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Abstract

QUAD stream cipher is a symmetric cipher based on multivariate public-key cryptography(MPKC),
which uses multivariate polynomials as encryption keys. It holds the provable security property based
on the computational hardness assumption. More specifically, the security of QUAD depends on the
hardness of solving non-linear multivariate quadratic systems over a finite field, which is known as
an NP-complete problem. However, QUAD is slower than other stream ciphers, and an efficient
implementation, which has a reduced computational cost, is required. In this paper, we propose
some implementations of QUAD over GF(232) on Graphics Processing Units(GPU) and compare
them. Moreover, we provide fast multiplications over GF(232), the core operation of QUAD. Our
implementation gives the fastest throughput of QUAD as 24.827 Mbps. We propose an efficient im-
plementation for computing with multivariate polynomials in multivariate cryptography on GPU and
evaluate the efficiency of the proposal. GPU is considered to be a commodity parallel arithmetic unit.
Our proposal parallelizes an algorithm coming from multivariate cryptography, and makes it efficient
by optimizing the algorithm with GPU.

Keywords: efficient implementation, multivariate public-key cryptography, GPU, QUAD, stream
cipher

1 Introduction

1.1 Background

Stream ciphers are symmetric cryptosystems, whose encryption is performed by xoring with messages
and with keystreams. Basically, the security of stream ciphers is discussed based on parameters of ran-
dom numbers(i.e. periodicity, unbiassedness, etc.) [11, 32, 31]. In these discussions, security parameters
are evaluated by experimentations of known attacks. Several stream ciphers take other approaches for
security like provable security, with reductions to known difficult mathematical problems. For example,
Blum, Blum and Shub introduced pseudo-ramdom number generator (PRNG), whose security is prov-
ably based on the integer factorization [9]. The QUAD, proposed by Berbain, Gilbert and Patarin, is
also such a stream cipher endowed of provable security [8]. It uses the theory of multivariate public-key

Journal of Internet Services and Information Security (JISIS), volume: 4, number: 3, pp. 1-20
∗Our GPU implementations of multiplication methods over GF(232) have appeared in the authors’ preliminary paper, “Im-

plementation of Efficient Operations over GF(232) using Graphics Processing Units,” in Proc. of Information & Communication
Technology-EurAsia Conference 2014 [29]. This version implements an addiitional method called bitslicing and compare with
previous implementations. Moreover, we apply our multiplications to QUAD stream cipher proposed by Berbain, Gilbert and
Patarin [8].
†Corresponding author: Room 712, West 2 building, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819 -0395, Japan, Tel:

+81-928023639

1



Fast Evaluation of Quadratic Polynomials on GPU S. Tanaka, T. Yasuda, and K. Sakurai

cryptography (MPKC) and generates random numbers by evaluations of multivariate quadratic polyno-
mials over finite fields. Generally, we denote the constructions of QUAD with a system over GF(q) of n
unknowns and r bit output stream as QUAD(q,n,r). The security of QUAD depends on the complexity
of solving multivariate quadratic equation systems over finite fields, problem called MQ. Since MQ is
known to be NP-complete [6], QUAD is expected to be a practical secure stream cipher.

However, QUAD has problems of computational cost. QUAD requires evaluating multivariate quadratic
polynomials over finite fields. Typically, QUAD(q,n,r) takes mn(n+2) additions and m(n+1)2 multi-
plications over GF(q) for evaluation, where m is the number of polynomials, that is m = n+r. Therefore,
effective evaluation method of the system is necessary for practical QUAD.

Parallel computing is a possible way to accelerate algorithms. Especially, because of the inherent
parallelism between each monomial and each polynomial, evaluation of multivariate quadratic poly-
nomials is suitable for parallelization. Bitslicing is a technique of parallelization. Although it was
originally introduced for hardware implementations [13], it is used to apply the Single Input Multiple
Data(SIMD) construction virtually. It is already applied to many cryptosystems (e.g. Data Encryp-
tion Standard(DES) [18] and Advanced Encryptions Standard(AES) [23]). GPU are hardwares designed
for parallel computing. They are appealing for their economic cost (price) against other parallelization
methods(Field-Programmable Gate Array(FPGA), PC-clusters, etc.). Nowadays, GPU venders provide
GPU progamming libraries and some open libraries (e.g. OpenCL [3]) also allow GPU computations.

1.2 Related works

One way of making efficient evaluation of multivariate quadratic polynomials over finite fields is re-
ducing the arithmetic operations of polynomials. Berbain, Billet and Gilbert provide such reductions
by precomputing monomials, parallelising, bitslicing and dedicated methods for the binary field [7].
They showed throughputs of QUAD(2,160,160), QUAD(24,40,40) and QUAD(28,20,20) as 8.45 Mbps,
23.59 Mbps and 42.15 Mbps respectively. Petzoldt applied linear recurring sequences (LRS) to QUAD
and reduces the computational cost of QUAD(q,n,r) (and m = n+ r) to 2n additions and 3mn+m mul-
tiplications over GF(q). He showed a throughput of QUAD(28,26,26) as 872.7kbps and 5.8 faster than
QUAD with random constructed polynomials.

In another way, there exists some parallel implementations by FPGA. Arditti, Berbain, Billet et. al.
show throughputs on XCLV25 FPGA of QUAD(2,160,160) and QUAD(2, 256, 256) as 3.3 Mbps and
2.0 Mbps respectively [5]. Hamlet and Brocato provide implementations of QUAD(2,128,128) on a
Vertex-4 FPGA and the fastest one gives a 374 Mbps throughput [14]. However, while their work is
efficient, it is still not secure, since their construction is smaller than original recommended parameters
by Berbain, Gilbert and Patarin [8].

1.3 Challenging issues

Fast evaluation of multivariate quadratic polynomials is necessary to construct practical QUAD. Our
challenge is to make it efficient through two approaches: parallelizations and using extension fields.
There are three main challenging issues.

