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Abstract

The naive implementation of an exponentiation used in public key cryptography may reveal a secret
key to the attacker by several side-channel attacks. Recently, a novel square-always exponentiation
algorithm based on trading multiplications for squarings is proposed. This algorithm for RSA im-
plementation is faster than existing regular countermeasures against side-channel attacks. This paper
suggests that the right-to-left square-always exponentiation algorithm is vulnerable to some side-
channel attacks: collision distance-based doubling, chosen-message SPA, and CPA-based combined
attacks. The chosen-message SPA attack can be intactly applied to this algorithm. The other two
attacks are variants of the doubling attack and SPA-based combined attack, respectively. In addition,
the paper presents an improved right-to-left square-always algorithm resistant to existing and pro-
posed power analysis attacks by using the additive message blinding method and the message update
technique before the main iterative operation.

Keywords: RSA Cryptosystem, Side-Channel Attack, Simple Power Analysis, Square-Always Ex-
ponentiation

1 Introduction

To provide security using embedded devices, several cryptographic algorithms are typically implemented
on general-purpose processors, co-processors, smart card chips, and so on. Although a cryptographic al-
gorithm is securely considered against traditional cryptanalysis, it can be vulnerable to a new type of
cryptanalysis called the side-channel attack. Based on the side-channel attack, an adversary can recover
the secret key by exploiting the leakage of side-channel information (e.g., power consumption, electro-
magnetic emanation, and the operating time), which is produced during the execution of a cryptographic
algorithm embedded in a physical device.

Embedded security devices in which the secret key is usually stored operate in hostile environments
where the key can be stolen or manipulated by malicious users. In particular, if the attacker already
knows implementation information such as the cryptographic algorithm, the chip design technology, and
device specifications, then the side-channel attack can be more easily attempted. An unreliable insider
with knowledge of the internal state and implementation conditions can easily manipulate acquired cryp-
tographic devices. From this perspective concerning the side-channel attack, a malicious insider is a
more serious threat than an outsider.
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RSA (Rivest, Sharmir, and Adelman) [15] is well known to be the most widely used public key
cryptosystem in embedded security devices. More precisely, the computation for an RSA signature or
encryption is based on a modular exponentiation composed of hundreds of squarings and multiplications.
The power analysis attack is an important category of side-channel attacks proposed by Kocher [13],
who introduce both SPA (Simple Power Analysis) and DPA (Differential Power Analysis) attacks on the
exponentiation algorithm. Since then, many studies have introduced new attack techniques for different
cryptographic algorithms and attempted to improve the processing of power signals to extract the secret
key by using fewer traces than existing attacks [8, 14, 3].

Indeed, an attacker measures the power dissipation of a single trace in an SPA attack and extracts the
secret key by using this physical information. To protect against an SPA attack, many researchers have
proposed various exponentiation algorithms as countermeasures, including the square-and-multiply-
always algorithm [8], the Montgomery ladder [12], the Joye ladder [11], and the so-called atomic ex-
ponentiation algorithm[4]. These methods for countering SPA attacks basically allow computational
operations independently from the value of secret key bits.

Recently at Indocrypt 2011, Clavier et al. [6] present a novel exponentiation method based on trading
multiplications for squarings. Their exponentiation uses only squarings to avoid exploiting any side-
channel leakage to an attacker by distinguishing between multiplications and squarings during the ex-
ecution of the classical exponentiation [1]. They also present two types of exponentiation algorithms:
left-to-right and right-to-left methods. Indeed, the right-to-left square-always exponentiation algorithm
is recommended for practical implementation because the left-to-right algorithm is vulnerable to the
doubling attack [10], the chosen-message SPA attack [20], and combined attack [2].

This paper suggests that the right-to-left square-always algorithm is also vulnerable to three side-
channel attacks: the so-called collision distance-based doubling attack, the chosen-message SPA attack,
and CPA-based combined attack. Among these, the chosen-message SPA attack can be intactly applied
to this algorithm. The other two attacks are variants of the doubling attack and SPA-based combined
attack, respectively. In addition, the paper proposes an improved exponentiation algorithm resistant to
existing and proposed side-channel attacks.

