
A Grid System Detecting Internal Malicious
Behaviors at System Call Level

Fang-Yie Leu∗and Yi-Ting Hsiao
Department of Computer Science, Tunghai University, Taichung, Taiwan

{leufy, g98357001}@thu.edu.tw

Abstract

In our previous work, we developed a security system which detects malicious behaviors at system-
call level. It first creates users’ personal profiles for all users of a close environment and an attacker
profile for all hackers to keep track of their usage behaviors as the computer forensic features, and
then determines whether or not a legally login user u is the account holder or a hacker by comparing
u’s current computer usage behaviors with the computer forensic features collected in u’s personal
profiles and the attacker profile. In this study, we implement this security system by using a grid
and parallel Message Passing Interface. Experimental results show that the grid system’s user iden-
tification accuracy is 94%, the accuracy on detecting internal malicious attempts is up to 97% and
the response time is less than 0.45 sec, implying that it can prevent a protected system from internal
attacks effectively and efficiently.

Keywords: Computer forensic features, Intrusion detection and protection, Data mining, Compu-
tational grid

1 Introduction

In the previous work [11], we propose a security system, named Internal Real-Time Intrusion Detection
and Protection System (IIDPS for short) which used a single computer to detect malicious behaviors
launched to a system at system call level. The IIDPS uses data mining and computer forensic techniques
to mine a user’s typical system call patterns (SC-patterns for short) as the user’s digital forensic features
which can be used to identify the user where a SC-pattern is a sequence of system calls that frequently
appears in a user’s submitted system call sequences (SC-sequences for short). In other words, SC-
patterns reflect the activities that the user often performs. When a user logs in to a computer, the IIDPS
starts monitoring and checking the user’s input system calls to see whether the user is the account holder
or not by comparing the behaviors of his/her current inputs with those collected in the user’s user profile,
and detect whether he/she is issuing an attack by computing the behaviors with the features collected in
an attacker profile which gathers malicious behaviors hackers often launched. Once an internal hacker
is discovered, the IIDPS isolates the user, alerts system manager, collects digital forensic evidences and
analyzes his/her malicious behaviors to improve the IIDPS’s future detection capability. In current study,
we employ a computational grid [9, 5] as the hardware platform of the IIDPS to speed up the detection
of internal malicious behaviors. We call it Parallel IIDPS (P-IIDPS for short), which will be described
later. Experiments show that The P-IIDPS can effectively improve performance of the IIDPS.

Journal of Internet Services and Information Security (JISIS), volume: 4, number: 4 (November 2014), pp. 14-24
∗Corresponding author: Tunghai University, Taiwan, “9F, No. 187, Sec. 2, Tiding Blvd., Neihu Dist., Taipei City 114,

Taiwan, R.O.C.” Tel: +886-930069809

14

A Grid System Detecting Internal Malicious
Behaviors at System Call Level Leu and Hsiao

2 Related Research

Bevel and Gardner [8] addressed that the majority of forensic disciplines focuses on “who” the hacker
of a crime is, and the pattern analysis is one of the most important disciplines which deals with “what”
having happened. The P-IIDPS uses data mining and computer forensic techniques to analyze user
operation characteristics, which as a kind of digital behavior patterns are essential in identifying the
corresponding user, i.e., who. This system also analyzes and identifies those attack patterns, i.e., what,
frequently used by hackers. Shan et al. [16] claimed that OS-level system calls are much more helpful
in detecting hackers and identifying users. However, processing a large volume of system calls, min-
ing malicious behaviors and identifying possible hackers for an instruction will impose a performance
overhead. Andalon-Garcia et al. [6] proposed a parallel iterative algorithm for the global alignment of
multiple biological sequences with |n∗ (n−1)/2| comparison pairs. The implementation was developed
on a cluster computing through the use of the standard Message Passing Interface (MPI for short) library.
Lee et al. [10] presented a fast heuristic algorithm that maps multi-domain applications onto the Coarse-
Grained Reconfigurable Architectures (CGRAs for short). The applications implemented on a CGRA
show significant improvement of performance.
Although many types of parallel programming models such as shared memory, message passing, threads
and data parallel exist, the Symmetric Multi-Processor (SMP for short) cluster with the MPI library [15]
has been the mainstream of cluster computing. By employing a grid system, the P-IIDPS returns the
detection result within 0.45 sec. The time is shorter if many more SMP nodes are utilized.

