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Abstract

Malware variants could be defined as malware that have similar malcious behavior. In this paper, a
sequence alignment method, the method widely used in Bioinformatics, was used to detect malware
variants. This method can find the common parts of Malware’s API call sequences, and these com-
mon API call sequences can be used to detect similar behaviors of malware variants. However, when
a sequence alignment method is applied to compare the API call sequences, the performance depends
on lengths of API call sequences and if the lengths are too long, the performance would be very poor.
Therefore, in this paper, we devised a malware similarity calculation system to detect malware vari-
ants and suggested an improved process which can reduce sequence alignment overheads. Finally,
our proposed system was tested with two given malware families and it can be used to verify whether
the given malware variants have similar behaviors. Experimental results show that our method can
be leveraged in the malware detection system.
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1 Introduction

Since the first malware emerged in the Internet, the number of malware has increased rapidly[7, 14,
11]. One of important factors that increase the number of malware is structural transformation of the
malicious code that already exists. Most of malware writers develop zero-day malware for specific
malicious purpose and they transform malicious modules to avoid the malware detection systems, such as
anti-virus solutions. Therefore, malware variants have different structural static features like mnemonic
frequencies, control flow graphs and so on. This limitation implies that static analysis on malware cannot
handle newly generated malware variants properly, because most of static analysis systems use signatures
of already exsiting malware[16, 18, 10].

To overcome this kind of problems, we used dynamic analysis to classify the malware variants which
have similar behavior contexts[9, 8]. Although malware variants are different in static features but they
have common behaviors like file related activities, registry related activities, and so on. For this purpose,
our proposed malware similarity calculation system uses behavioral features to verify relations of two
malicious codes. API call sequences are used to represent the behavioral features of malware. The
reason why we choose API call sequences to calculate the similarity of two malware is that APIs are
basic interfaces to do some malicious activities in operating systems. A similarity calculation algorithm
that we use to capture the similar behaviors of two malicious code is a sequence alignment algorithm
which is widely used in the bioinformatics field. As simple sequence comparison methods like n-gram
based methods are not suitable to get accurate similarity results of API call sequences which are slightly
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noises, we utilized a sequence alignment algorithm. The sequence alignment algorithm provides an
alignment solution to match the maximum common sequence of two target sequences. Therefore, our
proposed method can handle sequences which have slightly different with noises by aligning the positions
of components in sequences. Although the sequence alignment algorithm is useful, its time complexity
is high. According to our experiments, the number of components of API call sequences exceeds to
ten millions in many cases and the long sequences cause high computational overheads to be processed
using a sequence alignment algorithm. To handle this problem, we devised a method to remove repeated
subsequences in the whole API call sequences.

Our proposed similarity calculation system consists of four components. Each component is per-
formed sequentially. The first component is the behavior monitor module which monitors the API call
sequences of two malicious binary files. The second component is the sequence refining module which
reduces the size of API call sequences. The third component is the sequence alignment module which
generates optimal alignment results which make the two aligned sequences have as many common sub-
sequences as possible. The fourth component is the final similarity calculation module. The module
computes the similarity based on subsequences that are matched in the two aligned API call sequences.

The rest of the paper is organized as follows: Section 2 discusses related work. Section 3 presents
sequence alignment as background, and describes the problem when it is applied in malware detection.
Section 4 presents the proposed similarity calculation system to detect malware variants and describes
modules which organized our framework in detail. Section 5 shows the experimental results which show
possibilities of malware variant detection with variant samples and the other evaluation results. Section
6 summarizes our research and provides the contributions, limitations, and future work of this ongoing
research.

2 Reltaed Works

There are some researches which are related with our works. Most of previous researches use API
features to define the malicious behaviors and devised their own comparison methods.

Natani et al. [12] proposed a method for the malware detection by using the API frequencies and
ensemble based classifiers. In the machine learning, the concept of ensemble is the approach that im-
prove the accuracy and stability of the machine learning algorithms using boosting or bagging. In their
paper, authors used multi-classifiers instead of a single classifier to analyze malware. They analyzed 100
malicious behaviors and choose 24 APIs used for that malicious behaviors. In addition, they measured
the APIs‘ frequencies using a sandbox tool. The frequencies of the APIs were defined as the ratio of the
number of invocations of certain APIs to the total invocations of APIs. These frequencies are used for
the analysis with ensemble based classifiers. Finally they measured the accuracy of the analysis.

Wagener et al. [17] extracted the behavior information of malware by observing that malware invokes
the system functions. The extracted information was the API invocation information of malware. Then,
they compared the malware’ API invocation information and calculated similarities among malware
variants. Their proposed method defined binary code for each API. The binary code was used to store
API invocation patterns of malware. For similarity calculation, they used an edit distance matrix, and
also used their own formular. Finally they calculated the similarities of malware variants.