1.3.1 Reducing monomials in polynomials

The number of monomials in a quadratic polynomial in n variables is given by
(n+2

2

)
. A parallel algorithm

for summations named parallel reduction is executed in dlogTe steps, where T is the number of terms
to be summed (exactly T =

(n+2
2

)
). However, it executes a surplus step for some n. For example, when

n = 64, T = 2,145 > 2,048 and it takes 12 steps. Therefore, it is desirable to reduce the number of
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monomials in each quadratic polynomial under 2,048 for n = 64. Although the number of reducing
terms for each polynomial should be the same for parallelizations, choosing different combinations is
difficult. Hence, reducing monomials of quadratic polynomials is an issue.

1.3.2 Finding fast multiplication methods on GPU

Using large fields is another way of reducing terms of multivariate quadratic polynomials. Since polyno-
mials defined over larger field can yield larger bit streams, smaller polynomials can be used. However,
we can reduce the number of variables. There are 2 types of large fields, large prime fields and large
field extensions of small prime fields. In the case of MPKC, we often choose extension fields, because
additions of extension fields over small prime fields are more efficient than large prime fields. Especially,
additions over extension fields can be implemented by vector xoring, we select extensions of the binary
field.

There is a challenging issue concerning extension fields: generally, multiplication over extension
fields is more complicated. Although in small cases (e.g. GF(28)), we can make it efficient with lookup
tables, in large cases (like GF(232)) we cannot, because of the size of the table takes up to 32EB!. There
are some related works, which discuss fast hardware implementaions of binary extension fields [24]
and GPU implementations over extension fields [22], however they do not discuss GPU implementaions
of extensions of the binary field. Hence, fast implementations of multiplications over binary field’s
extensions on GPU is an important issue.

1.3.3 Optimizations of CUDA GPU implementation

In this paper, we use Compute Unified Device Architecture(CUDA) API [2], provided by NVIDIA [4],
for GPU implementaions. In CUDA implementations, we have two subissues regarding the tuning of the
parallelizations on GPU. One is avoiding the surplus steps of GPU kernels (functions). Indeed, in CUDA,
kernels parallelization is achieved with blocks and threads in each block. However, actually threads are
divided by warp, the maximal number of parallel threads in a block executed at a time. Therefore, we
should tune the number of threads in order that it is a multiple of the warp size to avoid surplus steps.
We should optimize this number for every construction.

The other is adjusting placement of data. In CUDA, memory loading is suitable for serial data.
Hence, we should consider data constructions for suited memory loading on CUDA implementations.

1.4 Our contributions

In this paper, we achieve the followings:

Reduction of the computational cost of multivariate quadratic polynomials: we reduce the number of
terms of multivariate quadratic polynomials from

(n+2
2

)
to

(n−k+2
2

)
by removing variables. Our

method removes different variables for each polynomial.

Comparison of several multiplication methods over GF(232): We implement multiplications through
the polynomial basis, the normal basis, Zech’s logarithm, using intermediate fields and bitslicing
and discover the most suited method for GPU. For GF(232), we get the best way by bitslicing the
polynomial basis over GF(232). It show a throughput of 800 Gbps.

Optimization of QUAD on GPU: We tune our QUAD implementations for CUDA. We choose k, which
is divisible by 32. Also, we choose the best multiplications in our experimentations, then im-
plement QUAD over GF(232) on GPU. Moreover, we construct a data structure for QUAD on
GF(232).
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We then show the throughputs of QUAD(232,48,48) and QUAD(232,64,64) as 24.827 Mbps and 19.4196
Mbps respectively. There are over 90 times faster than CPU ones. This is the first implementations of
QUAD stream cipher over GF(232).

1.4.1 Comparison with related works

GPU implementations are a way of parallelizing. Manavski has implemented AES on NVIDIA GeForce
GTX 295, GPU resulting in an acceleration by a factor 20 when compared to the CPU implementation,
by precomputing T-boxes and using lookup tables [19]. Li, Zhong, Zhao, et. al. achieve 50 times
faster AES on NVIDIA Tesla C2050, GPU citeLi12. They use several techniques, precomputing key-
scheduling and T-boxes, using shared memory for T-boxes and CUDA vector datas. Khalid, Bagchi,
Paul, et. al. has implemented HC stream ciphers citekhalid2012optimized. Although the single-data
case is slower than CPU implementations, it is 2.8 times faster in the multiple-data case. They conclude
GPU is suitable as co-processors of CPU in HC stream ciphers. Jang, Han, Han, et. al. implement
RSA public-key cryptography [17]. They have implemented 1024, 2048 and 4096 bit RSA, and in 1024
bit RSA, they showed 9.2 times faster timings than CPU. Bos and Stefan have implemented the hash
functions SHA-3 round-2 candidates [10]. They have evaluated computational time of each algorithm,
then they have parallelized them. Our fastest GPU implementation of QUAD over GF(232) is 90 times
faster than CPU. Hence, we can conclude that evaluations of multivariate quadratic polynomials are
suitable to be implemented on GPUs.

Besides, we have tried to speed up QUAD stream cipher with 2 approaches, reducing the computa-
tional cost of evaluating multivariate quadratic polynomials [26, 27, 28] and studying fast multiplications
over finite fields [30, 29]. This paper presents the progresses realized upon those previous works. For
evaluating polynomials, we replace and extend our parallelizing method to binary extension fields from
the binary prime field. Moreover, in this paper, we reduce monomials of polynomials by a new algorithm.
For multiplications over extenstion fields, we introduce bitslicing techniques. As a result, we have found
a more suited multiplication method than in previous results [29].

2 Preliminaries

2.1 Extension field

Let p be a prime and q = pk. Then, there exists degree k extension fields GF(pk) = GF(q) of GF(p).
Generaly, GF(q) can be defined by a degree k primitive polynomial f (X). Then X is a primitive element
of GF(q), if f (X) = 0. Since finite extenstions of finite fields are Galois extensions, there is a Galois
group Gal(GF(q)/GF(p)) given by following formula,

Gal(GF(q)/GF(p)) = {σ : GF(q) 7→ GF(q)|automorphism : σ(α) = α (∀α ∈ GF(p))}.

If τ defines the Frobenius mapping of GF(q)/GF(p), the Gal(GF(q)/GF(p))} is cyclic group, generating
by τ .

