Multiple Device Login Attacks and
Countermeasures of Mobile VoIP Apps on Android

Su Wan Park and Jeong Hyun Yi*
School of Compuer Science and Engineering, Soongsil University
Seoul, 156-743, Korea
{skyhwen, jhyi} @ssu.ac.kr

Abstract

Because Android apps are structurally easy to decompile, attackers may, using reverse engineering,
modify the source code or inject some code of his choice. If a mobile messenger app were to be
attacked in the same nature, the attacker can bypass the authentication mechanism applied on the app
to not only view past conversations and Time line records of a particular user but to also receive and
view real time conversations. In addition, there are widespread attacks on the apps’ weak points de-
pending on the app such as wiretapping VoIP and other voice messages or illegally use of pay items.
Therefore, in this paper, we analyze the security weak points of app A and app B, two representative
Android message apps, and propose effective solutions.

Keywords: android, repackaging, multi device login, voip
1 Introduction

With the sudden widespread penetration of the Smartphone, messenger apps quickly replaced the role of
SMS (Short Message Services). These apps, by not only providing simple message sending services but
also sending media contents, audio files, and contacts, has established themselves as another platform to
generate and reinforce social networks. The prime messenger app A and app B, as of December 2013,
have over few hundred millions users.

But despite this importance, messenger apps are vulnerable to various attack, and only few has im-
plemented mitigation to defend it. In this paper, we analyze the app A and app B which are protected in
part by security techniques to show that bypassing of current protective mechanisms is possible and, ul-
timately, that tapping into others’ conversations and leaking of personal information using multi log-ins
from two different devices is possible. Furthermore, we propose countermeasures to supplement these
weaknesses.

This paper is organized as follows. In section [2, we delineate relevant research to the topic. Section
explains security attacks to app A and app B while Section [4]looks into the results of the experiment
where we carried out such security attacks. In section [5| we propose countermeasures to remedy the
apps’ vulnerabilities and, finally, in section[6] we make our conclusion.

2 Related Work

Due to the structural characteristics of Java code and self-signing, repackaging Android apps is an easy
task [8]] [9]. Furthermore, bypassing the protective mechanisms within the app is feasible if an attacker

Journal of Internet Services and Information Security (JISIS), volume: 4, number: 4 (November 2014), pp. 115
*Corresponding author: 369 Sangdo-ro, Dongjak-gu, Soongsil University, Information Science Bldg. 409, Seoul 156-743,
Korea, Tel: +82-2-821-0914, Web: http://msec.ssu.ac.kr/

115

http://msec.ssu.ac.kr/

Multiple Device Login Attacks of application on Android Park and Yi

pinpoints the location of the code, while detecting the code location is uncomplicated. That is, if an
attacker only determines the location of the protective mechanism routine of typical apps, one can ma-
nipulate the control flow through repackaging attack. The attacker can bypass the entire tamper detection
part and also insert any faked value into the appropriate parameter.

Engineering Reverse Engineering
(Developer) : (Attacker)
.apk
N
=) w)l
Compile

Encoded
.xml files

Encoded
.xml files

Encoded - - " --------------------------- Encoded
Manifest : Manifest

assembly
code

Resources Resources

@ Compile :

‘ Developer's SSgn?ure 1 -.- ______ *- _________ | Signature
rivate ke (Developer) 4 T (Attacker)
2 4 Signing ¢ Can't Signing

extract

2

Figure 1: Overview of Android repackaging attack

As shown in Figure [T} the attacker may, using baksmali and disassembler like IDA [5], easily
identify the control flow of the source code and, using this information, may inject code into whatever
desired location. Because extracting anything from a signed file being impossible, the attacker lastly
assembles a new APK and signs it with a personal private key before proceeding to either personally use
or even distribute the new APK.

3 Security Analysis

Table [T| shows the different security techniques applied to the major mobile messenger apps. Note that
we analyze the latest version of app at that time. The results of reverse engineering on nine major apps,
showed that the app A was the only one with a tamper detection feature and app A and app B were
the two that checked if a previously authenticated device is the current device in use, disallowing multi-
logins.

Before we describe couple of attack vectors, need to address about analytical method. As said above,
arbitrary code can be inserted to application. Main obstacle is how to find the code area we want to
modify. To solve this our analysis framework, which put particular code alerting monitoring tool to first
and end point of every function in appointed module, is used. So, we can build call graph of target app,
and furthermore specific code location is able to be found by combining with string information. Detail
methods using the obtained data will be introduced in each subsection.