Xu et al. [20] proposed the approach for the various malwares detection in the Windows platform.
They extracted the API call sequences by analyzing PE binary code and calculated the similarities of the
API sequences between the unknown malware and the known one. They implemented a PE binary parser
tool themselves, because the third-party disassemblers extract some unnecessary features of malware
samples and these unnecessary features made the performance of the analysis system very low. This tool
generates the API sequences of malware, and if the malware are known, the sequences were stored in a
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signature database system. Those sequences are compared with the API sequences of unknown malware,
then the similarity of the two sequences is calculated.

Liu Wu et al. [19] investigated techniques of malware behavior extraction based malicious API
invocation, and presented the formal Malware Behavior Feature (MBF) extraction method. This Malware
Behavior Feature was expressed in Boolean, and they proposed the malicious behavior feature based
malware detection algorithm. Finally, they designed and implemented the MBF based malware detection
system, and the experimental results showed that the accuracy rate of their MBF based detection system
is high and it can detect newly appeared unknown malware.

Martin Apel et al. [5] investigated distance metrics to detect polymorphic malware effectively. Dis-
tance metrics are different distance measures in detail and they discussed desirable properties of a dis-
tance measure. They focused on behavioral features of malware and compared and experimentally eval-
uated different distance measures for malware behaviors. They selected an appropriate distance measure
for grouping malware samples based on similar behaviors.

Some research had been conducted on file birthmarks using API invocation features, there are few
researches that relates to features of malicious code. But Mamoun Alazab et al. [3] presented an auto-
mated method to extract API invocation features from binary executable files and analyzed them in order
to understand their usages for malicious purpose. To address this gap, they attempted to automatically
analyze the API features and classified behaviors of APIs based on the malicious intents hidden within
any packed malicious files. They used the four-step methodology to develop a fully automated system to
categorize six main categories of suspicious behaviors of API invocation features.

These existing researches used the API related features to capture the malicious behaviors. However,
the existing researches mostly focused on how to define the malicious behaviors. They did not concen-
trate on elaborated comparison methods to generate more accurate similarity results. It is difficult to use
very complex algorithms to compare the API features, and an advanced similarity calculation method
is required to improve performance of the malware detection system. In this paper, we explain how to
apply the sequence alignment algorithm which makes similarity results more accurate.

3 Background: Sequence Alignment

Sequence Alignment is widely used in the bioinformatics field. In the bioinformatics field, DNA se-
quences or RNA sequences are targeted to be aligned by a certain sequence alignment algorithm.[13] It
is possible to find the similar or exactly same subsequences by aligning the DNA or RNA sequences.
A DNA sequence consists of four kinds of characters (A, G, C, T) and each character is defined as a
token. A sequence alignment algorithm relocates positions of tokens of each sequence in order to match
as many tokens as possible.

DNA sequences have always noisy tokens. Therefore, if two DNA sequences are slightly different
by some noisy tokens, it is necessary to arrange the sequences to reduce effects of noises. Sequence
alignment is essential to find the common patterns in two DNA sequences. API call sequences share
this aforementioned property of DNA sequences. API invocations in loops or some redundant API
invocations could be regarded as noises. Accordingly, sequence alignment is required to match API call
sequences. This is the reason why we selected a sequence alignment method to calculate the similarities
of API call sequences.

The Sequence Alignment algorithm carries out the following steps. Assume that there are strings a
and b and sizes of a and b are m and n respectively. s(a, b) is a similarity of a and b and H(i,j) is the
maximum similarity-score between a suffix of a[1:i] and a suffix of b[1:j] and W is the gap-score, and
matrix H can be defined as follows.
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H(i,0) = 0 ,0≤ i≤ m (1)

H(0, j) = 0 ,0≤ j ≤ n (2)

H(i, j) = max


0
H(i−1, j−1)+ s(ai,b j)
maxk≥1{H(i− k, j)+Wk}
maxl≥1{H(i− k, j)+Wk}

,1≤ i≤ m,1≤ j ≤ n (3)

The each element of matrix H has the maximum value in four cases and the value of an element
represents the similarity score, and the matrix H of which elements have these scores is used to find
out the optimal aligned sequences. Eventually, building a matrix H of given two sequences is the most
important process in sequence alignment and it takes most of computational resources.

There are two kinds of sequence alignment: local alignment and global alignment. Local alignment
allows arbitrary-length segments of each sequence to be aligned, with no penalty for the unaligned por-
tions of the sequences.[6, 4] Otherwise, closely related sequences with the same length are appropriate
for global alignment. Here, the alignment is carried out from the start of the sequence till the end of
the sequence to find out the best possible alignment. In this research, our method uses a local alignment
algorithm. The local alignment algorithm is more applicable rather than the global alignment algorithm,
because summation of local sequence similarities is more meaningful than the one global sequence sim-
ilarity.

