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Abstract

Mixnet (Mix Network) was proposed by David Chaum [3] for anonymous communication in 1981.
A mixnet is a multistage system that accepts encrypted messages under the public keys of all inter-
mediate mixnet nodes and outputs randomly permuted corresponding plaintexts.
In 2004, Golle et al [10] presented a new primitive called universal re-encryption based on the El-
gamal public key cryptosystem. Universal mixnet based on universal re-encryption takes the input
as encrypted messages under the public key of the recipients not the public key of the universal
mixnet so it dispenses with the complexities of the key generation, key distribution and key mainte-
nance. In Eurocrypt 2010 Gentry, Halevi and Vaikunthanathan [9] presented a cryptosystem which
is an additive homomorphic and a multiplicative homomorphic for only one multiple. In this paper
we present universal re-encryption scheme under learning with error (LWE) assumption based on [9].
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1 Introduction

Mixnet (mix network) was proposed by David Chaum [3] for anonymous communication in 1981. A
mixnet is a multistage system that accepts encrypted messages under the public keys of all intermediate
mixnet nodes and outputs randomly permuted corresponding plaintexts. Each mixnet node changes the
appearance of its inputs by decrypting them (removing the layer of encryption) and permutes them be-
fore forwarding to the next node. In this way adversary will find hard to guess which input ciphertext
corresponds to output ciphertext. More efficient mixnet based on decryption is proposed in [4] using the
Elgamal public key cryptosystem [7].
Park et al [4] proposed another variety of mixnet known as a re-encryption mixnet based on the Elgamal
public key cryptosystem [7]. A re-encryption mixnet accepts the encrypted massages under the public
key of the mixnet. The private key corresponding to the public key of the mixnet is held in distributed
form among all re-encryption mixnet nodes. Each re-encryption mixnet node change the appearance of
input ciphertexts by re-encrypting them with random string and outputs the re-encrpted ciphertexts in
random order. Ciphertext C and re-encrypted ciphertext C′ both decrypt to the same plaintext. Set of
ciphertexts produced by last re-encryption mixnet node is decrypted by group of t nodes using a (t,n)
threshold scheme. For privacy it is required that adversary can not distinguish the ciphertext pair (C,C′)
from the pair (C,R) for a random ciphertext R with size same as the size of the ciphertext C′.
In 2004, Golle et al [10] presented a new primitive called universal re-encryption based on the Elgamal
public key cryptosystem [7]. Universal mixnet is a mixnet based on universal re-encryption which takes
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the input as encrypted messages under the public key of the recipients not the public key of the universal
mixnet. Even there is no term like the public key of the universal mixnet. Each universal mixnet node
universally re-encrypts these ciphertext and permute them before sending to the next node. Input cipher-
text to the universal mixnet node and output ciphertext of the node decrypt to the same plaintext. Finally
outputs from the universal mixnet is set of universal re-encrypted ciphertexts. Potential receiver must
perform to decrypt all the ciphertexts to identify messages sent for them. This is a disadvantage of the
universal re-encryption. A number of constructions of universal re-encryption scheme is known [8, 5].
Advantage of universal re-encryption mixnet over the other mixnets is as follows.

• In universal mixnet, public key of the universal mixnet is not required. So it dispenses with the
complexities of the key generation, key distribution and key maintenance.

• If we make assumption that universal mixnet nodes do not store the permutation of the ciphertexts
and re-encryption factors used by them then universal mixnet provides perfect forward anomity.

Once quantum computer comes into reality, all the cryptosystem based on prime factorization and dis-
crete logarithm problem can be solved in polynomial time by Shor’s algorithm [14]. Lattice based hard
problems are conjectured to remain secure against quantum computers. Since Ajtai’s seminal result [1]
on the average case / worst case equivalence, lattice based cryptogrphy has become attractive research
area. Recently Regev [12] defined the learning with error (LWE) problem and proved that it also enjoys
similar average case / worst case equivalence hardness properties under a quantum reduction.