The rest of this paper is organized as follows: Section 2 briefly recalls the exponentiation algorithm
for RSA implementation and several side-channel attacks on it. Section 3 presents some side-channel
attacks on the right-to-left square-always exponentiation algorithm. Section 4 presents the improved ex-
ponentiation algorithm resistant to existing and proposed side-channel attacks, and Section 5 concludes.

2 Side-Channel Attacks on the RSA Exponentiation

This section recalls the exponentiation algorithm for implementing the RSA cryptosystem, introduces
side-channel attacks on existing exponentiation methods, and describes two atomicity-based counter-
measures and their principles to resist a dedicated SPA attack.

2.1 RSA and Exponentiation

RSA is a popular public key cryptosystem for encrypting or signing a given message. In the RSA system,
two prime integers p and q are generated, and the public modulus n is their product. Here let e be the
public key and d be the corresponding secret key such that e · d = 1 mod (p− 1)(q− 1). The classical
signing with RSA for a message m consists of computing the value s = md mod n. Here, the signer uses
the secret key d as an exponent of this exponentiation. After s and m are sent to the verifier, the signature
s is verified by checking that se mod n is equal to m.
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An exponentiation is basically a sequence of multiplications and squarings. Two types of exponen-
tiation algorithms are usually considered according to the order of exponent scans. The first type starts
from the most significant bit and works downward. This method is called the left-to-right algorithm.
By contrast, the second one starts from the least significant bit and works upward and is known as the
right-to-left algorithm. As already highlighted in [6] and [10], the right-to-left implementation is more
resistant to many side-channel attacks than the left-to-right one. Therefore, this paper focuses on the
strong implementation of the right-to-left exponentiation algorithm.

2.2 SPA Attack and its Variants

The final goal of an attacker breaking the RSA cryptosystem is to recover the secret key d from a side-
channel leakage. This secret key is used as an exponent of the exponentiation for computing an RSA
signature or decryption for message m.

SPA Attack In an RSA exponentiation, an SPA attack consists of observing that if the multiplication
operation has a different power consumption pattern from the one for the squaring operation, then the
secret key can be recovered from a single power trace. The so-called square-and-multiply algorithm is
typically used to perform an RSA exponentiation. However bits of the secret key are directly retrieved
from the observed trace if the square-and-multiply algorithm is naively implemented. That is, this expo-
nentiation algorithm is vulnerable to an SPA attack [1].

The classical countermeasures consist of using the so-called regular algorithm such as the square-
and-multiply-always and Montgomery ladder algorithms or applying the atomicity principle, as described
in detail in the next section. In addition, the square-and-multiply-always algorithm is vulnerable to the
C-Safe error attack [18], an active attack to extract the secret key by injecting some faults during the
exponentiation operation.

Doubling Attack In a different type of SPA attack called the doubling attack [10], the adversary
requires the execution of at least two exponentiations with the same secret key d. The attack defeats the
left-to-right square-and-multiply-always algorithm by using two related input messages m and m2. The
basic idea of this attack is that the attacker may find some collision pairs of intermediate values between
two power traces measured after inputting each message. In addition, the Montgomery ladder algorithm
is susceptible to the relative doubling attack [19], a special case of the original doubling attack.

Chosen-Message SPA attack Yen et al. introduce a new type of SPA attack based on the input of a
specially chosen message [20]. This attack can defeat an SPA countermeasure such as the square-and-
multiply algorithm by using a single power trace. In their paper, an attacker uses an input message m =
(n−1) for a modular exponentiation. In this case, only two values involved in the modular exponentiation
are 1 and (n− 1). Because these two values have a distinct Hamming weight, three operations 1× 1,
1× (n−1), and (n−1)× (n−1) generated during the exponentiation have different and distinguishable
power traces. Therefore, it is easy to explore the sequence of squarings and multiplications and retrieve
the secret key.