3.1 Problem to Apply a Sequence Alignment Method

When two sequences are arranged by the local alignment algorithm, computation time depends on the
size of each sequence. If the lengths of API call sequences are very long, then sequence alignment time
would be extremely high. This could be a signigicant problem when the similarity calculation system
should analyze a large amount of malware variants. In order to confirm this problem again, we implement
the sequence alignment program and used it to measure the execution time. In our experiments, we
increased the length of two targeted sequence evenly and measured the execution time of each case.
Figure 1 shows the results of the experiments. As shown in Figure 1, the execution time increases
exponentially. This means that execution performance is affected by the lengths of two sequences and
the lengths should be minimized to reduce the execution time of malware similarity calculation.

Figure 1: Execution Time for Sequence Alignment
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The API call sequences include many repeated subsequences. The repeated subsequences occur
when APIs are invoked in a loop. The number of iterations could be different between API call sequences
of malware variants in the same family. Therefore, the repeated subsequences should be removed to make
the final similarities not to be affected by the number of iterations. In addition, the removal of repeated
subsequences also decreases the lengths of API call sequences. As a result, the overall execution time
for alignment could be reduced.

4 Malware Similarity Calculation Method

We developed the similarity calculation system that can be used to identify malware variants. The system
measures similarities with API call sequences of given malware samples. Figure 2 shows the overall
architecture and the processing flow of the system. The processing flow has four steps:

• Step 1. – The behavior monitor module executes two given malware and logs the API calling
sequences of them.

• Step 2. – The sequence refining module removes the repeated patterns in the API calling se-
quences.

• Step 3. – The sequence alignment module arranges the two API calling sequences.

• Step 4. – The final similarity result of aligned sequences is computed and reported.

Figure 2: The Overall Architecture of Similarity Calculation System

The details about overall steps are explained in the next subsections.
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4.1 The Behavior Monitoring Module

API’s main purpose is to define a set of functionalities which can be used to control the operation system.
Therefore, malware should use APIs in order to conduct various malicious behaviors. For example, if
malware wants to download and install additional files into a victim’s machine, it should use APIs that
are related with network activities and file creation activities like connect(), recv(), CreateFile() and so
on. Thus, our proposed system defines the behaviors of malicious code as a API call sequence and used
it to compute the behavior similarities of two given malware samples.

The behavior monitor module captures the API call sequences of given malware samples. This
module utilizes Cuckoo Sandbox which is an Open Source software to perform behavior monitoring[1].
We designed the behavior monitor module to log one hundred eighty two malicious APIs which are
defined in Cuckoo Sandbox. Table x represents the categories and each number of APIs which are
monitored. This behavior monitor module executes the given malware and logs the API call sequences.
The execution time of the malware is set to two minutes. We found out that two minutes are sufficient to
capture the malicious behavior by analyzing some malicious code manually.

4.2 The Sequence Refining Module

The sequence refining module’s purpose is to remove the repeated API subsequences in the whole API
calling sequence. This process makes the performance of next sequence alignment step faster by reducing
the lengths of sequences. A repeating pattern is defined as a subsequence which is repeated at least twice
in a whole sequence. For instance, assume that there is a string ”ACACACTA.” The repeating pattern
of this string is the ”AC” string, because the ”AC” string is repeated three times in a whole string. As a
result of refining process, redundant ”AC” strings are removed and ”ACACACTA” becomes ”ACTA”

The following pseudo code shows how the repeated pattern of sequence is removed.:

Function: remove repeatition in api seq()
Input : api sequence, max len repeatPattern
Output : refined api seq

seqIndex← 0;
while true do

if seqIndex = lenapi sequence then
break;

else
for i← 1 to max len repeatPattern do

if found repeat pattern = true then
break;

end
f ound repeat pattern← remove a pattern(api sequence, seqIndex, i);
seqIndex += i ;

end
end

end
Algorithm 1: Removal of Repeated Patterns in API Sequences
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Function: remove a pattern()
input : api sequence, seqIndex, len of pattern
output : found repeat pattern

pattern← api sequence[seqIndex : (seqIndex+ len o f pattern−1)];
while (temp← getNextSubSeq(pattern len)) != null do

if temp = pattern then
excludeSubseq(api sequence, temp);

else
break;

end
end

Algorithm 2: Removal of a Pattern

This sequence refining process can be a problem if it degrades the accuracy of similarity calculation.
By comparing the similarity results which the sequence refining process is applied and the similarity
results with the original sequences, we found out that this process makes no loss in the accuracy.

