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Abstract

As open-source software (OSS) is widely used, many IT organizations adopt OSS without obeying
some guidelines for open-source license agreements. To reduce risks related to open-source licenses,
the organizations should meet the requirements for OSS licenses. Because some OSS components
may be given from major upstream suppliers in binary form, it is very hard to verify whether a bi-
nary program contains unlicensed OSS components. In this paper, we propose a novel technique
for determining whether a binary includes certain OSS components without respecting the OSS li-
censing terms. Our technique employs function-level static software birthmark to detect code clones
in binaries. In our technique, the birthmark is a sequence of the size information of arguments and
local variables of functions inside a binary, and the similarity between birthmarks is computed using
semi-global sequence alignment or k-gram method. We evaluate the effectiveness of the proposed
techniques by performing experiments with some binaries and OSS components.

Keywords: Open-source software, Static analysis, Software birthmark, Sequence alignment

1 Introduction

Recently open source is ubiquitous and the use of Open-Source Software (OSS) components is prolifer-
ating. This is because many software developers contribute their time and effort to create high-quality
open-source software. The success of OSS movement is evident from the large and growing number
of software industry executives, managers, and academics who are trying to use OSS components. Ac-
cording to Gartner’s findings, 75% of Global 2000 enterprises included OSS in mission-critical software
portfolios in 2010, and going to 99% by 2016 [10, 8].

The main reason for using OSS is that it is free to use and distribute, which results in substantial
financial benefits. OSS enables organizations to develop solutions that can meet their requirements best
with low cost and effort. However, OSS used in IT organizations is distributed often in a way that it
does not obey the licenses imposed by the original developers [8, 9]. This has caused many license
violations, exposing the organizations to significant legal risk. Gartner predicted that 50% of Global
2000 organizations would experience technology, cost and security challenges through lack of open-
source governance by 2014 [10, 8]. Many organizations have inadvertently violated a copyright law.
Such organizations often receive software components from major upstream suppliers in binary form,
and thus cannot verify whether they include unlicensed third-party code. Therefore, it is necessary for
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downstream users or IT organizations to examine which third-party software (OSS), if any, is contained
in binary files from upstream suppliers [9, 13].

Software birthmark is unique characteristics of a binary, which can be used to identify each binary
and detect software theft [11, 7, 14, 17, 16]. It is also effective in detecting software component theft
where only partial code is stolen [16, 6]. In this paper, we propose a novel software birthmarking tech-
nique that detects code clone in binaries. Our technique detects binary clones by comparing software
birthmarks extracted from a target binary and OSS components for evidence that the target code contains
specific OSS component(s). Our software birthmark is made up of the sizes of arguments1 and local
variables of functions inside binaries. For a program module or component with many functions, the
sequence of the size information of arguments and local variables of the functions can be unique charac-
teristics of the module or component. Note that it is almost impossible to obtain the type or the number
of arguments and local variables of functions from released binaries.

The proposed technique tells us whether a specific third-party software component (OSS) is included
in a target binary, that is, whether the birthmark of a component is similar to or the same as a partial
birthmark of a target binary. Our technique detects binary clones by compare similarity of our birthmarks
extracted from a target binary and OSS components. We use the semi-global alignment algorithm [5, 4]
and k-grams [11] to compute the similarity between the birthmarks of an OSS component and a target
binary. We carry out extensive experiments in order to verify the effectiveness of the proposed technique.
Note that license management is beyond the scope of this paper such as examining what license should
exist to protect OSS and determining any license violations may have taken place.

This paper is organized as follows. We first review background and related work in Section 2, and
describe our software birthmarking technique to detect binary clones in Section 3. We then carry out
extensive experiments and evaluate the results in Section 4. We finally conclude with a discussion of our
future work in Section 5.