Horizontal CPA Attack Recently, Clavier et al. present another class of side-channel attacks [7], the
horizontal CPA (Collision Power Analysis) attack, which is inspired by the Big Mac attack in Walter [16].
This attack consists of computing a classic statistical treatment method such as correlation factors on
several time segments extracted from a single execution power trace of a known message. Here a segment
refers to one modular operation such as a multiplication or squaring.

The horizontal CPA attack in [17] can defeat the square-and-multiply-always algorithm with a mes-
sage blinding countermeasure. Indeed, an attacker uses the observation that M-d-S (Multiplication-
discard-Squaring) and M-S (Multiplication-Squaring) in the exponentiation algorithm can be distin-
guished according to their sharing an operand. Because two operations in M-d-S, namely multiplica-
tions and squaring, share an operand, their power leakage is more strongly correlated than those in M-S.
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Alg. 1 : Left-to-Right Multiply-Always Exponentiation
Input: m, n, d = (dk−1,dk−2, · ·d0)2
Output: md mod n

1. R0 = 1
2. R1 = m
3. i = k−1 ; t = 0
4. while i≥ 0 do
5. R0 = R0×Rt mod n
6. t = t⊕di ; i = i−1+ t
7. return (R0)

Figure 1: Left-to-right multiply-always exponentiation.

Actually, two operations in M-S do not share an operand. An attacker computes the correlation factor be-
tween power measurements for two consecutive segment operations and uses it to recover the secret key.
Because this attack requires only one execution trace of the exponentiation, we can defeat it using the
message blinding countermeasure or operand randomization in LIM (Long Integer Multiplication) [7].

SPA-based Combined Attack Amiel et al. introduce a combined attack on SPA-resistant RSA
implementation by combing fault and SPA attacks [2]. Here they target the atomicity-based square-
and-multiply algorithm shown in Figure 1, which is the classical SPA-protected implementation. To
extract the secret key, the attacker inserts a fault to bypass step 1 in algorithm 1, and then R0 retains
the initial value (typically R0 = 0). As a result of this fault injection, two different power signal patterns
appear in step 5 during the main iteration of the exponentiation. The first pattern is the squaring R0 =
R0×R0 mod n = 0×0 = 0, which is performed in the case of t = 0. The second one is the multiplication
R0 = R0×R1 mod n = 0×m = 0 in the case of t = 1. Because the two power trace patterns are different
according to each exponent bit, the attacker can simply recover the secret key by just analyzing the simple
power trace.

2.3 Atomic Algorithm

As discussed earlier, the classical countermeasures against the SPA attack can be implemented using a
regular algorithm or applying the atomicity principle. The regular exponentiation method includes the
square-and-multiply-always, Montgomery ladder, and Joye ladder algorithms. Such regular algorithms
perform one multiplication and one squaring during each loop iteration and thus require 1M + 1S per
secret bit. Here S refers to the cost of a modular squaring, and M, to that of a modular multiplication. In
general, S≈ 0.8M in the literature and some experiments on cryptographic processors.

The atomicity principle is presented to protect the square-and-multiply algorithm from the SPA at-
tack. Because the squaring in an exponentiation is performed using a multiplication routine, we call
atomic-based exponentiation to multiply-always algorithm. The advantage of the multiply-always algo-
rithm is its better performance in comparison to regular ones. The algorithms in Figures 1 and 2 are
two variants of the multiply-always algorithm, which requires 1.5M per secret bit on average. Neverthe-
less, these multiply-always algorithms basically perform a sequence of square-and-multiply algorithms
without dummy operations.

Amiel et al. show that the Hamming weight of the output of the real multiplication (x× y) used in
the multiply-always algorithm is different from that for the squaring (x× x) [1]. Although the squaring
in the multiply-always algorithm is actually performed by the multiplication routine, an attacker can
distinguish that this multiplication performs a squaring (x× x) or a real multiplication (x× y). As a
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Alg. 2 : Right-to-Left Multiply-Always Exponentiation
Input: m, n, d = (dk−1,dk−2, · ·d0)2
Output: md mod n

1. R0 = m
2. R1 = 1
3. i = 0; k = 0
4. while i≤ k−1 do
5. k = k⊕di

6. Rk = Rk×R0 mod n
7. i = i+(¬k)
8. return (R1)

Figure 2: Right-to-left multiply-always exponentiation.

result, this analysis points out that the multiply-always algorithm includes an intrinsic flaw in the square-
and-multiply algorithm.