In some cases, the similarity results of the refined sequences were more accurate. In other words,
removing the repeating patterns in the given sequences results in performance enhancement with no
degradation of accuracy. Checking whether all of possible subsequences could be repeated is time-
consuming. Thus, when the sequence refining module removes the repeating patterns in a sequence, the
maximum length of the repeating pattern should be determined. we decided to check the sequence which
is less than or equal to length seven. This maximum length of target subsequence for repetition checking
is determined by an experimental evaluation.

Figure 3. shows the results of the experiments. we used three malicious samples which have many
repeating patterns. While the module increases the maximum length of the repeating pattern which
should be checked, the length of refined API call sequences is measured.

Figure 3: The Lengths of Refined Sequences
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In Figure 3, the x axis is the maximum length of repeating patterns and the y axis is the total length of
the refined API cal sequence. The total length of the refined API call sequence is reduced dramatically,
when the maximum length of the repeating pattern is set to 5. Additionally, when the maximum length
of the repeating pattern is set to 7, each refined API call sequence of three malicious samples is shortest.

4.3 The Sequence Alignment Module

After the sequence refining process is conducted, the refined API call sequences are arranged by the
sequence alignment algorithm. The sequence alignment algorithm in this module is Smith-Waterman
algorithm. The Smith-Waterman algorithm was first proposed by Temple F. Smith and Michael S. Wa-
terman in 1981 [15] and it is widely used in various fields. The aligned API call sequences can be similar
to the examples in Figure 4. The Smith-Waterman algorithm inserts the Gap into sequences to make
them aligned properly.

Figure 4: The Example of Sequence Alignment

4.4 The Similarity Calculation Module

If two refined API call sequences are arranged by the sequence alignment algorithm, the matched subse-
quence can be extracted from them. The similarity calculation equation is as follows:

Sim(A,B) =
∑

k
i=1 Li

(m+n)/2
,where m = length(A) & n = length(B) (4)

L is the length of the matched subsequences. m and n are the lengths of each refined API call sequence
respectively. The range of similarity is 0 to 1, and the bigger value means that the two sequences are
more similar.

5 Experiment

5.1 The Measurement of Similarities

We measured the similarities of the malicious code using the proposed system to detect the malware
variants. We collected malware samples from VXheaven[2]. We used one hundred fifty malware samples
from ten malware families. Each malware family has fifteen malware variants. The similarity results are
shown in Figure 5. In Figure 5, the x axis means the name of each malware families and the y axis means
the average similarity values. The black bar represents the average of the similarities among malware
samples in the same family and the gray bar represents the average of the similarities between malware
samples from different families. Most of similarities of samples from the same malware family are higher
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Table 1: Performance Time

Calculation time without Calculation time with Reduced
sequence refinement(ms) sequence refinement(ms) time(%)

Dadobra.am vs Dialer.ap 81169.4 450.445 99%
Dadobra.am vs Banload.aaa 150010 2375.75 98%
Dadobra.am vs .Dadobra.af 30384.5 303.324 99%

Dialer.ap vs Banload.aaa 54962.9 2499.52 95%
Dialer.ap vs Dadobra.af 9736.45 320.248 97%

Banload.aaa vs Dadobra.af 26098.3 2362.08 91%

than those from different malware families. Therefore, The results show the larger difference between
the similarities of samples in the same family and those from different families. This means that our
method can effectively distinguish malware samples in the same family.

Figure 5: The Malware Similiarity Result

5.2 The Measurement of Overall Processing Time

We had experiments to prove our performance improvement. First, we measured the similarity calcula-
tion time when the sequence refinement is not applied. Secondly, we measured the similarity calculation
time when the sequence refinement is applied. We used four malicious samples in these experiments and
the results are shown in Table 1. The similarity calculation with sequence refinement results has better
performance. The ratio of reduced time is in the range from 91% to 99%.

6 Conclusion

In this paper, we proposed a similarity calculation system which can be used to detect malware variants
of the same family. The system consists of four processes. The behavior monitor module has a role to
capture the API call sequences of input malicious files and the sequence refining module removes the
repeating patterns in the API call sequences to reduce the total length of it. The sequence alignment
module aligns the sequences and finds the matched sequences from two given API call sequences. The
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similarity calculation module computes final similarities. In the refining process, especially, we sug-
gested that repeating patterns should be removed in order to improve the performance of the alignment
process. As a result, alignment processing time could be reduced dramatically. To verify whether the
system could be used to detect the malware variants, we have a similarity calculation experiments and it
confirms that our proposed system can be used to distinguish the malware variants of the same family.

The followings are the limitations and future work. We will improve the sequence alignment algo-
rithm to enhance its performance further. Although our method to reduce the lengths of input sequences
is proposed in this paper, an algorithmic solution is basically needed. We will experiment with the large
number of malicious samples to test our proposed system in detail.
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