3 System Framework

The P-IIDPS as shown in Figure 1 consists of a system call monitor & filter, a mining server, a detection
server and a computational grid system. The system call monitor & filter, as a loadable module embedded
in the kernel of the system being considered, collects those system calls (SCs for short) submitted to the
kernel and stores the SCs in the protected system. It also stores the user inputs in the user’s log file,
which is a file used to keep the SCs submitted by the user. The mining server analyzes log data stored in
the protected system with data mining techniques to identify the user’s computer usage habits as his/her
behavior patterns, which are recorded in the user’s user profiles. If a user logs in to the system by using
another person’s login ID and password, the P-IIDPS identifies who the underlying user is in real-time
by computing the similarity score between the user’s current inputs, i.e., SCs, and the behavior patterns
stored in the account holders’ user profile. When an intrusion is discovered, the detection server notifies
the system call monitor & filter to isolate the user so as to prevent him/her from continuously using the
system.
The P-IIDPS as shown in Figure 2 includes a mining server run on one of the slave nodes of the grid
system. The node has a hostfile which defines computation resources for the mining server, excluding the
master node of this grid system. The master node is also called the P-IIDPS node. The detection server
run on the P-IIDPS node also has a hostfile which defines computation resources for the detection server.
The computational grid accelerates the P-IIDPS’s mining and on-line detection speeds, and enhances its
mining and detection capabilities.

3.1 Mining Server

A mining server extracts those system calls generated by a user from the user’s log file and counts the
time that a SC-pattern appears in this file to produce the user’s habit file. A user habit file is gen-
erated by invoking the Longest Common Subsequence (LCS for short) algorithm [17] which performs
|n∗(n−1)/2| times of <L-window, C-window> pair-wise comparison [6] where n= |SC−sequence|−

15

A Grid System Detecting Internal Malicious
Behaviors at System Call Level Leu and Hsiao

Figure 1: The P-IIDPS system architecture

Figure 2: The SMP parallelism architecture of P-IIDPS

|slidingwindow|+1. Each pair-wise comparison has ∑
|L-window|
k=2 (|L-window|− k+1)∗∑

|C-window|
k′=2

(|C-window|− k′+1) times of < k-gram, k’-gram > comparisons.

Algorithm 1 generates a user’s profile in parallel. The master node pmaster computes the total numbers
of < k-gram, k’-gram > comparison pairs (see lines 3 and 4) and calculates computational data size for
each slave node pi (see line 5). Next, the master node sends SCSu and pi’s computational data size to
pi,1 ≤ i ≤ NP, where NP is the number of slave nodes (see lines 6 and 7). On receiving SCSu sent
by pmaster, pi calculates its own start point (denoted by start-pt) and end point (denoted by end-pt) by
using the index of current processor’s ID, i.e., i, and the data size assigned to it (see line 9 to line 11).
pi then compares the k-gram and k’-gram pairs between its start-pt and end-pt. After that, it returns
the identified SC-patterns and their corresponding appearance counts to the pmaster (see lines 12 and 13).
When pmaster receives the results from any slave node pany by using Recv() function (see line 16) where
pany may be p0, p1, p2, . . .orpNP−1, it puts the same SC-pattern received from different slave nodes to-
gether and sums up the SC-pattern’s accompanied appearance counts to establish the user’s habit file (see

16

A Grid System Detecting Internal Malicious
Behaviors at System Call Level Leu and Hsiao

Input: N users’ log files
Output: N users’ user profiles

1 for (each u of the N users) { /* performed by pmaster */
2 Retrieve u’s SC-sequence as SCSu;
3 No.o f pattern = |SCSu|− |slidingwindow|+1;
4 No.o f pair = (No.o f pattern∗ (No.o f pattern−1))/2; /* total number of < k-gram, k’-gram >

comparison pairs */
5 size = dNo.o f pair/|NP|e; /* calculate slave node’s computational data size */
6 for (each pi in NP) { /* performed by pmaster */
7 Send(SCSu and computational data size, pi);}
8 parallel for (each pi in NP) /* each slave node pi */
9 Recv(SCSu and computational data size, pmaster);