Our Contribution: Idea for universal re-encryption is simple: In an additive homomorphic cryptosys-
tem we append a second ciphertext (encryption of zero) to the ciphertext. Since in an additive homomor-
phic E(M+0) = E(M)+E(0), so we can use the second ciphertext to re-encrypt (change the encryption
factor) the first ciphertext such that the re-encrypted ciphertext and the ciphertext decrypt to the same
plaintext.
In Eurocrypt 2010 Gentry, Halevi and Vaikunthanathan [9] presented a cryptosystem which is an additive
homomorphic and a multiplicative homomorphic for only one multiple. To the best of our knowledge,
there does not exist any lattice based universal re-encryption (URe) scheme. In this paper we propose
lattice based universal re-encryption (URe) scheme under LWE assumption based on [9].

Paper Outline: Our paper is organized as follows. In section 2, we describe basic definitions, security
models, results and hard problems required to understand rest of the paper. Since our scheme is based on
Gentry et al scheme [9] so in section 3, we describe GHV public key cryptosystem [9]. In section 4, we
describe our scheme. In section 5 we give conclusion and related open problems.

2 Preliminaries

2.1 Notation

We denote [ j] = {0,1, ..., j}, set of real numbers by R and the integers by Z. We assume vectors to be
in column form and are written using small letters, e.g. x. Matrices are written as capital letters, e.g.
X . ‖S‖ denotes the Euclidean norm of the longest (maximum euclidean norm) vector in matrix S, i.e.
‖S‖ := maxi‖si‖ for 1≤ i≤ k.
We say that negl(n) is a negligible function in n if it is smaller than the inverse of any polynomial function
in n for sufficiently large n.
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2.2 Universal Re-encryption Scheme (URe)

Here definition of URe is similar to [10]. System parameters include message space M, ciphertext space
C, and set of encryption factors R. Universal Re-Encryption Scheme consists of four algorithms.

Universal KeyGen(n): On input a security parameter n, outputs the public key pk and secret key sk
pair.

Universal Encryption(pk,m,r): On input public key pk, a message m ∈ M and an encryption factor
r ∈ R, and outputs a ciphertext C ∈ C.

Universal Decryption(C,sk): On input a secret key sk, and a ciphertext C outputs message m.

Universal Re-Encryption(C,r): On input a ciphertext C and re-encryption factor r ∈ R, but no public
key outputs ciphertext C′ where C′ ∈ C.

2.3 Universal Semantic Security Model for Universal Re-encryption Scheme (IND-URe-
CPA)

Universal semantic security model is adapted from [10]. Universal security model is variant of semantic
security model. In this model, adversary is allowed to construct universal ciphertexts under randomly
generated public key pk. The challenger re-encrypts the ciphertext. The goal of the adversary is to
distinguish between the re-encrypted ciphertext and the random ciphertext with the same size as the size
of the re-encrypted ciphertext. Here we define security model using a game that is played between the
challenger and the adversary. The game proceeds as follows.

KeyGen: The challenger runs the key generation algorithm and gives public parameters to the adver-
sary.

Challenger: The adversary submits message m ∈ M and r ∈ R (adversary can construct ciphertext).
Challenger sets C ← Universal Encryption(m,r, pk) and picks a random bit b ∈ {0,1} and a random
ciphertext C with same size as size of the universal re-encrypted ciphertext. If b = 0 it sets the challenge
ciphertext to C∗ = Universal Re-encryption(C,r′). If b = 1 it sets the challenge ciphertext to C∗ = C.
Challenger sends C∗ as challenge to the adversary.

Guess: The adversary outputs a guess b′ ∈ {0,1}, it succeeds if b′ = b.

We refer an adversary A as an IND-URe-CPA adversary. We define the advantage of the adversary
A in attacking universal re-encryption scheme ξ as Advξ ,A(n) = |Pr[b = b′]−1/2|.

Definition 1. We say that universal re-encryption scheme ξ is universal semantic secure if for all
IND-URe-CPA PPT adversaries A we have Advξ ,A(n) is a negligible function.
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2.4 Universal Semantic Security Model for Identity based Universal Re-encryption Scheme
(IND-URe-ID-CPA)

Security model is similar to security model in section 2.3. In this model, adversary constructs universal
ciphertext under randomly generated identity id. The challenger re-encrypts the ciphertext. The goal of
the adversary is to distinguish between the re-encrypted ciphertext and random ciphertext with same size
as the size of re-encrypted ciphertext. Security model is explained using following game.