3 Side-Channel Attack on the Square-Always Exponentiation Algorithm

3.1 Right-to-Left Square-Always Exponentiation Algorithm

Clavier et al. present in Indocrypt 2011 a novel exponentiation algorithm that has not only the efficiency
of the atomicity principle but also immunity against the SPA attack on the multiply-always algorithm [6].
Their countermeasure exponentiation consists of using equation (1) or (2) to compute a multiplication.

x× y =
(x+ y)2− x2− y2

2
(1)

x× y =
(

x+ y
2

)2

−
(

x− y
2

)2

(2)

Because one multiplication can replace two squarings, they combine equation (1) with the left-to-
right multiply-always algorithm and apply equation (2) to implement the right-to-left multiply-always
algorithm 3. Algorithm 3 in Figure 3 is a right-to-left square-always exponentiation algorithm. The step
6 of algorithm 2 shown in Figure 2 is mainly changed to the loop computations of algorithm 3, from step
7 to 10. Here they use a matrix for more readable and efficient implementation:

M =


0 0 2 0 0 0 2 1
2 1 2 2 1 0 1 0
0 2 1 1 0 0 2 0
0 0 0 0 1 2 1 1

 (3)

The main loop of algorithm 3 can be described as a four-state machine. The four sequences shown
in Figure 4 are operations corresponding to each state. Here the first state j = 0 corresponds to the
processing of a 0 exponent bit, and j = 1, 2, and 3 is a 1 bit, as detailed in Figure 4. The main operation
of each state is the squaring RM j,3

2 mod n. Dummy operations are identified by the symbol ?. For further
details, see [6].
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Alg. 3 : Right-to-Left Square-Always Exponentiation
Input: m, n, d = (dk−1,dk−2, · ·d0)2
Output: md mod n

1. R0 = m
2. R1 = 1
3. R2 = 1
4. i = 0; j = 0
5. while i≤ k−1 do
6. j = di(1+( j mod 3))
7. RM j,0 = RM j,1 +R0 mod n
8. RM j,2 = RM j,3/2 mod n
9. RM j,4 = RM j,5−RM j,6 mod n
10. RM j,3 = RM j,3

2 mod n
11. i = i+M j,7
12. return (R1)

Figure 3: Right-to-left square-always exponentiation.

j = 0 j = 2
(di = 0) (di = 1 )

j = 0 [? if j was 0] j = 2
R0 = R0 +R0 mod n ? R0 = R2 +R0 mod n ?
R2 = R0/2 mod n ? R1 = R1/2 mod n
R0 = R0−R2 mod n ? R0 = R0−R2 mod n ?
R0 = R2

0 mod n R1 = R2
1 mod n

i = i+1 i = i ?

j = 1 j = 3
(di = 1) (di = 1 )

j = 1 j = 3
R2 = R1 +R0 mod n R0 = R0 +R0 mod n ?
R2 = R2/2 mod n R0 = R0/2 mod n ?
R1 = R0−R1 mod n R1 = R2−R1 mod n
R2 = R2