10 start-pt = i∗ size; /* start point */
11 end-pt = start-pt + size−1; /* end point */
12 Compares all k-gram and k’-gram pairs located between start-pt and end-pt by invoking the

LCS Algorithm;
13 Send(SC-patterns and their appearance counts, pmaster);
14 end parallel
15 for (each slave node pany in NP) { /* performed by pmaster */
16 Recv(SC-patterns and their appearance counts, pany);
17 for (each unique SC-pattern received) {
18 Sums up the SC-pattern’s appearance counts received from all slave nodes to produce u’s

habit file; }}}
19 for (each u of the N users) { /* performed by pmaster */
20 Generates u’s user profile;
21 Copies u’s user profile to each grid node; }

Algorithm 1: generating a user’s profile in parallel

line 15 to line 18). After collecting all users’ habit files, pmaster calculates each SC-pattern’s similarity
weight [11] for each user’s user profile in which the appearance count of an SC-pattern is substituted by
the SC-pattern’s similarity weight. After that all the user profiles are distributed to each grid computer
(see line 19 to line 21). With parallel processing, the time required by pmaster to wait for the completion
of identifying of SC-patterns and their appearance counts will be shorten greatly.

To show how L-window and C-window are compared in mining server, an example SC-sequence 1, 2, 3,
4, 5, 6, 7, 8 is given, and the size of a sliding window, i.e., |slidingwindow|, is set to 5. The comparison
performed by the mining server in Algorithm 1 is as follows.

< 12345,23456 >1 ⇒ < 12345,34567 >2 ⇒ < 12345,45678 >3
< 23456,34567 >4 ⇒ < 23456,45678 >5
< 34567,45678 >6

where the format of < X ,Y >z represents the SC-sequence X contained in the L-window, SC-sequence
Y collected in the C-window, and the subscript z is the sequence number of comparing a k-gram and
k’-gram pair.

17

A Grid System Detecting Internal Malicious
Behaviors at System Call Level Leu and Hsiao

3.2 Detection Server

Given an unknown user u’s current input SC-sequence, denoted by SCSu, the similarity score between
SCSu and user j’s user profile UPj,1≤ j ≤ N, where N is the number of users, is defined as

Sim(j,u) =
p

∑
i=1

Fiu ∗Wi j (1)

in which p is the number of SC-patterns appearing in both the SCSu and UPj, Fiu is the appearance count
of SC-pattern i identified in SCSu, and Wi j is the similarity weight of SC-pattern i collected in UPj. The
higher the similarity score, the higher the probability that the user u is the person j who submitted the
SCSu.
The detection server adopts the coarse-grained architecture [10] and dynamic process scheduling [18]
to control the SMP environment and distribute input system calls to selected slave nodes. The dynamic
process scheduling equation [19] is defined as

fd ps(x,y) =
⌈

N
x
∗ 1

1+ e30−y

⌉
(2)

where x is the number of current online users, rather than the total number of users of a system, y is
current SC-sequences length, N is the number of available processors and the sigmoid function defined
as 1

1+e30−y in which the constant 30 represents the 3∗ |slidingwindow| (i.e., 30 system calls where the size
of sliding window is 10).

Given an unknown user u’s SCSu, and the similarity score between SCSu and user q’s user profile UPq,
1 ≤ q ≤ N, where N is the number of users, the decisive rate of a user r(1 ≤ r ≤ N), denoted by X(r),
among the N users is defined as X(r) = (N−rank(r))

N ∗ 100%, 0 ≤ X ≤ 100, where rank(r) is the order of
user r from the top after the similarity scores of the N users are sorted where r’s account is the one u
logs in. Let X = 1

N ∑
N
r=1 X(r), i.e., the average decisive rate. The decisive rate of a user profile should be

within the top X%, i.e., the threshold. If not, u is considered as an intruder, rather than r.
When Algorithm 2 is invoked by the detection server, the sliding window left shifts to identify the SC-
sequences on each new input system call. Giving the same example SC-sequence, if user u’s input system
calls are less than or equal to 5, no action is performed. When the user inputs the 6th system call, the
L-window contains system calls 2, 3, 4, 5 and 6 and the C-windows covers system calls 1, 2, 3, 4 and 5,
i.e.,