116

Multiple Device Login Attacks of application on Android Park and Yi

app A app B Others

Obfuscation O O 0]
Tamper detection (0] X X
Device authentication O O X

Table 1: Security techniques applied to each app

3.1 Multi Device Login

This attack needs the victim’s credential files which is stored on the path:/data/data/appname, because
application save the chat and connection information to those. Using repackaged or 3rd party app, extract
the file, and put the data to the device of the attacker. Almost of messenger, don’t apply any security
techniques to protect from this attack, but app A and app B implement some functions. To bypass them,
we perform the several thing as follows.

3.1.1 Bypassing Tamper Detection

We will begin by talking about the app A. The app A puts relatively much consideration into security
with very minimal empty space in its log and providing a tamper detection feature. However, once
we decompile the app and search the string, one can see that there exist functions that leave a log and
that the functions that have, as one of theirs parameters, a string that appears as log is invoked. To
analyze this part, after causing all logs to be outputted, we used the collected information to custom
build a tamper detection section. This is made possible if afterwards one creates a section that checks
whether the authentication information within the file aligns with the current device information after
one manipulates the return value and bypasses the area in concern while adding its credential into the
app folder. Figure [2| shows how to bypass the tamper detection methods for app A.

{ [@ #@=ss B globalapplication]7

Check signature hash of APK insert code to return true
invoke-static {1}, feluie Ralnme ha i/ /util/
cr;->kly ()2 .method kly ()2
move-result v0 const-v/4 v0,1
return v0
B if-nez v0, :cond 5 .end method

i if forged APK

. .line 254
sget-boolean vO0, sl el e B/ k1y/jnc;
APK

if-eqz v0, :cond 3

.line 262
L+ :cond 5

Figure 2: Bypassing app A tamper detection
For the app A app, while the kly function of the util/cr class executes tamper detection, if one inserts

a code to ensure that this function returns only the true value, one can easily manipulate app A to run
like a typical app.

117

Multiple Device Login Attacks of application on Android Park and Yi

It is not with just these two methods that one can bypass detection. The majority of functions that
inspect particular sections are in the form shown in below.

boolean ChecklIntegrity(){ ... }

Although the function is structurally problem-free, the function will only return either a true or false
return value despite how complicated the internal logic. Due to this, the attacker only needs to find the
location of the function using string or log and can disregard the complicated internal calculations to
bypass detection without difficulty.

3.1.2 Bypassing Device Authentication

Likewise, bypassing the authentication is possible using a similar method. But, mechanism of app B is
slightly different with app A. For this app, the device ID is used in decrypting data so a specific value
must be inserted.

Figure3|shows tampering to enable normal data decryption and duplicate access when one the device
ID of the login device is inserted even if the actual device in use differs.

Decrypt databases using device id

virtual methods
.method public final a(J) [B
const-string vl, "android_ id"

invoke-static {v0, v1}, Landroid/
provider/Settings$Secure; -
>getString (Landroid/content/
ContentResolver;Ljava/lang/String;)Ljava/
lang/String;

move-result-object v0
const-string v0, "9b363ac21b566fc2" [IINEIgREI(elqe[\I-Re]

return-object vO0
.end method

Figure 3: Modifying decryption routine on the app B

118

Multiple Device Login Attacks of application on Android Park and Yi

3.2 Bypassing Item Payment

Using above method, Figure 4| shows the method for bypassing the section that checks whether the item
is paid for or not. The app features can also be manipulated just as easily.

«[el esdss s model.jnc.tny

Check whether pay item or not insert code to return
empty string

invoke-static {v5, v6}, [l laslas
Lalk/model/jnc/tny;->dck (Landroid/content/
pm/PackageManager;Landroid/content/pm/ .method dck(..)L
PermissionInfo;)Ljava/lang/String; | ..
const-string vO,""
move-result-object v5 return v0

— .end method
invoke-static {v5}, Lkly/dck/dck/kly/
nck;->jnc (Ljava/lang/CharSequence;) 2

move-result v0

if free item if-nez v0, :cond de
$ [t pay item |
new-instance vO0, - = /model/
jnc;

>
.line 27
:cond_de

Figure 4: Bypassing item payment checking for app A

3.3 VoIP Hooking

Next, let us examine VoIP hooking. Interestingly, the VoIP module does not exist on the smali code level
but is located at .so library. Although the fact that one must deal with assembly code instead of smali
poses some difficulty, modifying the library is by no means impossible. In fact, because the native code
in .so library is executed internally inside Dalvik VM [2] rather than externally, dynamic debugging,
which makes following the flow of code and memory, becomes easier using the tools like gdb [3] in
android ndk [6] and IDA [5].