KeyGen: The challenger runs the key generation algorithm and gives public parameters to adversary.

KeyExtrction: Adversary can make extraction query on any identity id 6= id∗

Challenger: The adversary submits message m ∈ M and r ∈ R (adversary can construct ciphertext).
Challenger sets C← Universal encryption(m,r, id) and picks a random bit b ∈ {0,1} and a random ci-
phertext C with size same as size of universal re-encrypted ciphertext. If b = 0 it sets the challenge
ciphertext to C∗ = Universal Re-encryption(C,r′). If b = 1 it sets the challenge ciphertext to C∗ = C.
Challenger sends C∗ as challenge to the adversary.

Guess: The adversary outputs a guess b′ ∈ {0,1}, it succeeds if b′ = b.
We refer an adversary A as an IND-URe-ID-CPA adversary. We define the advantage of the adversary
A in attacking universal re-encryption scheme ξ as Advξ ,A(n) = |Pr[b = b′]−1/2|.

Definition 2. We say that identity based universal re-encryption scheme ξ is universal semantic secure
if for all IND-URe-ID-CPA PPT adversaries A we have Advξ ,A(n) is a negligible function.

2.5 Integer Lattices ([6])

A lattice is defined as the set of all integer combinations

L(b1, ...,bn) =

{
n

∑
i=1

xibi : xi ∈ Z for 1≤ i≤ n

}

of n linearly independent vectors {b1, ...,bn} ∈ Rn. The set of vectors {b1, ...,bn} is called a basis for
the lattice. A basis can be represented by the matrix B = [b1, ...,bn] ∈ Rn×n having the basis vectors as
columns. Using matrix notation, the lattice generated by a matrix B ∈ Rn×n can be defined as L(B) =
{Bx : x ∈ Zn}, where Bx is the usual matrix-vector multiplication. The determinant of a lattice is the
absolute value of the determinant of the basis matrix det(L(B)) = |det(B)|.

Definition 3. For q prime, A ∈ Zn×m
q and u ∈ Zn

q , define:

Λq(A) := {e ∈ Zm s.t. ∃s ∈ Zn
q where AT s = e (mod q)}

Λ
⊥
q (A) := {e ∈ Zm s.t. Ae = 0 (mod q)}

Λ
u
q(A) := {e ∈ Zm s.t. Ae = u (mod q)}
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2.6 Gram Schmidt Orthogonalization:

S̃ := {s̃1, ..., s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the set of linearly independent
vectors S = {s1, ...,sk} ⊂ Rm. It is defined as follows: s̃1 = s1 and s̃i is the component of si orthogonal to
span(s1, ...,si) where 2≤ i≤ k . Since s̃i is the component of si so ‖s̃i‖ ≤ ‖si‖ for all i.
We refer to ‖̃S‖ as the Gram-Schmidt norm of S.

2.7 Discrete Gaussians

Let L be a subset of Zm. For any vector c ∈ Rm and any positive parameter σ ∈ R> 0, define:
ρσ ,c(x) = exp(−π

‖x−c‖
σ2 ) : a Gaussian-shaped function on Rm with center c and parameter σ ,

ρσ ,c(L) = ∑x∈L ρσ ,c(x) : the (always converging) ρσ ,c over L,
DL,σ ,c : the discrete Gaussian distribution over L with parameters σ and c,

∀y ∈ L , DL,σ ,c =
ρσ ,c(y)
ρσ ,c(L)

The distribution DL,σ ,c will most often be defined over the Lattice L = Λ⊥q for a matrix A ∈ Zn×m
q or over

a coset L = t +Λ⊥q (A) where t ∈ Zm.