< 23456,12345 >1
The identified SC-patterns are input to u’s new habit file NHFu. After the 7th system call is input, the
comparison will be
< 34567,23456 >4 ⇒ < 34567,12345 >2
Note that the subscripts 4 and 2 mean they are the 4th and 2nd comparisons in the above example (see
the section of mining server). The identified SC-patterns are also input to NHFu. On receiving the 8th

system call, the detection server performs comparisons
< 45678,34567 >6 ⇒ < 45678,23456 >5 ⇒ < 45678,12345 >3
From the above examples, we can see Algorithm 1 and Algorithm 2 compare the same < k-gram, k’-gram>
pairs. Due to reverse comparison, the time complexity of Algorithm 2 in detecting malicious behaviors
is reduced to O (n4), while that of Algorithm 1 is O (n6).

18

A Grid System Detecting Internal Malicious
Behaviors at System Call Level Leu and Hsiao

Input: user u’s current input system calls (each time only one system call), and all users’ user
profiles

Output: the possible internal intruder or an attacker
1 while (receiving u’s input system call h) { /*master node */
2 SCSu = SCSu∪h;
3 if (|SCSu|) >1024) { /* u’s input is over 1024 */
4 SCSu = Right(SCSu, |slidingwindow|+1); } /* Right() retrieves the last SCSu */
5 Choose a group of slave nodes, denoted by SSN, from the grid where
|SSN|= fd ps(currentonlineuser, |SCSu|); /* allocate slave nodes by invoking Eq. (2) */

6 No.o f pair = |SCSu|− |slidingwindow|; /* total number of < k-gram, k’-gram > comparison
pairs*/

7 size = dNo.o f pair/|SSN|e; /* each slave node’s data size where SSN is the set of available
processors */

8 for (each pi in SSN) { /* master node */
9 Send(SCSu and computational data size, pi); }

10 parallel for (each pi in SSN) /* performed by pi */
11 Recv(SCSu and computational data size, pmaster);
12 start-pt = i∗ size; /* start point */
13 end-pt = start-pt + size−1; /* end point */
14 Generate u’s current habit file between start-pt and end-pt by invoking the LCS Algorithm;
15 for (each user g,1≤ g≤ N) { /* N is the number of online users in this system */
16 Calculate the similarity score between u and g’s user profile by invoking Eq. (1);
17 Send(the part of u’s similarity scores, pmaster);
18 end parallel
19 for (each slave node pany in SSN) { /* master node */
20 Recv(part of u’s similarity scores, pany);
21 Accumulate u’s similarity scores between NHFu and each system user;}
22 if ((|SCSu| mod paragraph size) == 0) { /* master node */
23 if ((the decisive rate of user u’s profile <threshold1) or (the decisive rate of a hacker’s profile

>threshold2)) {
24 Alert system manager that u is a suspected internal intruder or an attacker; }}}

Algorithm 2: Detecting an internal intruder or an attacker in parallel

Algorithm 2 detects an internal intruder or an attacker in parallel. The current habit file NHFu is es-
tablished by |SCSu|− |slidingwindow| pair-wised comparison where |SCSu| is limited ranging between
|slidingwindow|+1 and 1024. When the length is less than that of a sliding window, the detection server
does not compare the k-grams and k’-grams since they are too short to be compared. In this case, the
detection server keeps the last input system calls until the length achieves |slidingwindow|+ 1. When
the SC-sequence |SCSu| >1024 (see lines 3 and 4), according to our study, the time required to process
the SCSu is long so the detection server employs the dynamic process scheduling to select the number
of slave nodes based on Eq.(2) (see line 5) and then sends SCSu to the selected slave group, denoted by
SSN (see lines 6 and 9). Each member of the group retrieves the portion of u’s input SC-sequence to be
aligned, calculates appearance counts for the part of u’s input SC-sequence assigned to this slave node
and returns the calculated similarity scores between the assigned part of u’s SC-sequence and all users’
profiles in the grid node (see line 10 to line 18).

