show the
feasibility of our scheme. The security analysis is given in Section 4. The fast generation and verification
of VRN with large amounts of data is given in Section 5. Finally, conclusion will be made in Section 6.

2 Preliminaries

Some preliminaries are listed in this section, which are used in the following sections.

2.1 Uniqueness of Solution of Full Rank Linear Equation over Finite Field

Given a linear equation AX = Y mod p, here A is a full rank n×n matrix,

107



Constructing Verifiable Random Number in Finite Field Ye, Chen and Ma

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · ·
a j1 a j2 · · · a jn

· · · · · · · · ·
an1 an2 · · · ann



and

X =


x1
x2
...

xn



is an unknown vector, and

Y =


y1
y2
...

yn



is a known vector. There exists a unique X over the finite field, which is satisfied the equation AX = Y
mod p.

Proof. For A is a full rank n×n matrix, then

d = |A|=

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1(i−1) a1i a1(i+1) · · · a1n

a21 a22 · · · a2(i−1) a2i a2(i+1) · · · a2n

· · · · · · · · · · · ·
a j1 a j2 · · · a j(i−1) a ji a j(i+1) · · · a jn

· · · · · · · · · · · ·
an1 an2 · · · an(i−1) an an(i+1) · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0 mod p.

Then we can get di,

di =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1(i−1) y1 a1(i+1) · · · a1n

a21 a22 · · · a2(i−1) y2 a2(i+1) · · · a2n

· · · · · · · · · · · ·
a j1 a j2 · · · a j(i−1) yi a j(i+1) · · · a jn

· · · · · · · · · · · ·
an1 an2 · · · an(i−1) yn an(i+1) · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣
mod p.

108



Constructing Verifiable Random Number in Finite Field Ye, Chen and Ma

By using Cramer Rule,

xi =
di

d
=

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1(i−1) y1 a1(i+1) · · · a1n

a21 a22 · · · a2(i−1) y2 a2(i+1) · · · a2n

· · · · · · · · · · · ·
a j1 a j2 · · · a j(i−1) yi a j(i+1) · · · a jn

· · · · · · · · · · · ·
an1 an2 · · · an(i−1) yn an(i+1) · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1(i−1) a1i a1(i+1) · · · a1n

a21 a22 · · · a2(i−1) a2i a2(i+1) · · · a2n

· · · · · · · · · · · ·
a j1 a j2 · · · a j(i−1) a ji a j(i+1) · · · a jn

· · · · · · · · · · · ·
an1 an2 · · · an(i−1) an an(i+1) · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣

mod p.

From this we know xi is existent and unique.

2.2 Hash Function

A hash function is a PPT algorithm that takes an arbitrary block of data as input and returns a fixed-size
bit string, the hash value, such that any (accidental or intentional) change to the data will (with very high
probability) change the hash value.

The secure hash function has four main properties:

1. It is easy to compute the hash value for any given message: ∀x, there is an efficient computation
algorithm h(·) to compute h(x);

2. It is infeasible to generate a message when given a hash result: ∀y, it is computationally infeasible
to find x, such that h(x) = y;

3. It is infeasible to modify a message without changing the hash: given x1, it is computationally
infeasible to find x2, such that h(x1) = h(x2);

4. It is infeasible to find two different messages with the same hash: it is computational infeasible to
find x1 and x2, such that h(x1) = h(x2).

3 Verifiable Random Number Based on Linear Equations

In this section the generation of VRN is proposed and then an example is given. In this scheme, the
members can confirm the final number is unpredictable and unmanipulated.

3.1 Generation

A random number r is needed as a secret key among the members U1,U2, . . . ,Un to encrypt the message.
The good method is to allow everyone to participate in generating the random number r impartially and
everyone can use his/her own secret key to verify whether r is randomly generated or r is manipulated.
A method of constructing verifiable random number based on linear equations is proposed. The steps of
generating verifiable number are as follows:
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1. Ui selects a vector αi = (αi1,αi2, . . . ,αin),αi j ∈ Zp,1 ≤ j ≤ n randomly, and a random number
αi(n+1) ∈ Zp, then sends it to Computing Center (CC).