Because app A encrypts the moment it connects to VoIP, to gain an audio buffer that can play
back, app A must hook with a function that uses the corresponding memory address of the particular
function as a factor. Although there are multiple possible hooking points, the play or record functions,
as functions provided by Android, are easy to pry into. Because the register value can change during
function execution, hooking occurs immediately before the play function or immediately after the record
function. Instead of executing the original code for the function, this will execute the code that diverges
the function containing the desired assembly. The corresponding custom function must, immediately
before and after executing its code, return to standard routine after summoning the originally called upon
function while, also, save and restore the registers. Furthermore, because VoIP executes the receiving
and transmitting sections separately, it is in need of a process that corresponds to both functions. For the
text section, because it lacked space to inject code, we created and summoned a new section. Figure[5]
shown below, explains the aforementioned VoIP hooking process.

Insert the modified library file into APK file or replace original file which is stored data path. Or
this can be performed in different way like binder hook or memory hacking from 3rd party app. If
app updates library file using insecure connection, this attack will be implemented more smoothly by
performing MITM attack.

119

Multiple Device Login Attacks of application on Android Park and Yi

, play part
[]
1 1 - .
recv() : STMFD SP!, {RO-R12,LR} Save the registers
I
1 BL save_recv_data Call custom function
H A =,
' 1 —
\ 1 LDMFD SP!, {RO-R12} Load the registers
decrypt() ' —
: BL play() Call original function
—
Y H LDMFD SP!, {EC} Return to original routine
hooking() ! T
playd) H
1
i
1
| record part
1
: BL record() Call original function
1 ||
1
| STMFD SP!, {RO-R12,LR} Save the registers
1
\ —
hooking2() . BL save_send data Call custom function
1 —
I
1 LDMFD SP!, {RO-R12} Load the registers
H —
: LDMFD SP!, {PC} Return to original routine
: I
I
i
v i
1
send() '
I
|
.text section .hook section

Figure 5: VoIP hooking mechanism

4 Experimental Results

After bypassing tamper detection and the device authentication, one can use the credential files of a
different user to allow multi-device login. If the multi-login is successful, the hacker is able to not only
view the past user’s conversation records and list of friends as shown in Figure[6|below but can also send
or receive messages in real time.

We confirmed this attack is possible not only app A and app B implementing security mechanism,
but also the others. Of course, the latter apps are no trouble to do, because they don’t have to repackage
for control flow modification, and just need information files of victim device. Even some programs
allow other applications to access their own data file. It makes remote attack using 3rd party app possible
in non root device.X

120

Multiple Device Login Attacks of application on Android Park and Yi

SIQAlBOAR 11 ‘ﬁulll.!. 284125 oich@ OB 11 Al e 01
e =

L e q

14
M1 Lt YOI B Efo)EIE

Figure 6: Result from multi-device login with repackaging

The attackers can have unauthorized use of existing pay items, as shown in Figure[7 if one bypasses
the tamper detection and pay item inspection routine. In addition, the exposed control flow reveals the
URL from which one can directly download pay items and the file containing authentication information,
allowing downloading and even free distribution of pay items.

olleh 'O =il 2% @ 2% 4:20 | olleh ['O, Zaill 42% @ 2% 4:20

[H=TLIPSES] =

i Lijoo| & o

|2E|Z2 Ef|of

- g3t
*’W A8Its

e
J‘,"p.)‘.’ Cafe E|Of
N =

IRES =
— e %
G| MIE(R| Pt };”J
S v)l R N

SO 17 4.0.0

.

: J =317
3 2
A

SELIEY
H7 4.0.0

ofojgA E0] 77|

Figure 7: Unauthorized use of pay items for app A

121

Multiple Device Login Attacks of application on Android Park and Yi

When such code injection is applied to VoIP, an attacker is able to record, save, and send the contents
of a different user’s conversation. Figure[8] shown below, explains this process.