19

A Grid System Detecting Internal Malicious
Behaviors at System Call Level Leu and Hsiao

After receiving the users’ similarity scores from all slave nodes, the master node sums up and accumulate
all the scores (see line 19 to line 21). Each time when the length of newly received SCSu meets the pre-
defined paragraph size (see line 22), the P-IIDPS judges whether u is an internal intruder by checking to
see whether the decisive rate of the account holder is smaller than the pre-defined threshold1, or whether u
is an attacker, i.e., dummy user, if the rank of the attacker profile is higher than its pre-defined threshold2
(see line 23). If yes, it concludes that u is an internal intruder or attacker and then alerts the system
manager.

4 Experiments

To evaluate the P-IIDPS, we first installed the system call monitor & filter into the main computer of an
enterprise’s production system to obtain 12 user’s log files in the duration between November 1, 2013
and April 30, 2014. The testbed configuration and resources in this study are shown in Figure 3 and
Table 1. Table 2 shows the measured bandwidth between two arbitrary nodes of our computational grid.

Figure 3: The logical configuration of the tastbed employed in this study

Resource CPU Type No. of Bogo Mips Mem LAN Open-Mpi
Processor /each (GB)

Alpha Intel(R) Xeon(R) 12 4800 25 Ethernet 1.4.1
(P-IIDPS) E5645@ 2.40GHz Fiber
Beta AMD Opteron(tm) 48 4400 50 Fiber 1.4.1

6174@ 2.20GHz
Gamma Intel(R) Xeon(R) 12 4800 25 Fiber 1.4.1

E5645@ 2.40GHz

Table 1: Specification of the members of the grid system

20

A Grid System Detecting Internal Malicious
Behaviors at System Call Level Leu and Hsiao

Point-to- point LAN (Real Bandwidth)
Alpha (P-IIDPS) Users Ethernet (82 94 Mbps)
Alpha (P-IIDPS) Beta Fiber (18705 Mbps)
Alpha (P-IIDPS) Gamma Fiber (22632 Mbps)
Beta Gamma Fiber (19412 Mbps)

Table 2: The bandwidth between two arbitrary nodes of our computational grid

4.1 Parallel speedup

The speedup S(n), defined as the ratio of the time consumed by a single processor T (1) over that spent
by employing n parallel processors T (n), is expressed as follows.

S(n) =
T (1)
T (n)

Table 3 shows the response times of mining server and detection server on a single processor and 60
processors, when different SC-sequence lengths are given.

SC-sequences length 64 128 192 256 512 640 896 1024
Mining Server T (1) 16.34 123.53 413.59 635.02 2910.7 4502.4 11104 17003
Mining Server T (60) 0.611 1.883 4.484 5.983 23.144 30.026 63.581 97.452
Detection Server T (1) 0.2221 0.5131 0.8286 1.1126 2.3968 2.9893 4.2574 4.8556
Detection Server T (60) 0.1139 0.0106 0.0151 0.0203 0.0471 0.0582 0.0811 0.0905

Table 3: The bandwidth between two arbitrary nodes of our computational grid

Figure 4: The speedup ratios of the mining server and detection server, both of which consist of 60
parallel processors

The speedup ratios of the mining server and detection server are shown in Figure 4, in which we can see
that the testbed grid system with 60 processes can process once a time a SC-sequence of 1024 system
calls efficiently. The detection server speedup ratio is log2n, following the Minsky’s Conjecture theorem
[13], over thousands of processes, meaning that the detection server has too many sequential parts and a

21

A Grid System Detecting Internal Malicious
Behaviors at System Call Level Leu and Hsiao

huge amount of messages are delivered among parallel processors, thus unable to be executed effectively
in parallel. That is why the speedup curves do not rise when SC-sequence length is longer than 200.

4.2 Detection server accuracy and response time

Given a known user u’s current input SC-sequence, i.e., SCSu, if the similarity score between the SCSu

and u’s user profile is ranked within the top X% among the similarity scores between the SCSu and each
of the 12 users’ user profiles, as mentioned above, the decisive rate is X . The experimental average
decisive rate is 92.91% (= 1

12 ∑
12
i=1

12−rank(i)
12 , in which i is the node identity of a system user). Therefore,

the decisive rate threshold is set to 90%.
This experiment was performed ten times. Each time 75% of users’ computer usage history is used as
the training data for the mining server (Algorithm 1) to create user profiles. The remaining 25% were
test data for detection server (Algorithm 2) to test whether the decisive rate of u is lower higher than the
threshold. Table 4 shows the detection accuracy of user recognition.