Theorem 1 ([1, 11]) Let q≥ 3 be odd and m := d6nlogqe.
There is probabilistic polynomial-time algorithm TrapGen(q,n) that outputs a pair (A ∈ Zn×m

q ,T ∈ Zn×m)
such that A is statistically close to a uniform matrix in Zn×m

q and T is a basis for Λ⊥q (A) satisfying

‖T̃‖ ≤ O(
√

n logq) and ‖T‖ ≤ O(n logq)

with all but negligible probability in n.

Lemma 1 (Lemma 7.1 of [6]) Let Λ be an m-dimensional lattice. There is a deterministic polynomial-
time algorithm ToBasis(S,B) that, given an arbitrary basis B of Λ and a full-rank set S = {s1, ...,sm} in
Λ, returns a basis T of Λ satisfying

‖T̃‖ ≤ ‖S̃‖ and ‖T‖ ≤ ‖S‖
√

m/2

.

2.8 The LWE Hardness Assumption ([12, 15])

The LWE (learning with error) hardness assumption is defined by Regev [12].

Definition 4. LWE: Consider a prime q, a positive integer n, and a Gaussian distribution χm over Zm
q .

Given (A,As+ x) where matrix A ∈ Zm×n
q is uniformly random and x ∈ χm.

LWE hard problem is to find s with non-negligible probability.

Definition 5. Decision LWE: Consider a prime q, a positive integer n, and a Gaussian distribution χm

over Zm
q . The input is a pair (A,v) from an unspecified challenge oracle O, where A ∈ Zm×n

q is chosen
uniformly. An unspecified challenge oracle O is either a noisy pseudo-random sampler Os or a truly
random sampler O$. It is based on how v is chosen.
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1. When v is chosen to be As+ e for a uniformly chosen s ∈ Zn
q and a vector e ∈ χm, an unspecified

challenge oracle O is a noisy pseudo-random sampler Os.

2. When v is chosen uniformly from Zm
q , an unspecified challenge oracle O is a truly random sampler

O$.

Goal of the adversary is to distinguish between the above two cases with non-negligible probability.
Or we say that an algorithm A decides the (Zq,n,χ)-LWE problem if |Pr[AOs = 1]−Pr[AO$ = 1]| is
non-negligible for a random s ∈ Zn

q .

Above decision LWE is also hard even if s is chosen from the Gaussian distribution rather than the
uniform distribution [2, 13].

Definition 6. Consider a real parameter β = β (n) ∈ {0,1} and a prime q. Denote by T = R/Z the
group of reals [0,1) with addition modulo 1. Denote by ψβ the distribution over T of a normal variable
with mean 0 and standard deviation β/

√
2π then reduced modulo 1. Denote by bxe= bx+ 1

2c the nearest
integer to the real x ∈ R. We denote by ψβ the discrete distribution over Zq of the random variable bqXe
mod q where the random variable X ∈ T has distribution ψβ .

Theorem 2 ([12]). If there exists an efficient, possibly quantum algorithm for deciding the (Zq,n,ψα )-
LWE problem for q > 2

√
n/α then there exists an efficient quantum algorithm for approximating the

SIVP and GapSVP problems, to within O(n/α) factors in the l2 norm, in the worst case.

2.9 Small Integer Solution (SIS) Assumption ([1])

SIS and ISIS hard problems were proposed by Ajtai [1] in 1996.

Definition 7. Given an integer q, a matrix A ∈ Zn×m
q and real β , find a short nonzero integer vector

x ∈ Zm
q such that Ax = 0 mod q and x≤ β .

OR find a nonzero integer vector x ∈ Zm
2 such that Ax = 0 mod q.

2.10 Inhomogeneous Small Integer Solution (ISIS) Assumption

Definition 8. Given an integer q, a matrix A∈ Zn×m
q , a syndrome u∈ Zn

q and real β , find a short nonzero
integer vector x ∈ Zm

q such that Ax = u mod q and x≤ β .
OR find a nonzero integer vector x ∈ Zm

2 such that Ax = u mod q.