4‘ VolP ||

Record voice
Userl I and send to the attacker User2
Forged app installed
|

Attacker

X voice tak_ v 1.0
ZHIE 2, 8000Hz|
2HE E2E | 05

s =2
5 7 0.4}‘«}—*—%—‘—%—0—-—%
Q

‘ R |05
0

Figure 8: VoIP hooking results

5 Countermeasures

The tamper detection feature, device authentication, and other such features on the app A or app B are
easily bypassed. To supplement for these weak points, the following countermeasures can be considered.

5.1 Code Integrity Check

First, there is the server-based integrity checking method. Most commonly used for integrity checking
is the hash authentication method in the signature. The hash value is useful in verifying the integrity of
falsified areas of a code that an attacker has repackaged. However, if this routine exists within the app’s
internals, the attacker can also tamper with this method as well, making this method insecure. For this
reason, we must send this signature value using the server without having the client internals verify the
signature. Because the transmission value may be exposed, SSL communications must fundamentally be
used and to prevent attacks through memory dump, the memory area containing the hash string should
be immediately deallocated.

The second method is providing necessary information to the registered client only if initial verifica-
tion was successful. Currently, most apps use the method of running the integrity checking routine only

122

Multiple Device Login Attacks of application on Android Park and Yi

once and allowing the app to run normally if the return value from the checking is correct. This method
is very vulnerable to reverse engineering and leaves an identification flag within the server. It is only
good to use this information sending method only when this flag is normal. If one uses this method, even
if an attacker were to repackage the app to make it appear as a normal app, one cannot gain information
from the server. Figure[9]shows the two proposed method used together.

4‘ Clients I[
’ User1 ’ User1

¢ o

- Registerd
device

A

Attacker
trying to pretend
User1

\

- Unegisterd Unregisterd

device device

A / Wl Send data to check integrity
and device id

AUTH_EXPIRED VERIFY_FAILED

VERIFY_SUCCESS
& Requifed info

—‘ Server
\/ \ \

if hash(recv_data.sign) != 0x12345678 ey
[return VERIFY FAILED Check verification of app

if get_stored device id(Userl) != recv_data.device_id Check device id with stored
return AUTH_EXPIRED

[send_required_info() Send required information

Figure 9: Server based integrity checking mechanism

For this to happen on an actual server, more elaborate verification must take place. We must keep in
mind that because VoIP along with the library file could be falsified, simply using a signature value test
does not suffice.

5.2 Dynamic Code Injection

Because repackaging attacks occur statically, use of the dynamic code injection method hides the control
flow and makes code modification more difficult. The method of injecting code after receiving, through
communication with the server, the code to be rewritten minimizes the section made vulnerable to at-
tackers. If one injects only a part of the contents of the function that executes the authentication process,
executes that code, and then overwrites it back to the original code, attackers will have difficulty identi-
fying the code using static analysis. Figure[TI0|gives a rough outline of the mechanisms of code injection.

123

Multiple Device Login Attacks of application on Android Park and Yi

_I Clients

Before During After
integrity check integrity check integrity check
aaa () aaa() aaa()

{ { {

call bbb(); call bbb(); call bbb();
| _ 2 » |
bbb () bbb () bbb ()
{ { {

ccc; ddd; ccc;
} } }

LA

Request cod Send code : ddd

Server

Figure 10: Dynamic code injection mechanism

5.3 Code Obfuscation

Many apps currently do not use obfuscation and, even if they do, they use the Android provided Proguard
[7]. As much as Proguard is provided for free, there are many known methods of bypassing and the level
of security is very low. As a result, applying the more highly secure obfuscation technique is good for
hiding the API name, function name, and variable identifier. As the location of the security mechanism
routine can be easily inferred through the log or string variable, it is important to encode the string
variable and discard the log.

5.4 Code Attestation

Although obfuscation can run an analysis — with some difficulties due to the attacker — using the
protective mechanism of the application layer with static code protection techniques, when running the
app, it is difficult to protect the code. Supplementing this, to dynamically protect the code during the
app runtime, code attestation technology that uses protective hardware such as TEE (Trusted Execution
Environment) [4] as the trusted point is needed. Using this, not only protecting the smartphone platform
but, by verifying the presence of tamper in the app, a more reliable protective service can be provided.