2. CC verifies whether the n vectors are linearly independent or not. If the n vectors are not indepen-
dent, CC asks some members to select another vectors, until the n vectors are independent.

3. CC uses the n elements αi(n+1) to construct a new vector

y =


α1(n+1)
α2(n+1)

...
αn(n+1)

 .

4. CC can construct a linear equations 
α1
α2
...

αn

a = y mod p.

And CC can get the solution vector a = (a1,a2, . . . ,an) by computing

a =


α1
α2
...

αn


−1

y =


a1
a2
...

an

 mod p.

In this step, CC can also use Gaussian elimination which leads to less computation.

5. a =


a1
a2
...

an

 is called linear equations solution random. CC publishes r as VRN. Let r = a1 ‖

a2 ‖ · · · ‖ an (‖ denotes concatenation operator) be the random verifable munber. CC publishes the

solution vector a =


a1
a2
...

an

 for verification.

3.2 Example

For example there are 3 users, the finite field is Z7, and the 3 independent vectors and the 3 random
numbers are

{(1,3,2),5},{(0,2,5),3},{(6,2,3),2}.

So we have the linear equations  1 3 2
0 2 5
6 2 3

X =

 5
3
2

 mod 7.
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We can get

X =

 5
2
4

 .

So the verifiable random number is r = 5 ‖ 2 ‖ 4 = 524.

4 Security Analysis

The verifiability, unpredictability and unmanipulability are discussed as following.

4.1 Verifiability

If Ui suspects the authenticity of r, ui can verify whether his/her vector is used in the generation of r. The
steps of the VRN verification are as follows:

Ui verifies whether the equation

αia =
(

αi1,αi2, . . . ,αin
)


a1
a2
...

an

= αi(n+1) mod p

is true or false. If it is true, αi is used in the process of creating r.

4.2 Unpredictability

Theorem 4.1. If one of the n vectors {α1,α2, . . . ,αn} the adversary does not get, the probability of the
verifiable random number can be predicted is at most 1/p.

Proof. Without loss of generality, we assume that {α2,α3, . . . ,αn} and the vector


α2(n+1)
α3(n+1)

...
αn(n+1)

 are

fixed, only α1 and α1(n+1) the adversary do not get. So adversary can get p vectors about X =


x1
x2
...

xn


from the linear equations

α21 α22 · · · α2n

· · · · · · · · ·
α j1 α j2 · · · α jn

· · · · · · · · ·
αn1 αn2 · · · αnn




x1
...

x j
...

xn

=


α2(n+1)

...
α j(n+1)

...
αn(n+1)

 mod p.

The verifiable number is one of the p vectors. So the probability of the verifiable random number can be
predicted is 1/p.

Similarly, if there are t vectors the adversary do not get, the probability of the verifiable random
number can be predicted is 1

pt .
So the probability of the verifiable random number can be predicted is at most 1/p.
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4.3 Unmanipulability

Theorem 4.2. If one of the members is not manipulated by adversary, that means one of the n vec-
tors {α1,α2, . . . ,αn} the adversary do not get, the probability of the verifiable random number can be
manipulated is no more than 1

p2 .

Proof. If adversary want to control the output X =


x1
x2
...

xn

, he/she should control all inputs. If not,

the probability of the verifiable random number can be manipulated is no more than 1
p2 .

Without loss of generality, we assume that {α2,α3, . . . ,αn} and the vector


α2(n+1)
α3(n+1)

...
αn(n+1)

 are con-

trolled, only α1 and α1(n+1) can not be manipulated. So X is satisfied with these equations
α21 α22 · · · α2n

· · · · · · · · ·
α j1 α j2 · · · α jn

· · · · · · · · ·
αn1 αn2 · · · αnn




x1
...

x j
...

xn

=


α2(n+1)

...
α j(n+1)

...
αn(n+1)

 mod p.