User Account Times of being an Times of being an Detection
account holder attacker (Alarm) accuracy

root 100.03 5.97 94.36%
oralce 110.2 6.8 94.18%
mq 90.43 5.57 94.19%
ticketing 191.58 11.42 94.37%
.
cm 91.02 4.98 94.81%
audit 105.89 2.11 98.04%

Table 4: Detection accuracy of user recognition

Given a SCSu, we can determine whether the SCSu contains hacker-specific attack patterns or not by
employing the process similar to that of judging whether u is the account holder of the account that u
logs in or not. If the decisive rate of the hacker profile is higher than threshold 90%, we then suspect
that u is a hacker (see line 23 of Algorithm 2) and the P-IIDPS will send a syslog alert message with the
user’s ID to system manager, record digital forensic evidence and isolate the user from the system. In
this experiment, we evaluate 4 internal attacker packages, including Strace [4], GDB [2], TNF (DDoS)
[1] and Linux Rootkit [3]. Table 5 lists the detection accuracies of internal attacks.

Program True True False False Detection
positive negative positive negative accuracy

Strace 49.7% 48.3% 1.4% 0.6% 98%
GDB 49.2% 47.5% 2.5% 0.8% 96.7%

TFN (DDoS) 51% 48.8% 0.15% 0.05% 99.8%
Linux Rootkit 48.5% 47.8% 2.2% 1.5% 96.3%

Table 5: Detection accuracy of internal attacks

Figure 5 shows the experimental result generated by the detection server which employs 60 processors
in parallel. The maximum response time is less than 0.45 sec on 12 users.

22

A Grid System Detecting Internal Malicious
Behaviors at System Call Level Leu and Hsiao

Figure 5: The response time of the detection server on 60 processors in parallel individually given 1, 2,
4, 6 and 12 users’ log files

5 Conclusions and Future work

In this article, we proposed a grid system which detects malicious behaviors at system-call level. It com-
pares those k-grams and k’-grams retrieved from users’ log files and employs Algorithm 1 to generate
user profiles in parallel. After that, the P-IIDPS utilizes Algorithm 2 to detect malicious behaviors also
in parallel and make sure whether a user is the current account holder in a real-time manner. The attack
detection accuracy is high in identifying an internal hacker. Also, employing a grid system can shorten
the detection server’s response time which is less than 0.45 sec on 12 users.

Additionally, to effectively detect an attack [14] and further efficiently reduce the response time, we need
a smart dynamic process workload monitor and faster detection algorithm [7, 12] since it can increase
the detection accuracy and improve the decisive rate.

References
[1] Tribe flood network or tnf. http://en.wikipedia.org/wiki/TribeFloodNetwork, December 2012.
[2] Gdb: The gnu project debugger. http://sources.redhat.com/gdb/, August 2013.
[3] Recognizing and recovering from rootkit attacks. http://cecs.wright.edu/~pmateti/Courses/499/

Fortification/obrien.html, September 2013.
[4] Strace. http://sourceforge.net/projects/strace/, June 2013.
[5] J. C. Adams and T. H. Brom. Microwulf: a beowulf cluster for every desk. ACM SIGCSE Bulletin, 4(1):121–

125, March 2008.
[6] I. R. Andalon-Garcia, A. Chavoya, and M. E. M.-C. na. A parallel algorithm for multiple biological sequence

alignment. In Proc. of the 9th International Conference on Information Processing in Cells and Tissues
(IPCAT’12), Cambridge, UK, LNCS, volume 7223, pages 264–276. Springer-Verlag, March-April 2012.

[7] P. Angin and B. Bhargava. An agent-based optimization framework for mobile-cloud computing. Journal of
Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 4(2):1–17, June 2013.

[8] T. Bevel and R. M. Gardner. Bloodstain pattern analysis with an introduction to crime scene reconstruction
with an introduction to crime scene reconstruction, 3rd ed. New York: CRC Press, 2008.