We can denote an element a ∈ GF(q) by a vector over GF(p) as follows:

a = {c1, . . . ,ck}, (c1, . . . ,ck ∈ GF(p)), (1)

where we have fixed the basis {X1, . . . ,Xk} of the extension GF(q)/GF(p):

a = c1X1 + · · ·+ ckXk =
k

∑
i=1

ciXi, (2)

In this paper, we discuss the following 2 bases,
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Polynomial basis: constructed by a primitive element X ∈ GF(q) such that {1(= X0),X , . . . ,Xk−1}.

Normal basis [25]: we assume given an element α ∈ GF(q) for a finite Galois extension GF(q)/GF(p)
such that {σ(α)|σ ∈ Gal(GF(q)/GF(p))}. Then, basis is given by {α,αq,αq2

, . . . ,αqk−1}

2.1.1 Operations over extension fields

GF(q) can be handled as a residue class ring of the polynomial ring GF(p)[X ] modulo f (X). Given
a,b ∈ GF(q), we denote by a(X),b(X) their representative polynomials in GF(p)[X ]/〈 f 〉. Therefore,
additions and multiplications of GF(q) can be denoted as following formulas,

a+b := a(X)+b(X) mod f (X),

a∗b := a(X)∗b(X) mod f (X).

Since a can be handled as a vector of GF(p) like in Equation (1), additions of GF(q) are computed by:

a+b := {a1 +b1 mod p, . . . ,ak +bk mod p}, (3)

2.1.2 Zech’s logarithm

Originally, Zech’s logarithm (also called Jacobi’s logarithm [25]) is proposed to figure addtions for ele-
ments represented as powers of a generator of a cyclic group GF(q)∗ = GF(q)\{0}. Zech’s logarithm is
considered to be a method of efficient exponentiation over cyclic groups for cryptosystems [15, 16]. Let
γ be a generator of GF(q)∗. Then, GF(q)∗ = 〈γ〉. Therefore, we can represent any element in GF(q)∗ as
γ`, where ` is an integer. In particular, γ` 6= γ`

′
, 0 ≤ ` 6= `′ ≤ pr− 2. In this way, GF(q)∗ can be repre-

sented by [0, pr−2]. Hence, multiplications over GF(q)∗ can be computed by integer additions modulo
pr−1.

2.1.3 Intermediate field [25]

Let k be a composite integer for q = pk. Then, there exists l, where l | k and 1 < l < k. GF(ql) is an
extension field of GF(q) and a subfield of GF(pk). We call GF(pl) an intermediate field. Because, any
extension of GF(q)/GF(p) are isomorphism, we can compute operations of GF(pk) as extension from
GF(pl).

2.2 Multivariate polynomials

Let p be a prime and q= pk. Then, GF(q) is a degree k extension of the field with p elements. The system
A of m quadratic polynomials in n variables over a finite field GF(q) can be written in the following form

f1(x1, . . . ,xn) = ∑
1≤i≤ j≤n

α
(1)
i, j xix j + ∑

1≤i≤n
β
(1)
i xi + γ

(1)

f2(x1, . . . ,xn) = ∑
1≤i≤ j≤n

α
(2)
i, j xix j + ∑

1≤i≤n
β
(2)
i xi + γ

(2)

...

fm(x1, . . . ,xn) = ∑
1≤i≤ j≤n

α
(m)
i, j xix j + ∑

1≤i≤n
β
(m)
i xi + γ

(m). (4)

Equation (4) can be interpreted as a function of GF(pk)
n 7→ GF(pk)

m. Let xxx = {x1, . . . ,xn}. Evalu-
ation of multivariate quadratic polynomials consists in computing the value S(xxx) = { f1(xxx), . . . , fm(xxx)}.
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The number of monomials in a quadratic polynomial with n variables is
(n+1

2

)
+n+1=

(n+2
2

)
. Therefore,

evaluating a quadratic polynomial require
(n+2

2

)
− 1 = n(n+ 3)/2 additions. Moreover, each quadratic

monomial and each linear term require 2 and 1 multiplications over finite fileds. Hence, the number of
multiplications in evaluating a quadratic polynomial is 2 ∗

(n+1
2

)
+ n = n(n+ 2). Finally, evaluating a

system of quadratic polynomials with n variables and m polynomials requires mn(n+3)/2 additions and
mn(n+2) multiplications over finite fields.

2.3 The problem MQ

Solving the multivariate quadratic system means the following. Assume that we have known the system
A of m quadratic polynomials in n variables over a finite field GF(q), given by Equation (4). Let yyy =
{y1, . . . ,ym}T be a m-degree column vector, generated by multiplying the system A and the n-degree
unknown column vector xxx = {x1, . . . ,xn}T . The system (4) is equivalent to:

Axxx = yyy. (5)

Then, the problem of finding the unknown column vector xxx with given A and yyy is called MQ. (MQ
means ”multivariate quadratic”). More generally, solving systems of cubic or higher degree polynomials
is sometimes called MP. Both MQ and MP are known to be NP-complete over GF(q) for any q [6].

2.4 MPKC

Some cryptosystems use a system of multivariate polynomials for encryption/decryption, or for gen-
erating/verifying signatures [20]. We call the family of such cryptosystems ”multivariate public key
cryptography” (MPKC). The security of MPKC is based on the MQ or MP assumptions, i.e. if MQ or
MP is hard, MPKCs are also secure.

3 QUAD stream cipher

QUAD is a stream cipher proposed by Berbain, Gilbert and Patarin [8]. QUAD uses systems of multi-
variate quadratic polynomials to obtain the random keystream. Therefore, it is a kind of MPKC. One
of advantages of QUAD against other stream ciphers is that it has a provable security. The security of
QUAD is based on the MQ assumption just like other MPKC instances, and is proved by Berbain, Gilbert
and Patarin [8].

3.1 Constructions and notation

Generally, the notation of QUAD(q,n,r) means a construction based on a system of the n-tuple internal
state value xxx = {x1, . . . ,xn}T and keystream length r over GF(q) in a cycle of QUAD. On the other hand,
it shows that a system of QUAD as m = n+r quadratic equations in n variables over GF(q), and a system
in QUAD are given in Equation (4). Usually, m is set to kn, where k ≥ 2, and therefore r = (k−1)n.