6 Conclusion

Until now, we have investigated how easily repackaging attacks on Android can occur. Although app
repackaging attacks can happen on all types of apps, the experiment confirmed that if such attack occurs

124

Multiple Device Login Attacks of application on Android Park and Yi

on a mobile messenger app, security vulnerabilities such as exposure of real time messages using multi
login, free use of pay items, wiretapping of VoIP, etc. may arise.

Because the concerns discussed in this paper can occur by simply installing an app even on devices
that cannot be rooted, we recommend that all apps be downloaded and installed from the standard market.
Also, even if a device has been rooted, one must always be mindful because, during the installation of a
different app, the switching of the library file or a leak of the credential files of an unrelated package can
occur.

For app developers, applying security methods such as code injection, code obfuscation, code attes-
tation will prevent exposing the control flow, and continuous inspection of the integrity of the app will
minimize repackaging attacks.

Acknowledgements

This research was supported in part by Global Research Laboratory (GRL) program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-
2014K1A1A2043029), and in part by the National Research Foundation of Korea (NRF) grant funded
by the Ministry of Education (NRF-2013R1A1A2013041).

References

1] Baksmali. https://code.google.com/p/smali/.

2] Dalvik vm. https://source.android.com/devices/tech/dalvik/index.html,

3] gdb. http://www.gnu.org/software/gdb/.

4] Global platform device specifications. http://www.globalplatform.org/specificationsdevice.
asp.

5] Ida pro. https://www.hex-rays.com/products/ida/|

6] ndk. https://developer.android.com/tools/sdk/ndk/index.html.

7] Proguard. http://proguard.sourceforge.net,

8] J. H. Jung, J. Y. Kim, H. C. Lee, and J. H. Yi. Repackaging attack on android banking applications and its
countermeasures. Wireless Personal Communication, 73(1):342-351, June 2013.

[9] Arxan Technologies. State of security in the app economy: Mobile apps under attack, 2013. https://www.

arxan.com/assets/1/7/State_of_Security_in_the_App_Economy_Report_Vol._2.pdfl

125

https://code.google.com/p/smali/
https://source.android.com/devices/tech/ dalvik/index.html
http://www.gnu.org/software/gdb/
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
https://www.hex-rays.com/products/ida/
https://developer.android.com/tools/sdk/ndk/index.html
http://proguard.sourceforge.net
https://www.arxan.com/assets/1/7/State_of_Security_in_the_App_Economy_Report_Vol._2.pdf
https://www.arxan.com/assets/1/7/State_of_Security_in_the_App_Economy_Report_Vol._2.pdf

Multiple Device Login Attacks of application on Android Park and Yi

Author Biography

Su wan Park received his B.S. degrees in Computer Science from Soongsil Univer-
sity, Seoul, Korea in 2013. He is a M.S student in the Graduate School of Information
Security at KAIST. His research interests include mobile application and platform
; security.

Jeong Hyun Yi is an Assistant Professor in the School of Computer Science and
Engineering at Soongsil University, Seoul, Korea. He received the B.S. and M.S. de-
grees in computer science from Soongsil University, Seoul, Korea, in 1993 and 1995,
respectively, and the Ph.D. degree in information and computer science from the Uni-
versity of California, Irvine, in 2005. He was a Principal Researcher at Samsung Ad-
vanced Institute of Technology, Korea, from 2005 to 2008, and a member of research
staff at Electronics and Telecommunications Research Institute (ETRI), Korea, from
1995 to 2001. Between 2000 and 2001, he was a guest researcher at National Institute of Standards and
Technology (NIST), Maryland, U.S. His research interests include mobile security and privacy, network
security, cloud computing security, and applied cryptography. Some of his notable research contributions
include Certificate Management Protocol (CMP) for Korean PKI Standards and integration of Korea PKI
and U.S. Federal PKI.

126

	Introduction
	Related Work
	Security Analysis
	Multi Device Login
	Bypassing Tamper Detection
	Bypassing Device Authentication

	Bypassing Item Payment
	VoIP Hooking

	Experimental Results
	Countermeasures
	Code Integrity Check
	Dynamic Code Injection
	Code Obfuscation
	Code Attestation

	Conclusion