3 Gentry, Halevi and Vaikunthanathan (GHV) Cryptosystem ([9])

Our scheme is based on GHV cryptosystem [9] which is additive homomorphic and multiplicative ho-
momorphic for one multiplication. We briefly describe the GHV homomorphic cryptosystem [9]. Here
message space is the set of binary m-by-m matrices, i.e. M ∈ Zm×m

2 and ciphertex space is the set of
m-by-m matrices, i.e. C ∈ Zm×m

q .

KeyGen(n): On input a security parameter n, we set the parameter q = poly(n), m = O(n log q) and
a Gaussian distribution ψβ (q)m×m

q with Gaussian error parameter β = 1/poly(n). We run the trapdoor
sampling algorithm TrapGen of Theorem 1 to obtain a matrix A ∈ Zm×n

q together with the trapdoor
T ∈ Zm×m. The public key is A and the secret key is T .
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Encrypt(A,M ∈ {0,1}m×m): To encrypt message M ∈ {0,1}m×m, do the following.

1. Choose a uniformly random matrix S← Zn×m
q and an error matrix X ← ψβ (q)m×m

q .

2. Output the ciphertext
C = AS+2X +M (mod q)

Decrypt(T,C :) To decrypt C, do the following.

1. Set E = TCT t mod q.

2. Output the matrix B = T−1E(T t)−1 mod q.

Correctness: Since T.A = 0 therefore E = TCT t = T (2X +M)T t mod q. Now if T (2X +M)T t mod q
is equal to T (2X +M)T t then T−1ET mod q = M. So for correct decryption one has to set the parameter
β small enough so that all the entries of T (2X +M)T t are smaller than q/2 with high probability.

Additive Homomorphic: Let C1 = AS1 +2X1 +M1 and C2 = AS2 +2X2 +M2 be ciphertexts for mes-
sages M1 and M2 under public key A. Then

C =C1 +C2 = A(S1 +S2)+2(X1 +X2)+M1 +M2

would be decrypted to M1 +M2 as long as all the entries in T (2(X1 +X2)+M1 +M2)T t are smaller than
q/2.

Multiplicative Homomorphic: The product of C1 and C2 is

C =C1.Ct
2

= (AS1 +2X1 +M1).(AS2 +2X2 +M2)
t

= A.(S1Ct
2)+2.(X1(2X2 +M2)+M1X t

2)+M1Mt
2 +(2X1 +M1)St

2.A
t

Product ciphertext C has the form AS+2X +M+S′At . Ciphertext would be decrypted to M1.M2 as long
as all the entries in T (2X +M)T t are smaller than q/2.

Theorem 3([9]) For the security parameter n and any c = c(n)> 0. Let q,m,β be set as

q > 220(c+4)3n3c+4Log5 n, q is a prime

m = b8n log qc

β =
1

27n1+(3c/2)log n log q
√

qm

Then the encryption scheme from above with parameters n,m,q,β supports nc additions and one multi-
plication (in any order) over the matrix ring Zm×m

2 .

For our scheme we will use variant of GHV cryptosystem which is only additive homomorphic. For
this variant decryption algorithm will not have right multiplication of T t .
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4 Universal Re-encryption

Our scheme is based on GHV cryptosystem which is explained in section 3.1.
Idea for universal re-encryption is to append second ciphertext (encryption of zero) to GHV cryptosystem
ciphertext. Since GHV public key cryptosystem is additive homomorphic i.e. (E(M+0)=E(M)+E(0))
so we can use the second ciphertext to re-encrypt (change the encryption factor) the first ciphertext such
that re-encrypted ciphertext and ciphertext decrypt to same plaintext.

Universal KeyGen(n): On input a security parameter n, we set the parameter q = poly(n), m =
O(n log q) and a Gaussian distribution ψβ (q)m×m

q with Gaussian error parameter β = 1/poly(n). We run
the trapdoor sampling algorithm TrapGen of Theorem 1 to obtain a matrix A ∈ Zm×n

q together with the
trapdoor T ∈ Zm×m. The public key is A and the secret key is T .

Universal Encryption(A,M): To encrypt message M ∈ {0,1}m×m, we do the following.

• We choose uniformly random matrices S1,S2← Zn×m
q and error matrices X1,X2← ψβ (q)m×m

q .