QUAD(q,n,r) has three key constructions. One is the n-tuple key xxx = {x1, . . . ,xn}T over GF(q).
Another is the L-bit (in particular, L= 80) initialization vector IV ∈ {0,1}L. The last ones are 4 randomly
chosen systems P, Q, S0 and S1. Systems P, S0 and S1 follow from the same construction, are n quadratic
equations and in n variables over GF(q). Only Q is different construction, it has n quadratic equations
and n variables over GF(q). System P is used to update the i-th internal state xxxi to next xxxi+1, and Q is
used to generate the i-th keystream yyyi = {y1, . . . ,yr}T from xxxi, where i is an iteration counter. Somtimes,
P and Q are combined to form the system S of m = n+ r equations in n variables over GF(q). Both S0
and S1 are used in the initialization step. They replace the initial state xxx0 just like updating xxxi+1with P.
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3.2 Algorithm

The algorithm of QUAD is separated in three parts, key generation, encryption/decryption of the message
and initialization step.

3.2.1 Keystream generation

Let S be a combined system of P and Q. Then, the keystream generator of QUAD follows three steps:

Computation Step: the generator computes values of system S with the current internal value xxxi =

{x(i)1 , . . . ,x(i)n }
T

.

Output Step: the generator outputs r keystreams yi from the system Q with xi.

Update Step: the current internal value xxxi = {x(i)1 , . . . ,x(i)n }
T

is updated to a next internal value with a

n-tuple value xxxi+1 = {x(i+1)
1 , . . . ,x(i+1)

n }
T

from system P.

The sketch illustrating the keystream generation algorithm is shown in Figure 1. It indicates that the
generator outputs keystreams by repeating the above three steps.

Figure 1: Image of QUAD key generating algorithm

3.2.2 Encryption/decryption messages

The generated keystreams are considered to be a pseudorandom bit string and used to encrypt a plaintext
with the bitwise XOR operation.

3.2.3 Key and initialization of current state

Berbain, Gilbert and Patarin also provides a technique for initialization of the internal state X =(x1, . . . ,xn) [8].
For QUAD(q,n,r), we use the key K ∈ GF(q)n, the initialization vector IV = {0,1}|IV | and two care-
fully randomly chosen multivariate quadratic systems S0(X) and S1(X), mapping GF(q)n 7→ GF(q)n to
initialize X . The initialization of the internal state X follows two steps:

Initially set step: we set the internal state value X to the key K.
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Initially update step: we update X for |IV | times. Let i be an iteration counter of initially update and
IVi = {0,1} be a value of i-th element of IV . We change the value of X to S0(X), when IVi = 0, or
to S1(X), when IVi = 1.

3.2.4 Computational cost of QUAD

The computational cost of multivariate quadratic polynomials depends on computing quadratic terms.
The summation of quadratic terms requires n(n+1)/2 multiplications and additions. Therefore the com-
putational costs of one multivariate quadratic polynomial is O(n2). QUAD(q,n,r) requires to compute
m multivariate quadratic polynomials. Since m = kn, the computational cost of generating key stream is
O(n3).

3.2.5 Security level of QUAD

The security level of QUAD is based on the MQ assumption, since Berbain, Gilbert and Patarin prove
that solving QUAD needs solving MQ problem [8]. The eXtended Linearization(XL) algorithm [12] is a
solving method of MQ. The XL constructs a polynomial system of the degree D by products of quadratic
equations and monomials of the degree d, where 1 ≤ d ≤ D, and solves the system as linear algebra.
Then, the running time of XL depends on D. The minimal D is called the degree of regularity. Yang,
Chen, Bernstein et. al. [33] show that the degree of regularity of MQ in QUAD(q,n,n) is given by the
degree of the lowest term with a non-positive coefficient in the following polynomial,

G(t) = ((1− t)(−n−1)(1− t2)n(1− t4)
n
). (6)

Moreover, they give the expected running time of the XL-Wiedemann CXL as the following formula.

CXL ∼ 3τTm. (7)

T is the number of monomials in equations (for large q, T =
(n+D

D

)
), τ = λT is the total number of

monomials in all equations (λ is the average terms in original quadratic equations), and m is the cy-
cle of field multiplications. According to their QUAD analysis, QUAD(28,20,20) has 45-bit security,
QUAD(24,40,40) has 71-bit security, and QUAD(2,160,160) has less than 140-bit security. Actually,
secure QUAD requires larger constructions such as QUAD(2,256,256) or QUAD(2,320,320).

4 GPGPU via CUDA

GPU is a special-purpose processor for accelerating computer graphics computations. Due to the nature
of its computational tasks, GPUs can handle many operations in parallel at a high speed.

General-purpose GPU (GPGPU) computing is a technique that uses GPUs for general-purpose com-
putation. Since GPUs are designed for SIMD operations, they are quite efficient for parallel processing.
On the other hand, they are not so efficient when there is only a limited amount of parallelism. There-
fore, the most important task in GPGPU is to identify or manufacture parallelism in the algorithms to be
implemented.

4.1 CUDA API

CUDA is a development environment for NVIDIA’s GPUs [2]. In CUDA, hosts correspond to computers,
whereas devices correspond to GPUs. In CUDA, a host controls one or more devices attached to it. A
kernel is a function that the host uses to control the device(s). A kernel handles several number of blocks
in parallel. A block also handles multiple threads in parallel. Therefore, a kernel can handle many threads
simultaneously.
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4.2 Parallelization for CUDA

In CUDA, we should consider how to parallelize algorithms on GPUs. Especially, the number of threads
in each block is important. This number is defined by GPUs. For example, NVIDIA GTX TITIAN can
use 1,024 threads in each block register. On the other hand, this number is also confined by the number of
registers in blocks (e.g. 65,536 registers per block for GTX TITIAN). Every thread use different registers
for variables in kernels. When the total number of registers in every thread is greater than the number
of registers in blocks, GPUs shows unexpected behavior (e.g. GPUs are halted). Therefore, we should
parallelize algorithms so that the number of registers in blocks is less than these GPU limitations.

Another point of the number of thread is the size of warp. In CUDA, actually, blocks execute a warp,
which is a unit of threads at a time. In other words, the number of executing threads of a block is limited
by the size of the warp. Therefore, if the number of threads is not divisible by the warp size, it has a
surplus iteration. Hence, we should tune the number of threads in order that it is a multiple of the warp
size. The size of warp has been 32 since the first version of CUDA.