2 Related Work

2.1 OSS Detection

There are some tools for OSS detection and license verification. Black Duck Software’s Protex [3] is a
well-known commercial tool. It detects the use of OSS and identifies the software origin by source code
scanning. FOSSology [2], initiated by HP, is an OSS under GPL v2 license. It detects the use of OSS
based on the license information in the comments written in source codes. If the license information is
modified or removed from source codes, FOSSology has difficulty in finding OSS. Binary Analysis Tool
(BAT)[1] is an OSS under Apache 2 license. It inspects files that are in binary format to find out what
software is inside. Since it reads symbol and string table in binary files and compares it with information
extracted from source codes of OSSs, if symbol is removed during compilation or string is obfuscated or
encoded, BAT cannot find OSS.

As mentioned above most previous OSS detection and license verification tools are based on source
codes. They cannot be used if the source code of the target program is not available such as programs
distributed via Internet and third-parity libraries. Binary-based analysis tools such as BAT make use of
information that can be easily extracted from binaries. It is not difficult to circumvent such tools by
removing or modifying the information. In this paper, from this perspective, we propose a software
birthmark-based method that can easily extract/compare characteristics of programs and is resilient to
modification.

1Throughout the paper, we use the terms ‘argument’ and ‘parameter’ interchangeably.
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2.2 Software Birthmark

Software birthmark can be classified into two categories. Static birthmark [11, 7] is information that can
be extracted from binary executables through static analysis. Dynamic birthmark [15, 12] is information
collected or extracted during program execution. Static birthmark has relatively better code coverage and
smaller extraction overhead than dynamic birthmark. Dynamic birthmark has not good code coverage
and is dependent upon execution environments. However, it can collect information that can be obtained
during execution such as the value of function arguments, return value, and indirected branch.

Myles and Collberg [11] applies k-gram technique, which is used in document similarity analysis,
to the sequence of instructions (mnemonics) extracted from binary executables. This k-gram based
static birthmark is vulnerable to obfuscation such as statement reordering or invalid instruction insertion.
Moreover, since the size of birthmark is very large, the extraction and comparison overhead grows fast
as the size of program becomes larger.

Tamada et al. [15] and Shuler and Dallmeier [14] propose API-based dynamic birthmark. Since
the proposed API call sequence (EXESEQ) and frequency (EXEFREQ) are related to the functionality
of program, the birthmarks are more resilient to various obfuscation technique. However, the reliabil-
ity of the similarity measurement may be low if some API call are substituted with similar API call or
unintended APIs are called, e.g. user-interaction related APIs. In addition, programs with similar func-
tionality may have similar pattern of API calls. The birthmarks are also ineffective for programs that
rarely call APIs such as small programs and algorithm-centric programs like mathemetical computation
or encryption programs. Choi et al. [7] propose an API-based static birthmark. This technique has good
code coverage and achieves fast analysis, but has the same limitation as API-based dynamic birthmark.

Wang et al. [16] proposes a system call-based dynamic birthmark. Since similar APIs (or library
functions) eventually invoke the same system call, the birthmark is more resilient to modification attack
exploiting similar APIs than API-based birthmark. However, it is subject to false positive and is applica-
ble only to UNIX-like operating systems. This birthmark is ineffective for programs that rarely invoke
system calls as the API-based birthmark is.

Myles and Collberg [12] propose Whole Program Path Birthmark (WPPB) for Java programs. WPPB
is a dynamic control flow graph-based birthmark, which improves the graph comparison overhead with
graph summarization. However, it is not suitable for similarity measurement between large scale pro-
grams. Zhou et al. [17] proposes a Component Dependence Graph (CDG) based static and dynamic
birthmark, which can efficiently measure similarity between large scale programs. However, such graph-
based birthmarks are not suitable for programs that have a few components or libraries.

The main purpose of our research is to detect a small OSS contained in a large binary program with
low runtime overhead. The above mentioned techniques do not satisfy this condition. We need a new
technique that can extract birthmark from binary executables, can measure similarity between a small
birthmark and a part of large birthmark, and can do these fast.