2 mod n R0 = R2
0 mod n

i = i ? i = i+1

Figure 4: A four-state machine of main loop in Algorithm 3

The square-and-multiply algorithm requires 2S per exponent bit on average, which theoretically im-
plies an 11.1% speed-up over regular algorithms under the assumption that S/M = 0.8. The two algo-
rithms are protected against the SPA attack because of implementation based on the atomicity principle.
Because left-to-right algorithms are highly vulnerable to the doubling attack [10] and the chosen-message
SPA attack [20] and more likely to be subject to combined attacks [2]], the right-to-left square-always
algorithm is generally preferred to the left-to-right version. In addition, according to this paper’s additive
security analysis, the left-to-right square-always algorithm is susceptible to a horizontal CPA attack.
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Table 1: Collision distance-based doubling attack.
Input : m Input : m2

i di j = 0 j = 1 j = 2 j = 3 j = 0 j = 1 j = 2 j = 3 Remarks
(di = 0) (di = 1) (di = 1) (di = 1) (di = 0) (di = 1) (di = 1) (di = 1)

0 1 R2 = R2
2 R1 = R2

1 R1 = m R2 = R2
2 R1 = R2

1 R1 = m2 Known
R0 = m2 R0 = m4 1© as odd

1 0 R0 = m4 R0 = m8 Adjacent
1© 2© collision

2 0 R0 = m8 R0 = m16 Adjacent
2© collision

3 1 R2 = R2
2 R1 = R2

1 R1 = m9 R2 = R2
2 R1 = R2

1 R1 = m18 faraway
R0 = m16 R0 = m32 collision

4 1 R2 = R2
2 R1 = R2

1 R1 = m25 R2 = R2
2 R1 = R2

1 R1 = m50 faraway
R0 = m32 R0 = m64 3© collision

5 0 R0 = m64 R0 = m128 Adjacent
3© collision

6 1 R2 = R2
2 R1 = R2

1 R1 = m89 R2 = R2
2 R1 = R2

1 R1 = m178 faraway
R0 = m128 R0 = m256 collision

return R1 = m89 R1 = m178

3.2 Vulnerability of the Right-to-Left Square-Always Algorithm

This section points out that the right-to-left square-always algorithm is vulnerable to some side-channel
attacks, including other type of doubling attack, the chosen-message SPA attack, and the so-called CPA-
based combined attack.

Collision Distance-based Doubling Attack The doubling attack is a special case of the SPA attack
with a chosen-message assumption and is useful for thwarting the SPA-protected left-to-right square-
and-multiply-always algorithm. This attack has been known to work only when the left-to-right routine
exponentiation is used. However this paper demonstrates that the right-to-left version can be damaged
by a variant of the doubling attack. Here call this attack a collision distance-based doubling attack.

The assumption about the input condition of this attack is the same as that for the original doubling
attack. That is, the two attacks use related inputs m and m2 as the chosen input message. However,
analysis methods for retrieving the secret bit are different. The goal of the doubling attack is to find the
state of collision pairs. On the other hand, one of this paper’s proposed attacks is to check the distance
of collision pairs. The example in Table 1 details the collision distance-based doubling attack. Let the
secret key d be 89 = (1,0,1,1,0,0,1)2. Here the sequence of operations can be compared when the
right-to-left square-always algorithm in Figure 3 is used to compute md and (m2)d .

A collision between intermediate values occurs only during the computation of the sequential squar-
ing of m, that is, m2, m4, m8 and so on. More precisely, it is observed that the squaring operation at rank i
in the computation of md is the same as the adjacent squaring operation at rank (i−1) in the computation
of (m2)d if and only if di = 0. As a result, if collision pairs are adjacent in the next state, then, according
to this iterative operation, the secret bit di is 0. By contrast, if two nonadjacent collisions are away at a
distance of about 3 states, then the secret bit di is 1. In Table 1, 1©, 2©, and 3© refer to adjacent collision
pairs(nonadjacent pairs are not marked).

The original doubling attack against the left-to-right square-and-multiply-always algorithm focuses
on deriving an exponent bit by determining whether collisions exist. The proposed attack is applied to
the right-to-left exponentiation algorithm by checking the time distance of collision pairs. As a result, the
attacker can retrieve the secret key d by observing the power collision distance of two exponentiations
by using inputs m and m2.