4.3 Memory loading for CUDA

Also, considerations about memory loading are important. Originally, memory loadings in a warp are
executed serially. However, when memory requests of threads in a warp are consecutively, these requests
are coalesced to 1 large memory request [1]. In other words, such memory loadings are executed at a
time. Therefore, data structures should be consecutively for memory requests in a warp.

5 Evaluating multivariate quadratic polynomials on GPU

5.1 Evaluating polynomials by SIMD

GPU is suitable for implementations of SIMD constructions. SIMD is a pallalelization method, which
computes multiple data by single function call. In CUDA API, GPU kernels achieve SIMD on GPU by
single function call and execute multi threads. In this paper, we evaluate multivariate quadratic polyno-
mials through the following 3 steps. 1) precompute quadratic monomials xix j, 2) compute all monomials
α
(k)
i, j xix j, β

(k)
i xi, 3) calculate summations ∑1≤i≤ j≤n α

(k)
i, j xix j +∑1≤i≤n β

(k)
i xi.

5.1.1 Precomputing xix j

This step is based on the precomputing method of Berbain, Billet and Gilbert [7]. There are
(n+1

2

)
=

n(n+ 1)/2 quadratic monomials in a quadratic polynomial with n unknowns. Therefore, we compute
each xix j by each thread. Then, thread t can be computed from (i, j) by the following formula.

t =
j( j−1)

2
+ i, (8)

However, computing (i, j) from t is inefficient. Hence, we construct a lookup table of (i, j) from t.

5.1.2 Compute all monomials

Before computing monomials, we store xix j into xn+t , where t is given by Equation (8). Also, we assume
that β

(k)
n+t = α

(k)
i, j , then we compute β

(k)
i xi (1≤ i≤ (n+1)(n+2)/2) in parallel.

9



Fast Evaluation of Quadratic Polynomials on GPU S. Tanaka, T. Yasuda, and K. Sakurai

5.1.3 calculate summations ∑1≤i≤ j≤n α
(k)
i, j xix j +∑1≤i≤n β

(k)
i xi

In this paper, we use parallel reduction technique like the method of Tanaka, Nishide, Sakurai [28]. It
takes dlogTe steps for a summation, where T is the number of terms of the summation. Actually, T is
the number of monomials in a polynomial.

5.2 Reducing terms of polynomials

The parallel reduction takes dlogTe steps for a summation of a polynomial. When n = 64, T = 2,145.
Therefore, it takes dlog2,145e = 12 steps for a summation. Since if T ≤ 2,048, it takes only 11 steps,
reducing monomials of polynomials is desirable. Now, we provide removing method of monomials in
quadratic polynomials by variable-base reduction. We remove variables xi for each polynomial f j, where
i are given by the following formula.{

i≡ n− j−1 (mod n
k ) (k | n)

k(i−1)+ j > n− k−1 (mod n) (k - n)
(9)

After that, we construct new n− k-tuple variables xxx′ j for each polynomial f j, where 1 ≤ j ≤ m. Then,
the number of terms in each polynomial is reduced from

(n+2
2

)
to

(n−k+2
2

)
. Figure 2 shows that the image

of this variable-base reduction of k = 1. Since each tuple is different, systems of quadratic polynomial
equations with k+1 polynomials constructs also n unknown system. Hence, we expect this method does
not reduce the security parameters for small k.

Figure 2: Removing variables xi from quadratic polynomial f j, where k = 1.

6 Analysis of multiplication algorithms over extension fields

6.1 Multiplication method

The computational costs of multiplications differs regarding the choice of the basis and of the approaches.
We discuss 6 multiplication methods. 1) polynomial basis, 2) normal basis, 3)Zech’s logarithm, 4) lookup
table, 5) using intermediate fields and 6) bitslicing method. Now, we assume that GF(q) = GF(pk) is an
extension field and f (X) is a primitive polynomial of GF(q)/GF(p). Also, let c := a∗b ∈ GF(q).
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6.2 Polynomial basis

Let GF(q) be a set of polynomials over GF(p). Then, we can compute the multiplication e1 ∗ e2, where
e1,e2 ∈ GF(q), by:

e1 ∗ e2 := e1(X)∗ e2(X) mod f (X), (10)

Let e1,e2 ∈GF(q) be ck−1xk−1+ · · ·+c1x+c0 and c′k−1xk−1+ · · ·+c′1x+c′0, respectively. The product
e1 ∗ e2 can be computed by:

e1 ∗ e2 = ck−1c′k−1x2k−2 + · · ·+ c0c′0 mod f (X).

In this method, we need to compute the multiplications cic′ j for 0 ≤ i, j < k and the summations
∑i+ j=t,i, j≥0 cic′ j for 0 ≤ t ≤ 2(k− 1) over GF(p). The summation ∑i+ j=t,i, j≥0 cic′ j requires t addi-
tions for 0 ≤ t < k and 2k− t − 2 additions for k ≤ t ≤ 2(k− 1). Therefore, it requires (k−1)2 ad-
ditions and k2 multiplications over GF(p) if schoolbook multiplication is used. Moreover, e1 ∗ e2 takes
kdlog2 pme ' ndlog2 pe bits of memory.