• Compute C1 = AS1 +2X1 +M ∈ Zm×m
q and C2 = AS2 +2X2 +0m×m(zero matrix) ∈ Zm×m

q .

• Output the ciphertext C = (C1,C2).

Universal Decryption(T,C = (C1,C2)): To decrypt C, we do the following.

• Set E1 = TC1.

• Compute M1 = T−1E1 mod 2.

• Similarly set E2 = TC2.

• Compute M2 = T−1E2 mod 2.

• If (M2 = 0m×m) then output message M = M1. Otherwise decryption fails and output is ⊥.

Universal Re-encryption(C = (C1,C2)): To re-encrypt ciphertext C = (C1,C2) without using public
key, we do the following.

• Choose two matrices R1,R2← ψβ (q)m×m
q . We also choose error matrices X3,X4← ψβ (q)m×m

q .

• Compute

C′1 =C1 +C2R1 +2X3

= (AS1 +2X1 +M)+(AS2 +2X2 +0m×m)R1 +2X3

= A(S1 +S2R1)+(2(X1 +X2R1)+2X3)+M

• Compute

C′2 =C2R2 +2X4

= (AS2 +2X2 +0m×m)R2 +2X4

= AS2R2 +2X2R2 +0m×m +2X4

• Output the ciphertext C′ = (C′1,C
′
2).
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It is required that above universal re-encryption scheme has the correctness property, i.e, decryption
of C′ and decryption of C gives the same message M. It is only possible when all the entries in T 2(X1 +
X2R1)+2X3+M and 2X2R2+2X4+0m×m are less than q/2. Since X1,X2,X3,X4,R1 and R2 are small, so
we can set parameter β small enough so that with the high probability all the entries in T 2(X1 +X2R1)+
2X3 +M and 2X2R2 +2X4 +0m×m are less than q/2.

Theorem 4. Lattice based universal re-encryption scheme is IND-URe-CPA (semantic) secure assum-
ing the LWEq,χ is hard or AdvB,LWEq,χ (n) = Advχ,A(n).

Proof: We now show universal semantic security of the universal re-encryption scheme. We will show
that if there exists a PPT adversary A that breaks universal re-encryption scheme with non-negligible
probability then there must exist a PPT challenger B that solves decision LWE hard problem with non-
negligible probability by simulating views of A.
Adversary A constructs the ciphertext C = (C1,C2) for message m and sends to the challenger B. Since
ciphertext C2 is statistically close to uniform, so challenger B obtains m LWE samples (for vector r1 ),
m LWE samples (for vector r2 ),. . .,m LWE samples (for vector rm ) where vectors r1,r2, . . . ,rm are from
Gaussian (error) distribution ψm and matrix R1 = [r1 . . .rm]. It parsed as C2R1 + 2X3 then challenger
computes C′1 = C2R1 + 2X3 +C1. Similarly Challenger again obtains m LWE samples (for vector r′1),
m LWE samples (for vector r′2) . . . m LWE samples (for vector r′m) where vectors r′1,r

′
2, . . . ,r

′
m are from

Gaussian (error) distribution ψm and matrix R2 = [r′1 . . .r
′
m]. It parsed as C2R2 + 2X4 then challenger

assigns C′2 =C2R2 +2X4. Here matrices X3,X4← ψβ (q)m×m
q .

Challenger B sends C∗ = (C′1,C
′
2) to the adversary A .

When Oracle O is a pseudo-random LWE oracle then C∗ is a valid universal re-encryption of cipher-
text C. When Oracle O is a random oracle then C∗ is a uniform.

Finally adversary A terminates with some output, challenger B terminates with same output and
ends the simulation. So if adversary A breaks the scheme then there exist challenger B which solves
decision LWE hard problem.
AdvB,LWEq,χ (n) = Advχ,A(n). Hence our scheme is universal semantic secure.

5 Conclusion

We have proved our scheme to be universal semantically secure. In our scheme receiver has to decrypt
all the ciphtexts to identify message for him. A lattice based universal re-encryption scheme improving
this cost in receiver side is an open problem.
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