But for the equation

(α11,α12, . . . ,α1n)


x1
...

x j
...

xn

= α1(n+1)

X is fixed but there are p choices of α1(n+1), and for every α1(n+1) there are pn−1 vectors satisfies this
equation. There are pn choices of (α11,α12, . . . ,α1n) in Zp. So if adversary wants to manipulate X ,
he/she should get the exact α1(n+1) and (α11,α12, . . . ,α1n), that means α1(n+1) should be given from the
corresponding p elements, and (α11,α12, . . . ,α1n) should be given from the corresponding pn−1 vectors.
The probability is

P =
pn−1

pn
1
p
=

1
p2 .

Similarly, if there are t vectors are not controlled by adversary, the probability of the verifiable
random number can be manipulated is 1

p2t

So the probability of the verifiable random number can be manipulated is no more than 1
p2 .

5 VRN Produced by Large Amounts of Data

If the number of participants n is huge, it will take a long time to solve the linear equations. To overcome
this deficiency, a multi-matrix scheme for the generation of VRN by using linear equations is proposed.
When n is exponential increased, the computing time increases linearly. Then the improved scheme is as
follows.
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5.1 Generation

CC can generate VRN as follows.

1. n participants are divided into m groups, the number of participants in every group is ni,1≤ i≤m
which is less than n′ (here n′ is smaller than the number of equations in linear equations which we
can get the solutions rapidly, and ∑

i=m
i=1 ni = n). Then there are m sets of linear equations.

2. The kth participant in the group i, which is made up by ni members, gives an ni-dimensional vector
βik,1≤ k ≤ ni and a random number βik,ni+1 to CC.

3. CC verifies whether the ni vectors are linearly independent or not. If the ni vectors are not inde-
pendent, CC asks some member to select another vector, until the ni vectors are independent.

4. CC uses the ni vectors and the ni random numbers to construct a linear equations.
βi1
βi2
...

βini

ai =


βi1,ni+1
βi2,ni+1

...
βini,ni+1

 mod p.

And CC can get the solution vector ai = (ai1,ai2, . . . ,aini) by computing

ai =


βi1
βi2
...

βini


−1

βi1,ni+1
βi2,ni+1

...
βini,ni+1

 mod p.

And then CC can get the solution vector

ai =


ai1
ai2
...

aini

 .

5. ai =


ai1
ai2
...

aini

 is called linear equations solution random. And CC computes ri = h(ai1 ‖ ai2 ‖

· · · ‖ aini) as the ith random verifiable random number.

6. CC computes r = h(r1 ‖ r2 ‖ · · · ‖ rm), (here h(·) is a secure hash function) and publishes r as VRN.

CC also publishes the solution vector ai =


ai1
ai2
...

aini

 (1≤ i≤ m) for verification.
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5.2 Verification

Participants can verify the VRN by the following steps.

1. The kth participant in the group i verifies whether the following equation holds.

βikai = βik


ai1
ai2
...

aini

= βik,ni+1.

2. If the above equation holds, the participant verifies whether the following equation holds.

r = h(r1 ‖ r2 ‖ · · · ‖ rm).

If the two equations are holds, the participant can believe r is a VRN.

6 Conclusion

We propose a way to construct verifiable random number by using the linear equations over finite fields,
and give the security analysis of our scheme, as well as prove the verifiability, unpredictability and
unmanipulability of the VNR. We also give an example to show the feasibility of the method. Because of
the limited accuracy, rounding error and truncation error of computer in real number field, the solutions
to linear equations are always not accurate. But from the result we know there is no error for the solution
to linear equations over finite field. And we give a way of fast generation and verification for VRN by
large amounts of data. This verifiable random number has a wide range of applications in the field of
cryptography.
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