3 Function-level Static Birthmark-based OSS Detection

To detect Software theft and piracy, existing birthmark-based methods perform 1-to-1 similarity analysis,
so they do not take into account the space overhead of birthmark size or the time overhead of extracting
and comparing birthmarks. Whereas, OSS detection is a 1-to-N similarity analysis; it needs to investigate
a target program in order to search for many OSSs. From this perspective, this paper proposes a novel
birthmarking and similarity analysis technique for OSS detection. This technique is based on static
analysis and has low time and space overhead. It extracts characteristic of each function from OSS (or
a target program) in a binary and build a birthmark. Then it examines whether the birthmark of OSS is
similar to a part of the birthmark of the target program.
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The strength of the proposed function-level static birthmark is as follows. First, by using function-
level characteristics, the size of birthmark is small and the comparison of birthmarks is fast. The charac-
teristics used in previous work, such as instruction, API information, control flow, and call graph, are not
suitable for OSS detection. Although API information is good for characteristic in terms of resilience,
many OSS libraries, such as tree, searching and encoding/decoding, rarely call APIs. In regard to call
graph, all functions included in OSS may not be linked in a graph. In addition, the complexity of graph
similarity measurement is very high. As to instruction information, the size of characteristic is too big
and the comparison time is too long. In contrast, since the number of functions is far less than the number
of instructions, the size of function-level characteristic is very small and the comparison is also fast. An-
other reason for using function-level characteristic is that a target program usually includes not a small
part of codes but the whole library or a set of functions of OSSs.

Second, the proposed function-level birthmark makes use of intrinsic characteristic of source code
that survives in binary code, which is the size of arguments and local variables of functions. In case
of instruction-based characteristics, the characteristics of source codes may be lost by compilation. For
example, a for/while repetition statements may be converted to do-while statements by compiler for
efficient execution. On the other hand, the size of arguments and local variables of functions is not
changed by compilation, which implies it is a reliable characteristic.

Finally, in OSS detection, static analysis is better than dynamic analysis in terms of the time overhead
of extracting characteristics and reliability. In dynamic analysis, it is not guaranteed that the OSS codes
are executed while the target program runs. For OSS codes to be executed, the inputs of the target
program should be given so that the functions of OSS are executed. However, it is very difficult to find
out such inputs. Moreover, dynamic analysis is usually conducted on virtual machines with debugging
tools to exclude unexpected influence of the execution environments, which may result in unacceptable
time overhead. Therefore, dynamic analysis is not suitable for OSS detection.

In the following subsections, we describe the function-level birthmark in detail and propose two
methods for OSS detection that uses the birthmark. The first method employs semi-global sequence
alignment and the second method employs k-gram.

3.1 Arguments and Local Variables Size based Birthmark

We analyze the instructions in the code section (.text) of binary executable files and extract the size
of function arguments and local variables in bytes. In Intel CPU envirionments, ebp register is used
to reference the function arguments and local variables. The size of arguments can be calculated by
analyzing the instructions referencing memory at a higher address than ebp2. For example, move eax,
[ebp+8] copies the 4 bytes at memory address ebp+8 into eax register. Usually ebp+8 is the address of
the first argument. To compute the size of arguments we find the instruction that adds the largest offset
to ebp in a function. Then the size of argument is the largest offset minus 4 because a return address is
stored at ebp+4. Suppose there are N instructions that reference memory at higher address than ebp in a
function f and the offsets added to ebp are o1,o2, ...,oN . Then the size of arguments of f is

Sarg( f ) =

{
max{o1,o2, ...,oN}−4 if N > 0
0 otherwise

When calculating the size of local variables we consider only the actual local variables. We exclude
the instructions that use stack to pass arguments for function calls (e.g. push instructions). The size
of local variables can be calculated by analyzing the instructions referencing memory at a lower address
than ebp. For example, move eax, [ebp-18] copies the 4 bytes at memory address ebp-18 into eax register.