Chosen-Message SPA Attack Consider the security of the right-to-left square-always exponenti-
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Table 2: Computations of chosen-message SPA attack.
Input : (n−1)

i di j = 0 j = 1 j = 2 j = 3 Remarks
(di = 0) (di = 1) (di = 1) (di = 1)

0 1 R2 = 02 R1 =
(n−2

2

)2
= 1F R1 = (n−1) High

R0 = (n−1)2 = 1F power
1 0 R0 = 12 Low

power
2 0 R0 = 12 Low

power
3 1 R2 = 02 R1 =

(2−n
2

)2
= 1F R1 = (n−1) High

R0 = 12 power
4 1 R2 = 02 R1 =

(2−n
2

)2
= 1F R1 = (n−1) High

R0 = 12 power
5 0 R0 = 12 Low

power
6 1 R2 = 02 R1 =

(2−n
2

)2
= 1F R1 = (n−1) High

R0 = 12 power
return R1 = (n−1)

ation algorithm for the case in which the chosen message m = (n− 1) is used as the input, that is,
R0 = (n− 1). Here this chosen-message SPA attack is generally referred to as an (n− 1) attack. Our
chosen-message SPA attack on the right-to-left square-always exponentiation algorithm can be applied
only if the exponent is an odd number. That is, this attack is not useful for an even number. Table 2
details the (n−1) attack on the algorithm in Figure 3. For example, the secret key d is considered to be
89 = (1,1,0,1,0,0,1)2.

In the case of di = 0( j = 0) and di = 1( j = 3), the squaring result R0 is always 1 because (n−1)2i
is

1, i = 1,2,3, ....n−1. In the case of di = 1( j = 1), the squaring result is always 0 because R2 = ((R1 +
R0)/2)2 = ((1+ (n− 1))/2)2 mod n = 02 or R2 = ((R1 + R0)/2)2 = (((n− 1) + 1)/2)2 mod n = 02.
In addition, if di = 1( j = 2), then the squaring result is always 1 because R1 = ((n− 2)/2)2 mod n or
R1 = ((2− n)/2)2 mod n. Therefore, it can be seen that the Hamming weight of the operational input
(n− 2)/2 or (2− n)/2 is high only if di = 1( j = 2). In Table 2, the symbol F refers to the distinct
segment of squarings in which power consumption is high. As a result, an attacker can recover the secret
key d by observing only one simple power trace measured after inputting a special input (n−1).

CPA-based Combined Attack This paper shows that the right-to-left square-always algorithm is
vulnerable to a new combined attack under the same fault injection model applied to the atomicity-based
square-and-multiply algorithm in [4]. However, power signal analysis methods are different. Existing
methods are based on the simple power analysis, that is, an SPA-based combined attack, whereas the
proposed attack is based on finding the collision power of two segment operations. Therefore, this attack
is called a CPA-based combined attack.

Indeed, during the computation of the right-to-left square-always algorithm, the attacker tries to skip
computations in step 2 of algorithm 3 by a fault injection. If step 2 is bypassed because of a fault
injection, then the value of R1 is kept as the initial value in memory, typically R1 = 0. By such a fault
effect, the collision of two adjacent squarings can be found in step 10. As an example, the computational
sequence of exponentiations after initializing R1 with 0 by a fault injection is shown in Table 3.

The final values of squarings at j = 1 are the same as those at j = 2. Indeed, a collision between
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Table 3: Combined attack based on fault and CPA attacks.
R1 = 0 by fault injection

i di j = 0 j = 1 j = 2 j = 3 Remarks
(di = 0) (di = 1) (di = 1) (di = 1)