6.2.1 Normal basis

Given a finite Galois extension GF(q)/GF(p), there exists an α ∈GF(q) such that {σ(α)|σ ∈Gal(GF(q)/GF(p))}
is an GF(p)-basis of GF(q), which is called a normal basis of GF(q)/GF(p). A normal basis of
GF(q)/GF(p) can thus be denoted by:

{α,αq,αq2
, . . . ,αqk−1}. (11)

Then, an element a ∈ GF(q) can uniquely be written as:

a = c0α + c1α
pm
+ · · ·+ ck−1α

p(k−1)m
, c0, . . . ,ck−1 ∈ GF(p). (12)

Let a = [c0,c1, . . . ,ck−1]n ∈ GF(q) be defined in Equation (12). Then Frobenius map σ0 applied to α

gives:
σ0(a) = aq = [ck−1,c0,c1, . . . ,ck−2]n. (13)

In other words, σ0(a) is simply a right circular shift [21].
Furthermore, let a = [c0,c1, . . . ,ck−1]n,b = [c′0,c′1, . . . ,c′k−1]n ∈ GF(q), and the result of the multi-

plication a∗b be [d0,d1, . . . ,dk−1]n. Then, every di, where 0≤ i < k, can be computed by evaluating the
quadratic polynomials of c0,c1, . . . ,ck−1, c′0,c′1, . . . ,c′k−1 over GF(p). Let di = pi(c0, . . . ,ck−1,c′0, . . . ,c′k−1),
∀0≤ i < k. According to Equation (13), we can compute σ0(a∗b) by:

σ0(a∗b) = [dk−1,d0,d1, . . . ,dk−2]n (14)

= σ0(a)∗σ0(b)

= [ck−1,c0, . . . ,ck−2]n ∗ [c
′
k−1,c′0, . . . ,c′k−2]n

= [p0(ck−1,c0, . . . ,ck−2,c′k−1,c′0, . . . ,c′k−2), . . . ,

pk−1(ck−1,c0, . . . ,ck−2,c′k−1,c′0, . . . ,c′k−2)]n.

By comparing coefficients, dk−2 can be computed by:

dk−2 = pk−1(ck−1,c0,c1, . . . ,ck−2,c′k−1,c′0,c′1, . . . ,c′k−2),

with Equation (14). In the same way, we can compute σ2
0 (a∗b), . . ., for all i by performing right circular

shifts and computing all the dr’s by evaluating pk−1.

11
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Let a,b ∈ GF(q) be [c0, . . . ,ck−1]n and [c′0, . . . ,c′k−1]n, respectively. An addition over GF(q) takes
k additions over GF(p), similar to the polynomial basis method. On the other hand, the multiplication
a ∗ b takes 2(k− 1) right circular shift operations and k evaluations of a fixed (quadratic) polynomial
pk−1(c0, . . . ,ck−1,c′0, . . . , c′k−1). An evaluation of a quadratic polynomial takes k2− 1 additions and
2k2 multiplications over GF(p). We can further speed up such an evaluation by precomputing common
multiplications cic j over GF(p), where 0≤ i, j≤ k−1. Moreover, we can modify formula for ci,c j,c′i,c′ j
to :

pk−1(c0, . . . ,ck−1,c′0, . . . ,c′k−1)

= c0c′0 +∑0≤i< j<k si, j(ci + c j)(c′i + c′ j) ∀(i, j),si, j ∈ GF(p),

where i 6= j. Therefore, a multiplication over GF(q) requires k(k−1)(k+2)/2 additions and k(k2+1)/2
multiplications over GF(p) plus 2(k− 1) right circular shift operations. Moreover, the normal basis
method needs (k2− k+2)dlog2 pme/2 bits of memory.

6.3 Zech’s logarithm

In this method, a multiplication over GF(q) needs one integer addition modulo k− 1. On the other
hand, addition is not simple. Therefore, we convert it to the polynomial basis for additions and convert
it back to the cyclic group representation for multiplications. Therefore, a multiplication needs three
such conversions. One is for converting from polynomial to cyclic group representation, while the other
is the opposite. Therefore, an addition takes k additions over GF(p), similar to the polynomial basis
representation, and a multiplication needs one integer addition modulo k− 1 plus three conversions
between polynomial and cyclic group representations. Moreover, since the tables represent maps from
GF(q) to itself, Zech’s method needs 2pndlog2 pne bits of memory.

6.4 Multiplication tables

We create a multiplication table by offline precomputing all combinations of multiplications over GF(q).
Then, we can compute multiplications by looking up the multiplication table.

An addition over GF(q) can be computed using k additions over GF(p). On the other hand, a mul-
tiplication over GF(q) needs only one table look-up. Since the entire multiplication table needs to store
every possible combination of multiplications over GF(q), this method requires p2ndlog2 pne bits of
memory.

6.5 Using intermediate fields

Although the multiplication table method is impractical for GF(232), for GF(28) the table requires only
256 KB. Also, Zech’s logarithm over GF(232) needs just 256 KB. Here, we consider a method using
an intermediate field GF(2l) for GF(232)/GF(2), where l = 2,4,8,16. In this method, we can compute
multiplications over GF(232) by considering it as an extension field over GF(2l) and by using the poly-
nomial basis method or the normal basis method. For example, since the extension degree k = 4 for
GF(232)/GF(28), we can compute multiplication over GF(232) by 9 additions over GF(28)(72 XORs),
16 table look-ups, and one modulo over GF(28) with the polynomial basis method, or 288 XORs and 34
table look-ups with the normal basis method.

6.6 Bitslicing method

Bitslicing method is a method of parallelization. Usually, one data is stored in one variable (e.g. 32-bit
integer). This method slices datas and stores bit-datas of some variables in one variable. For example,

12
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Table 1: Cost of multiplication over GF(232).
Intermediate Method Computational cost Memory
field GF(2l) GF(2l)/GF(2) GF(2k)/GF(2l) XOR AND LOOKUP MOD ADD space

Direct - Polynomial basis 1,096 1,024 0 0 0 4B
(Bitslicing) 34.25 32 0 0 0 128B

Normal basis 16,864 16,400 0 0 0 125B
(Bitslicing) 527 512.5 0 0 0 128B

Zech’s logarithm 0 0 3 1 1 32GB
Multiplication 0 0 1 0 0 64EB

table
GF(22) Polynomial basis 450 0 512 1 0 6B

Normal basis 4,320 0 4,112 0 0 35B
GF(24) Multiplication Polynomial basis 196 0 256 1 0 132B

table Normal basis 1,120 0 1,040 0 0 143B
GF(28) Polynomial basis 72 0 128 1 0 64KB

Normal basis 288 0 272 0 0 64KB
GF(216) Zech’s Polynomial basis 16 0 12 4 5 256KB

logarithm Normal Basis 64 0 15 5 5 256KB

32 datas of 32-bit integers x1, . . . ,x32. We translate to bitsliced datas y1, . . . ,y32. Then, yk has the datas of
k-bit of every xi. The ith bit of of yk is stored the k-th bit of xi

Bitslicing method achieves simple SIMD constructions and compressing data. In other words, since
it can handle several variables at a time, it becomes more efficient. Also, when every data length is
shorter than the size of variables, we can reduce the memory size by removing unused bits. On the other
side, functions in programming languages are built for normal data. Therefore, we must build special
functions for bitsliced data.