2Hereafter, ebp means the address contained in ebp register.
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Unlike when calculating arguments size, the largest offset subtracted from ebp in the instructions of a
function is the size of local variables because there is nothing between ebp and the address of local
variables. Suppose there are M instructions that reference memory at lower address than ebp in a function
f and the offsets subtracted from ebp are o1,o2, ...,oM. Then the size of local variables of f is

Svar( f ) =

{
max{o1,o2, ...,oM} if M > 0
0 otherwise

The characteristic of a function f is defined as follows.

Char( f ) = (Sarg( f ),Svar( f ))

Suppose there are F functions, f1, f2, ..., fF , in an OSS library or a target program P. The birthmark
of P is a sequence:

Birthmark(P) = (Char( f1),Char( f2), ...,Char( fF))

The problem of this birthmark is that Char( f ) is not unique. More than one functions (in a pro-
gram or in different programs) may have the same arguments size and local variables size. However,
Birthmark(P) is distinguishing because Birthmark(P) is a long sequence of Char( fi) in many OSS li-
braries.

3.2 Semi-global Sequence Alignment based OSS Detection

To detect OSS in a target program we apply pairwise sequence alignment, which is used in bioinformat-
ics, to comparing birthmarks extracted from OSS library and a target program. The sequence alignment
algorithms are classified into three categories: global alignment, local alignment, and semi-global align-
ment. Global alignments are useful when the sequences are similar and of roughly equal size. In global
alignment, the alignment is spanned to the entire length. Local alignments are more useful for dissimilar
sequences that are suspected to contain similar sequence. By contrast, Semi-global alignments are useful
when one sequence is short and the other is very long. Semi-global alignments attempt to find the best
possible alignment that includes the entire short sequence [5, 4].

Global alignment algorithm maintains scoring matrix to find optimal alignment. For two sequences a
and b with length n and m respectively, scoring matrix S(n,m) is determined by Equation 1 and the algo-
rithm returns an alignment with the maximum alignment score. And match premium, mismatch penalty,
and gap penalty can be adjusted depending on the type of sequences and the purpose of alignment.

S(i, j) = max


S(i−1, j−1)+ s(ai,bi)

S(i−1, j)+σ

S(i, j−1)+σ

(1)

where s(ai,bi) = ρ =+1 if ai = b j (match premium), s(ai,bi) = µ =−1 if ai 6= b j (mismatch penalty),
and σ =−1 (gap penalty).

In semi-global alignment, the scoring is similar to the global alignment except that there is no penalty
for the prefix and suffix of the short sequence. Hence, let m be the length of the long sequence, the scoring
matrix is initialized as follows.

S(0,0) = S(0,1) = S(0,2), ...,S(0,m) = 0

The method proposed in this paper examines whether the birthmark of OSS (a short sequence of
Char( fi)) is similar to a part of the birthmark of a target program (a long sequence of Char( f j)). Thus,
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we employ semi-global sequence alignment for birthmark comparison. Semi-global sequence alignment
can identify the location of similar sequence as well as the existence of such sequence, which implies we
can identify the location of OSS library in a target program.

The similarity between OSS library and target program is the value of sequence identity according
to the result of semi-global alignment. Given two aligned sequence T1 and T2, the sequence identity is
the ratio of SC(T1,T2) to min{n,m}, where SC(T1,T2) is the number of identical elements.

Similarity(T1,T2) =
SC(T1,T2)

min{n,m}
(2)

3.3 K-gram based OSS Detection

Semi-global sequence alignment based method is very effective if OSS library is included in a target
program without modifying source codes. However, if developer of the target program inserts or removes
some functions, the detection results may be unsatisfactory. In this section, we propose a k-gram based
OSS detection method. K-gram is a well-known method for similarity measurement. It generates a set
of partial sequence with k contiguous elements from each given sequence, then computes the similarity
between the generated sets. Since a sequence is converted to a set, insertion or removal of some functions
affect the similarity a little, which implies that k-gram is a resilient method. Figure 1 shows an example
of k-gram generation from a function arguments and local variables size based birthmark. If k-grams are
extracted from a sequence of length n, the number of elements of the k-gram set is (n− k+1).