0 1 R2 =
(m

2

)2 1© R1 =
(m

2

)2 1© R1 = 0 Adjacent
R0 = m2 collision

1 0 R0 = m4 No
collision

2 0 R0 = m8 No
collision

3 1 R2 =
(

m8

2

)2
2© R1 =

(
m8

2

)2
2© R1 = 0 Adjacent

R0 = m16 collision

4 1 R2 =
(

m16

2

)2
3© R1 =

(
m16

2

)2
3© R1 = 0 Adjacent

R0 = m32 collision
5 0 R0 = m64 No

collision

6 1 R2 =
(

m64

2

)2
4© R1 =

(
m64

2

)2
4© R1 = 0 Adjacent

R0 = m128 collision
return R1 = 0

two adjacent squarings occurs only if the secret bit di is 1. In Table 3, the marks 1©, 2©, 3©, and 4© refer
to adjacent collision pairs. If an attacker finds adjacent collisions by using only a single power trace
measured after injecting a fault in step 2, then the attacker can easily know that the exponent bit di is 1.
As a result, the right-to-left square-always algorithm reveals the secret key d for a combined attack with
fault and CPA attacks. The weakness of the right-to-left square-always algorithm with respect to a new
combined attack originates from the fact that one multiplication in the case of di = 1 composed of three
squarings differs from the original squaring in the case of di = 0.

4 Improvements and Comparisons

To prevent collision-distance based doubling and chosen-message SPA attacks simultaneously, input
message blinding can be a clever countermeasure. Because an attacker cannot use an intentional mes-
sage as an input because of the application of the message blinding technique, the exponentiation algo-
rithm can easily prevent such chosen-message type attacks. Some message blinding methods include
multiplicative blinding, additive blinding, and modulus blinding. However the exponent blinding is not
efficient countermeasure against the chosen-message SPA attack.

To defeat a CPA-based combined attack, the register value R1, which is assumed to be 0 by a fault
injection, should be automatically filled with an unknown random value. As a result, although the faulty
register becomes 0 by an attacker, it should not leak any side information during the exponentiation
operation.
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Alg. 4 : Improved Right-to-Left Square-Always Exponentiation
Input: m, n, d = (dk−1,dk−2, · ·d0)2
Output: md mod n

1. Generate random numbers, r1 and r2 such that r2 > r1
2. n1 = r1 ·n; n2 = r2 ·n
3. R0 = (m+n1) mod n2
4. R1 = (1+n1) mod n2
5. R2 = (1+n1) mod n2
6. i = 0; j = 0
7. while i≤ k−1 do
8. j = di(1+( j mod 3))
9. RM j,0 = RM j,1 +R0 mod n2
10. RM j,2 = RM j,3/2 mod n2
11. RM j,4 = RM j,6−RM j,6 mod n2

12. RM j,3 = (RM j,3 +n1) mod n2
13. RM j,3 = R2

M j,3
mod n2

14. i = i+M j,7
15. return (R1 mod n)

Figure 5: Improved right-to-left square-always exponentiation.

4.1 Improvements of the Square-Always Algorithm

Based on the aforementioned analysis of side-channel attacks and existing countermeasures, this paper
presents an improved exponentiation algorithm (Figure 5). Indeed, the following countermeasures are
added to the right-to-left square-always algorithm.

Additive Messages and Modulus Blinding A message can be randomized additively by the classical
countermeasure m′ = m+ r1 ·n mod r2 ·n with two random values r1 and r2 [5, 9]. Here ri should use a
32-bit or larger random number to preserve the level of security. The initial operations from steps 1 to 5
in Figure 4 are applied to prevent the collision distance-based doubling and chosen-message SPA attacks.
The core objective of this countermeasure is to prevent any attacker from controlling the input message.
In addition, because an attacker cannot guess intermediate values computed during the execution of the
algorithm because of the randomness of the modulus, the proposed algorithm is resistant to the DPA
attack.

Input Message Update of Squaring If the register R1 is kept at 0 by inserting a fault to bypass
step 2 in Figure 3, then the Hamming weight of it is also 0. This condition affects the level of power
consumption during squaring operations, and there is some information leakage. To prevent a CPA-
based combined attack, the intermediate value should be automatically updated to another random one.
Nevertheless, this update technique does not affect the final output in the case of a normal exponentiation
execution.