6.7 Costs of multiplications over GF(232)

Table 1 shows the costs of multiplications over GF(232). The polynomial basis method and the normal
basis method shows a much higher computational cost. On the other hand, Zech’s logarithm and us-
ing multiplication table are impractical, as it needs 32 GB and 64 EB of memory space, respectively.
Similarly, we estimate the computational costs of multiplications over GF(232) using GF(22), GF(24)
or GF(216). We show the computational costs of multiplications over GF(232) using these intermediate
fields in Table 1. Moreover, we assume that the bitslicing method reduces the computational cost of
multiplications to 1/32 by 32-bit integers. Then, the estimation of bitslicing method in Table 1 shows an
average computational cost of 1 multiplications of 32 bitsliced multiplications.

6.8 Experimentation of multiplications

We implement the three basic multiplication methods, namely, polynomial basis, Zech’s logarithm, and
normal basis, over GF(232) on CPU and GPU. We evaluate and compare the running time of 67,108,864
multiplications with random elements over GF(232) for each method. Similarly, we also implement and
perform the same experiment using intermediate fields and bitslicing methods as follows:

1. Multiplication table + polynomial basis method: GF(232)/GF(2k)/GF(2) (k = 1,2,4,8)

2. Multiplication table + normal basis method: GF(232)/GF(2k)/GF(2) (k = 1,2,4,8)

3. Zech’s logarithm + polynomial basis method: GF(232)/GF(216)/GF(2)

13
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Table 2: Computing time of 67,108,864 multiplications over GF(232).
NVIDIA GTX NVIDIA GeForce

Intermediate Multiplication Intel Core i7 875K TITAN GTX 580 [29]
field method Polynomial Normal Polynomial Normal Polynomial Normal

GF(2l) GF(2l)/GF(2) basis basis basis basis basis basis
Direct - 338.077s 575.096s 0.0764s 8.657s 1.552s 25.064s

(bitslicing) 18.484s 15.425s 0.00246 0.949s N.A. N.A.
GF(22) Multiplication 121.997s 159.989s 1.548s 5.099s 1.242s 3.813s
GF(24) table 31.651s 38.281s 0.368s 0.485s 0.583s 0.776s
GF(28) 8.627s 9.121s 0.0479s 0.129s 0.0555s 0.0621s
GF(216) Zech’s 3.510s 3.015s 0.153s 0.0764s 0.195s 0.153s

logarithm

4. Zech’s logarithm + normal basis method: GF(232)/GF(216)/GF(2)

5. Bitslicing + polynomial basis method: GF(232)/GF(2)

6. Bitslicing + normal basis method: GF(232)/GF(2)

Hereunder, are the primitive polynomials used for each field extension.

1. GF(232)/GF(2): Y 32 +Y 22 +Y 2 +Y +1 = 0

2. GF(232)/GF(22)/GF(2): Y 16 +Y 3 +Y +X = 0

3. GF(232)/GF(24)/GF(2): Y 8 +Y 3 +Y +X = 0

4. GF(232)/GF(28)/GF(2): X4 +Y 2 +(X +1)Y +(X3 +1) = 0

5. GF(232)/GF(216)/GF(2): Y 2 +Y +X13 = 0

All the experiments are performed on Ubuntu 10.04 LTS 64bit, Intel Core i7 875K and NVIDIA
GTX TITIAN with 8 GB of DDR3 memory.

6.8.1 Experimental result

Table 2 shows the result of implementations computational time for 67,108,864 multiplications. Table 3
shows throughputs of the result with our previous work [29]. In CPU implementations, the normal
basis method using GF(216) is the fastest, possibly because it needs the fewest computations among all
methods. On the other hand, in GPU implementations, bitslicing method of the polynomial basis method
is the fastest. Compared with our previous result on NVIDIA GTX GeForce 580 [29], the polynomial
basis of GF(232)/GF(2) is 20 times faster. In this experimentation, we optimize the placement of data
for memory loading reduced for multiplications, because loading data in a warp is required as a straight
chunk in CUDA. We believe that this optimization makes efficient multiplications. We believe that the
GPU cannot efficiently access the global memor the tables in Zech’s logarithm over GF(28), as these
tables are too large to fit into the fast memory on GPU.
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Table 3: Throughputs of multiplications over GF(232).
Intel Core i7 875K NVIDIA GTX NVIDIA GeForce

Intermediate Multiplication (Mbps) TITAN (Gbps) GTX 580(Gbps) [29]
field method Polynomial Normal Polynomial Normal Polynomial Normal

GF(2l) GF(2l)/GF(2) basis basis basis basis basis basis
Direct - 6.058 3.561 26.180 0.231 1.289 0.0798

(bitslicing) 110.802 132.773 812.018 2.108 N.A. N.A.
GF(22) Multiplication 16.787 12.801 0.392 4.122 1.610 0.525
GF(24) table 64.706 53.499 5.434 4.122 3.431 2.577
GF(28) 237.394 224.537 41.796 15.472 36.036 32.206
GF(216) Zech’s 583.476 679.270 13.096 26.170 10.256 13.072

logarithm

Table 4: Parameters of QUAD instances
Constructions QUAD(232,32,32) QUAD(232,48,48) QUAD(232,64,64)

Variables 32 48 64
Polynomials 64 96 128
Monomials 561 1,225 2,145
Output (bit) 1,024 1,536 2,048

Memory System (KB) 140.25 459.375 1,072.5
size Key(Byte) 128 192 256

Security (bit) ≤ 78 ≤ 104 ≤ 134

7 QUAD stream cipher on GPU

7.1 Target constructions of QUAD

In this paper, we discuss three instances of QUAD constructions, QUAD(232,32,32), QUAD(232,48,48)
and QUAD(232,64,64). They output respectively 1,024, 1,536 and 2,048 bit keystreams at a time. Table 4
shows other parameters of these constructions. Security parameters in Table 4 are roughly evaluated
with formula (6) and (7) by analysises of Yang, Chen, Bernstein, et. al. [33]. For example, D = 20 for
QUAD(232, 64, 64). Then the number of monomials T =

(64+20
20

)
' 1.0736×1019. Similarly, the average

of monomials in quadratic terms λ '
(64+2

2

)
= 2145, and τ = λT ' 2.3029×1022. Therefore, the running

time of XL-Wiedemann CXL = 3τTm ' 3× 2.3029× 1022× 1.0736× 1019m ' λT = 7.4171× 1041m
multiplications over GF(232). From our GPU implementations of multiplications over GF(232), we
assume that m = 0.03 from our multiplication result on GPU. Hence, CXL ' 27.4171× 1041× 0.03 '
2.2251×1040 ≤ 2134.