Figure 1: Example of extracting arguments/local variables size based k-gram

Usually k-gram based similarity is calculated using Jaccard similarity or containment. Suppose A
and B are sets of k-grams extracted from two sequences. The similarity is calculated as follow.

Jaccard(A,B) =
|A∩B|
|A∪B|

Containment(A,B) =
|A∩B|
|A|

Calculating similarity using Jaccard(A,B) or Containment(A,B) is not suitable for OSS detection
where the difference between the length of two sequence is very large. Suppose A is the set of k-
grams from OSS and B is the set of k-grams from a target program. Since the size of B is far larger
than A, Jarccard(A,B) may be very small even if the OSS is included in the target program. As to
Containment(A,B), since B is very large it is probable that there exist functions with the same character-
istics in both A and B, resulting in false positive.
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From this observation, we do not compare the k-grams of OSS with the k-grams of the entire target
program. We employ a sliding window whose size is equal to the birthmark of OSS, i.e. the number
of functions in OSS. Moving the window from the beginning of the birthmark of the target program,
we extract a set of k-grams from the partial birthmark shown through the window. Let n be the size of
OSS’s birthmark and m be the size of a target program’s birthmark. The number of partial birthmark
is (m− n+ 1). Let P be the k-gram set of OSS and let Qi(1 ≤ i ≤ m− n+ 1) be the k-gram set of the
partial birthmark. The similarity between OSS’s birthmark (P) and a target program’s birthmark (Q) is
computed by the following equation.

Similatiry(P,Q) = max
i
{ PS(P,Qi) } where PS(P,Qi) =

|P∩Qi|
|P|

4 Performance Evaluation

We conducted experiments to compare the proposed methods with existing ones with respect to feature
size, detection time, and detection accuracy. The experiments were done on MS Windows 7 64 Bits
operating system on a computer with 16GB memory and Intel Core i5-4670 CPU (3.40GHz). Feature
extracting module is implemented with IDA pro and IDA Python plug-in and detection module in Python
language.

We have selected a program of various sizes as much as possible in order to show the validity of
our method. ‘Kdtree’ and ‘AEStable’ are OSS libraries that implement tree algorithm and AES encryp-
tion algorithm, respectively. ‘Kd test’ uses ‘Kdtree’ and ‘AES test’ uses ‘AEStable’. The compression
program, ‘7lzma’, uses the library ‘LzmaDec’ and Notepad++ uses xml-related ‘Tinyxml’ and ‘Tinyxml-
parser’ libraries (see Table 1). All program were built in debug mode in Visual Studio 2008.

Table 1: OSS libraries and executables

Files used Programming File type File size
language

Kdtree C object file 30 KB
AEStable C object file 30 KB
LzmaDec C object file 38 KB
Tinyxml C++ object file 186 KB
Tinyxmlparser C++ object file 125 KB
Kd test (uses kdtree) C executable 27 KB
AES test (uses aestable) C executable 58 KB
7lzma (uses LzmaDec) C executable 510 KB
Notepad++ (uses tinyxml, tinyxmlparser) C++ executable 3,922 KB

4.1 Feature Size

We measured feature size and the total time to detect OSS code in executables of our method, instruction-
based one, and API-based one. Feature size is the length of a sequence of a meaningful unit in each
method. In our method, we count the number of functions in an executable, in instruction-based one, the
number of all machine instructions, and in API-based one, the number of instructions that call APIs.
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Table 2: Comparison of Feature size

Feature size (length of sequence)

Executables Instruction-based API -based Our method
(ref. sequence)

Kdtree 1,733 68 (3 APIs) 32
AEStable 1,814 69 (9 APIs) 19
LzmaDec 2,591 2 (1 APIs) 18
Tinyxml 4,703 110 (14 APIs) 139
Tinyxmlparser 2,966 64 (9 APIs) 60
Kd test 2,714 207 (54 APIs) 72
AES test 6,572 761 (68 APIs) 83
7lzma 96,021 944 (106 APIs) 1,319
Notepad++ 772,099 11,866 (450 APIs) 13,297

The smaller number of functions than the number of all instructions implies our method is more
efficient for feature comparison and feature DB construction. The number of functions are almost equal
to the number of API calls. However, for ‘Kdtree’, ‘AEStable’, ‘LzmaDec’, and ‘Tinyxmlparser’, the
number of APIs is less than 10 and thus API-based one is not appropriate for OSS detection (Table 2).