As shown in step 12 of Figur 4, the input value of each squaring should be randomized, such as
RM j,3 = (RM j,3 + n1) mod n2. Actually, only the randomization of R1 in step 12 is enough to resist a
CPA-based combined attack. Nevertheless, all register values used as the squaring input must be updated
to maintain the regularity and efficiency of the algorithm. In addition, this message update technique
before the main squaring operation can be applied to the left-to-right square-always algorithm to prevent
a horizontal CPA attack.
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Table 4: Security comparison of exponentiation algorithms
Left-to-Right Right-to-Left

Algorithm & Multiply Square Blinded Multiply Square
Attack -always -always method -always -always Improved

[4] [6] [5] [4] [6]
SPA [13] X O O X O O

Doubling [10] X X O X - -
Collision distance-based doubling - - - - X O

Chosen-message SPA [20] X X O X X O
SPA-based combined [2] X X X X - -

CPA-based combined - - - - X O
Note : O : Secure, X : Weak

4.2 Comparisons of Exponentiations

Table 4 provides a security comparison based on existing countermeasures against several side-channel
attacks. As mentioned earlier, atomicity-based multiply-always algorithms are proposed mainly to pre-
vent SPA attacks [4]. However, these algorithms are no longer secure because an attacker can distinguish
multiplications from squarings [1].

Therefore, square-always exponentiation algorithms [6] are presented to replace one multiplication
with two squarings in multiply-always versions. As pointed out in previous research, the left-to-right
square-always exponentiation algorithm can be insecure against doubling, chosen-message SPA, and
SPA-based combined attacks. If the message blinding technique is applied to this algorithm, then it can
defeat doubling and chosen-message SPA attacks. To resist a combined attack, some additive revision is
required for the left-to-right square-always algorithm. One solution to this problem is the intermediate
message update method, which is applied before all squaring operations of the improved right-to-left
square-always algorithm (Figure 4).

This paper points out that the right-to-left square algorithm is vulnerable to three new types of side-
channel power attacks: collision distance-based doubling attack, chosen-message SPA attack, and CPA-
based combined attack. Two of these attacks are variants of the original doubling attack and the SPA-
based combined attack. For high security, an additive message randomization method and a message
update technique before the main squaring operation are adopted. The improved version of the right-
to-left square-always algorithm is designed to thwart almost all side-channel attacks, including the DPA
attack.

In terms of computational efficiency, the square-always algorithms require an average of 2S per
exponent bit, which indicates an 11.1% theoretical speed-up over regular exponentiation methods such
as the Montgomery ladder and square-and-multiply-always algorithms. The main computation in the
improved algorithm (Figure 4) is the modular squaring in step 13. Nevertheless, the computational load
for computing the additive message update in step 12 is negligible in comparison to the main operation.

The number of modular squaring operations in step 13 is the same as that for the original right-to-left
square-always algorithm. However, squarings using the modulo number n2 in the improved algorithm
instead of n in the original right-to-left square-always algorithm can increase the level of complexity.
The additive message blinding method based on extending the modulo number to n2 is usually adopted
to prevent a DPA attack. Because the modular squaring operation for two n-bit integers takes O(n2)-
bit operations, the improved algorithm using the extended modulus requires more time (about ((1024+
32)/1024)2 ≈ 6.3%) than the original right-to-left square-always algorithm in the case of |k|= 1024.
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5 Conclusions

Since the introduction of side-channel attacks, there has been an increase in the number of malicious at-
tackers, including insiders with detailed knowledge of design information on the implementation of em-
bedded devices. The square-always exponentiation algorithm is presented as a countermeasure against
side-channel attacks aimed at distinguishing squarings from multiplications. This exponentiation algo-
rithm is faster than existing countermeasures such as the Montgomery ladder and square-and-multiply-
always algorithms.

This paper analyzes the vulnerability of the right-to-left square-always exponentiation algorithm with
respect to power analysis attacks. According to the results, this algorithm is vulnerable to the collision
distance-based doubling, the chosen-message SPA, and CPA-based combined attacks. In this regard, the
paper presents an improved version of the right-to-left square-always exponentiation algorithm based on
additive message blinding and an intermediate massage update technique. The improved exponentiation
algorithm is well suited for the implementation of a secure RSA cryptosystem in low-resource devices.
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