[9] M. Ku, D. Min, and E. Choi. Scarex: A framework for scalable, reliable, and extendable cluster computing.
In Proc. of the 5th International Conference on Computer Sciences and Convergence Information Technology
(ICCIT’10), Seoul, Korea, pages 966–972. IEEE, November-December 2010.

23

http://en.wikipedia.org/wiki/TribeFloodNetwork
http://sources.redhat.com/gdb/
http://cecs.wright.edu/~pmateti/Courses/499/Fortification/obrien.html
http://cecs.wright.edu/~pmateti/Courses/499/Fortification/obrien.html
http://sourceforge.net/projects/strace/

A Grid System Detecting Internal Malicious
Behaviors at System Call Level Leu and Hsiao

[10] G. Lee, K. Choi, and N. D. Dutt. Mapping multi-domain applications onto coarse-grained reconfigurable
architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(5):637–
650, May 2011.

[11] F.-Y. Leu, Y.-T. Hsiao, K. Yim, and I. You. A real-time intrusion detection and protection system at system
call level under the assistance of a grid. In Proc. of the Information & Communication Technology-EurAsia
Conference 2014 (ICT-EURASIA’14), Bali, Indonesia, LNCS, volume 8407, pages 375–385. Springer-Verlag,
April 2014.

[12] A. P. A. Ling, S. Kokichi, and M. Masao. Enhancing smart grid system processes via phi-losophy of secu-
rity -case study based on information security systems. Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications, 3(3):94–112, September 2012.

[13] M. Minsky. Form and content in computer science. Journal of the ACM, 17(2):197–215, April 1970.
[14] F. Palmieri, U. Fiore, and A. Castiglione. A distributed approach to network anomaly detection based on

independent component analysis. Concurrency and Computation : Practice and Experience, 26(5):1113–
1129, April 2014.

[15] N. B. R., V. K. K. S., M. C. K., and H. K. G. Mpi based cluster computing for performance evaluation
of parallel applications. In Proc. of the IEEE Conference on Information & communication Technologies
(ICT’13), JejuIsland, Korea, pages 1123–1128. IEEE, April 2013.

[16] Z. Shan, X. Wang, T. cker Chiueh, and X. Meng. Safe side effects commitment for os-level virtualization.
In Proc. of the 8th ACM international conference on Autonomic computing (ICAC’11), Karlsruhe, Germany,
pages 111–120. ACM Press, June 2011.

[17] S. J. Shyua and C.-Y. Tsaib. Finding the longest common subsequence for multiple biological sequences by
ant colony optimization. Computer and Operation Research, 36(1):73–91, January 2009.

[18] L. M. Vaquero, L. Rodero-Merino, and R. Buyya. Dynamically scaling applications in the cloud. ACM
SIGCOMM Computer Communication Review, 41(1):45–52, January 2011.

[19] P. C. Yong, S. Nordholm, and H. H. Dam. Optimization and evaluation of sigmoid function with a priori
snr estimate for real-time speech enhancement. Journal of Speech Communication, 55(2):358–376, February
2013.

——————————————————————————

Author Biography

Fang-Yie Leu received his BS, master and Ph.D. degrees all from National Taiwan
University of Science and Technology, Taiwan, in 1983, 1986 and 1991, respectively,
and another master degree from Knowledge Systems Institute, USA, in 1990. His re-
search interests include wireless communication, network security, Grid applications
and Chinese natural language processing. He is currently a workshop organizer of
CWECS and MCNCS workshops, a professor of TungHai University, Taiwan, and
director of database and network security laboratory of the University. He is also a

member of IEEE Computer Society.

Yi-Ting Hsiao received his master degree in department of Computer Science, and
BS degree in Department of Industrial Engineering, Tunghai University, Taiwan. He
is currently a Project Manager and Chief Engineer of MiTAC Infomation Tech. Corp.
Taiwan. His areas of interest include software engineering, Linux embedded system,
computer forensic and parallel processing.

24

	Introduction
	Related Research
	System Framework
	Mining Server
	Detection Server

	Experiments
	Parallel speedup
	Detection server accuracy and response time

	Conclusions and Future work