4.2 Detection Time

We measured the detection time of our methods using two similarity calculation methods, semi-global
alignment and k-gram method. The results is shown in Table 3. Our method showed a reasonable
overhead except Notepad++ case. The feature size of Notepad++ is the largest among targets and the
large overhead is understandable. We also see semi-global scheme is more efficient than k-gram in
calculating similarity.

Table 3: Detection Time of the proposed method

Executables Detection time (ms)

Target executables OSS libraries Semi-global k-gram (k=2)

Kd test Kdtree 1.7 8.9
AES test AEStable 1.2 6.1
7lzma LzmaDec 15.8 43.7

Tinyxml 1034.4 6,405.6Notepad++
Tinyxmlparser 462.8 1,720.7

4.3 Detection Accuracy

We have experimented on the accuracy of the proposed birthmark based on the size of the function’s
arguments and local variables. The similarity are identified using two schemes as described above: semi-
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global alignment and k-gram.

4.3.1 Using semi-global alignment

Semi-global alignment is a sequence alignment scheme and dependent on 3 factors: match premium (ρ),
mismatch penalty (µ), and gap penalty (σ ). These factors affect the selection among alignment results
and must be adaptively set according to targets and objectives. To find best settings, we have measured
ratio of correct identification in detecting OSS libraries used in executables.

• Case 1: Just maximum matches
(match premium (ρ) = 1, mismatch penalty (µ) =−1, gap penalty (σ ) =−1)
The scheme aligns two sequences to have the maximum matches. If there are alignments with the
same number of matches, the scheme selects any of them.

• Case 2: Case 1 + minimum mismatches
(match premium (ρ) = 1, mismatch penalty (µ) =−1, gap penalty (σ ) = 0)
The scheme aligns two sequences to have the maximum matches. If there are alignments with the
same number of matches, the scheme selects one with minimum mismatches without considering
gaps.

• Case 3: Case 2 + less gaps
(match premium (ρ) = 2, mismatch penalty (µ) =−2, gap penalty (σ ) =−1)
The scheme works similar to case 2. However, if there are alignments with the same number of
minimum mismatches, the scheme selects the alignment with less gaps.

Table 4: Detection Accuracy when using semi-global alignment scheme

Ratio of Correct identification (%)

Target executables OSS libraries Case 1 Case 2 Case 3
just max. matches Case1 + min. mismatches Case 2 + less gaps

Kd test Kdtree 100.0 100.0 100.0
AES test AEStable 100.0 100.0 100.0
7lzma LzmaDec 100.0 100.0 100.0

Tinyxml 77.6 96.4 77.6Notepad++
Tinyxmlparser 0 93.3 46.6

In Table 4, The proposed birthmark using semi-global alignment scheme works well for ‘Kd test’,
‘AES test’, and ‘7lzma’, which have a smaller file size. But you can see we had some cases where
our technique failed to find ‘Tinyxml’ and ‘Tinyxmlparser’ in ‘Notepad++’. The sequence of functions
of ‘Tinyxml’ in ‘Notepad++’ remains the same as the original one in the library, but other additional
functions exist between the library functions. This fact account for lower detection ratio. In the case of
‘Tinyxmlparser’, the sequence is also changed, so detection ratio further decreases. For ‘Tinyxmlparser’,
the results of case 2 settings show ratio of 93.3% and it is because case 2 tries to include as many gaps
as possible to maximize the number of matches. Case 2 showed high detection ratio, but actually failed
to find the library code. Case 3 showed the detection ratio of 46.6% and is lower than the case 2. Case
3 approximately finds the location of the library code and shows the most correct detection and most
resilient to sequence variations.
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Table 5: Uniqueness Test Results: c.n for case n