7.2 Optimizing evaluation of polynomials on CUDA API

We should consider the size of warp, which is the maximal number of parallel threads of each block at a
time. Let W be a number of warps, T be the number of threads in a kernel. The kernel is executed with
dT/We iterations. Therefore, when W - T , the kernel is running redundant steps. Hence, we should tune
the number of threads in order that it is a multiple of W . In CUDA, W = 32. Then, we consider the case
of n = 64. The number of terms with n = 64 is

(64+2
2

)
= 33× 65 | 32. We reduce the terms by remove

in variables. Now, we remove 2 variables for each polynomial (k = 2). Then, the number of terms is
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reduced to
(64−2+2

2

)
= 32×63. Similarly, we chose k = 2 and 5 for n = 32 and 48, respectively.

From our experimentation result in Table 2, we choose bitslicing method of the polynomial basis as
the multiplication over GF(232) for QUAD on GPU. Then, we can handle 32 polynomials at a time with
a 32-bit integer variable. Figure 3 shows placements of polynomials for each QUAD construction. Each
bit of variables have bit data of terms in different polynomials and each term is constructed by 32 bits
over GF(232). Therefore, they require 32 memory loading in a kernel. Since loading data in a kernel
should be as a straight chunk in CUDA, our data constructions are seperated into bit-data chunks.

Figure 3: Placements of polynomials for each QUAD construction.

7.3 Experimental result

We implement QUAD stream ciphers over GF(232) on CPU and GPU. In this work, we implement
three constructions about QUAD(232,32,32), QUAD(232,48,48) and QUAD(232,64,64). Moreover, we
measured encryption time of each construction with 10MB data. We show the result in Table 5.

Table 5: Encrypting time of QUAD over GF(232)
Variables 32 48 64

Polynomials 64 96 128
CPU (Intel Core i7 875K)
Encrypting time (sec) 205.105 298.842 392.277
Throughputs (Kbps) 399.408 274.126 208.832

GPU (NVIDIA GTX TITAN)
Encrypting time (sec) 4.032 3.222 4.120
Throughputs (Mbps) 19.841 24.827 19.419

Speed up factor 50.869 92.743 95.220

Also, we show the comparison with related works in Table 6 and 7. Table 6 shows comparisons
with other QUAD implementations. Our result is not the fastest. However, the faster constructions,
QUAD(2,128,128), QUAD(24,40,40) and QUAD(28,20,20) are less secure than QUAD(232,64,64).
Hence, our implementations seems to be a tradeoff point between speed and security. Table 7 shows
comparisons with other GPU implementations. Our GPU implementations are 50-95 times faster than
CPU. Hence, our implementations make more efficient than our previous work [28]. Moreover, these
factors show that QUAD stream cipher is suitable for parallel implementations.
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Table 6: Comparison with other QUAD implementations
Implementation Constructions Output Key Throughputs Security

environment (bit) (KB) (Mbps) (bit)
q n m

BGP06 [8] Pentium 4 2 160 320 160 503.164 5.7 ≤ 140
BBG067 [7] Opetron 2 160 320 160 503.164 8.45 ≤ 140

64 bit 24 40 80 160 33.633 23.59 ≤ 71
28 20 40 160 9.023 42.15 ≤ 45

ABBG07 [5] FPGA 2 256 512 256 2056.063 2.0 ≤ 140
HB13 [14] Virtex-4, FPGA 2 128 256 128 262.031 374.7 ≤ 118
TNS [28] NVIDIA GeForce 2 160 160 160 503.164 4.872 ≤ 140

GTX 480, GPU 2 256 512 256 2056.063 4.115 ≤ 160
2 320 640 320 4012.578 3.656 ≤ 320

Our work NVIDIA GTX 232 32 64 1,024 140.250 19.841 ≤ 76
TITAN, GPU 232 48 96 1,536 459.375 24.827 ≤ 103

232 64 128 2,048 1,008.000 19.419 ≤ 132

Table 7: Comparison with previous GPU implementations of QUAD.
GPU Algorithm Throughputs Speed up factor

TNS13 [28] NVIDIA GeForce QUAD(2,160,160) 4.872Mbps 10.00
GTX 480 QUAD(2,256,256) 4.115Mbps 21.32

QUAD(2,320,320) 3.656Mbps 29.72
Our work NVIDIA QUAD(232,32,32) 19.841 Mbps 50.869

GTX TITIAN QUAD(232,48,48) 24.827 Mbps 92.743
QUAD(232,64,64) 19.419 Mbps 95.220

8 Conclusion

In this work, we discuss fast implementations of QUAD over GF(232). We discuss 3 approaches of
accelerating QUAD, parallelization of evaulating multivariate quadratic polynomials, finding the most
suited multiplication method on GPU and optimizing on CUDA. In the parallelization approach, we also
provide the variable-base reduction method of terms in polynomials.

By the experimentation of multiplication over GF(232). We find a more suited method than in our
previous work [29]. The multiplication using bitslicing show a throughput of over 800 Gbps.

Finally, we show implementations of QUAD steam cipher over GF(232) on GPU with several opti-
mizations. QUAD(232,48,48) and QUAD(232,64,64) show speed up factors of over 90 times compared
to CPU. We consider that our implementation result is a tradeoff point between speed and security.

At a future work, we would like to discuss the security of our QUAD implementations. For example,
evaluating how decrease the security in our variable-base reduction method. Also, we are interested to
generalizations to other extensions of the binary field (e.g. GF(216) or GF(264)).
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