Kd test AES test 7lzma Notepad++

Libraries c.1 c.2 c.3 c.1 c.2 c.3 c.1 c.2 c.3 c.1 c.2 c.3

Kdtree - - - 5.5 27.7 5.4 5.5 33.3 5.4 0 86.4 0
AEStable 0 68.4 0 - - - 0 26.3 0 0 78.9 10.5
LzmaDec 0 70.2 5.5 5.4 35.1 5.5 - - - 0 88.8 0
Tinyxml not tested not tested 1.4 52.5 1.4 - - -
Tinyxmlparser 3.3 15.0 3.3 1.6 20.0 1.6 1.6 66.6 1.6 - - -

To show our birthmark is unique and intrinsic to binary file, we tested whether the scheme can find the
library code in executables that does not include the code or not. The length of sequence of ‘Tinyxml’ is
much longer that those of ‘Kd test’, ‘AES test’ and thus excluded in this experiment. The Table 5 shows
the results of this test. Case 1 and 3 showed similar ratio and the largest ratio is 10.5%. Case 2, however,
showed high ratio and up to 88.8%. We can see case 2 has high false-positive ratio and is not appropriate
for code similarity identification. In sum, case 3 setting is most effective for OSS code detection.

4.3.2 Using k-gram

When k-gram is used to identify OSS, k is a very important factor. When k is low, two different programs
share the same features and it is likely to be identified they are similar. The low k has high similarity
identification ratio, but is resilient to code transformation like code obfuscation. On the contrary, high k
shows higher credibility, but is weak at code transformation.

To find the appropriate value of k for code detection, we calculate the similarities with varying k
from 2 to 10 by 2. The results are shown in Table 6. k = 2 shows the highest detection ratio and the
identified position is close to actual position. Its results are almost identical to those of case 3 when using
semi-global alignment.

Table 6: Detection Accuracy according to k when using k-gram

Ratio of Correct identification (%)
Executables Libraries

k = 2 k = 4 k = 6 k = 8 k = 10

Kd test Kdtree 100.0 100.0 100.0 100.0 100.0
AES test AEStable 100.0 100.0 100.0 100.0 100.0
7lzma LzmaDec 100.0 100.0 100.0 100.0 100.0

Tinyxml 72.7 51.5 37.1 26.1 15.6Notepad++
Tinyxmlparser 51.4 16.6 5.6 1.9 0.0

Table 7 shows the uniqueness of the proposed birthmark when using k-gram scheme. When k is two,
the scheme works well. In sum, the proposed birthmark using k-gram is effective for detecting OSS
codes in target executables.
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Table 7: Uniqueness Test Results when using k-gram (k = 2)

ratio (%) Kd test AES test 7lzma Notepad++

Kdtree - 7.1 25.0 21.4
AEStable 0 - 6.2 18.0
LzmaDec 7.1 0 - 14.0
Tinyxml not tested not tested 15.0 0
Tinyxmlparser 8.5 11.4 14.2 -

5 Conclusion and Future Work

Software released in binary form frequently includes third-party components without the suppliers fol-
lowing the requirements of their software license. Even though such license violations are not intentional,
organizations that adapted OSS may be exposed to significant legal risk. To mitigate the risk from such
violations, it is necessary to develop a system for code clone detection in binaries. We motivated the need
for a system to detect code cloning in binaries including OSS components. We proposed a new technique
based on function-level static software birthmark in order to detect cloning in binaries. Our birthmark is
the information associated with the size of arguments and local variables of functions in a target binary or
OSS components. We could detect binary code clone by measuring the similarity between the birthmarks
extracted from a binary and an OSS component. Our technique has shown good performance for detect-
ing code clones especially in C program. However, it has some limitation to detect code clones in C++.
The size of our birthmark is small compared to the conventional birthmarks such as instruction-level or
API-level ones. As future work, we have a plan to find out more effective and efficient birthmark which
can detect precisely code clones in C++ and is resilient to compiler optimization.
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