
IMCReo: interactive Markov chains for Stochastic Reo

Nuno Oliveira1∗, Alexandra Silva2, and Luı́s S. Barbosa1

1HASLab INESC TEC, Universidade do Minho, Braga, Portugal
{nuno.s.oliveira, luis.s.barbosa}@insectec.pt

2Centrum Wiskunde & Informatica, Radboud University Nijmegen, Nijmegen, the Netherlands
alexandra@cs.ru.nl

Abstract

The study of composed software and its properties is in itself a great challenge. Bringing quantitative
aspects into the picture increases the complexity of the analysis and entails the need for reconciling
both the classical and the stochastic analyses. The quest herein is to provide constructs for com-
position of building blocks and semantic models thereof which enable both analyses and allow for
modeling and verification. Stochastic Reo offers constructs for component and service coordina-
tion and provides means for specification of stochastic values for software connectors. Interactive
Markov chains (IMC) on the other hand, are a stochastic, compositional, extension of classical mod-
els of concurrency, integrating classical and stochastic aspects. This paper discusses how IMC can
be effectively used as a compositional semantic model for Stochastic Reo, avoiding to resort to
a separate automaton model, often lacking full compositionality, as intermediate semantics. A tool
chain integrating available tool support for IMC, is described and applied in the analysis of a case
study dealing with performance and resource allocation of a mediation system.

Keywords: Interactive Markov chains, Stochastic analysis, Coordination, Reo

1 Introduction

The development of complex, software intensive systems within the service-oriented paradigm proceeds
by interconnecting independent loci of computation, often running in different physical locations and
provided by different organisations, according to specific protocols which constraint their mutual inter-
action to achieve a common goal. Such a glue code layer is typically abstracted into a coordination model
which plays a major role in the specification and analysis of composed software.

Reo [2] is one such model in which exogenous coordination of autonomous services/components is
achieved through different types of software connectors built themselves in a compositional way from a
set of primitive channels. Its stochastic extension — known as Stochastic Reo [36] — allows for the
annotation of channels with stochastic values that model the rates of arrival of requests to their borders
and the corresponding processing delays.

Introducing stochastic behaviour in a coordination model makes possible to reason rigorously about
quality of service (QoS) aspects of composed software. Quantitative analysis grew increasingly popular
as service-orientation became the de facto paradigm for highly-dependable software systems, where per-
formance and resource usage emerge as essential non-functional requirements. If the study of composed
software and its properties is in itself a great challenge, with QoS aspects also in play the complexity of
the analysis increases and it is a challenge to reconcile both the classical and the stochastic analyses.The
quest herein is to provide constructs for composition of building blocks and semantic models thereof
which enable both analyses and allow for modelling and verification.

Journal of Internet Services and Information Security (JISIS), volume: 5, number: 1 (February 2015), pp. 3-28
∗Corresponding author: Departamento do Informatica, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Por-

tugal, Tel: +351-253-604-470, Web: http://alfa.di.uminho.pt/~nunooliveira

3

http://alfa.di.uminho.pt/~nunooliveira

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

Interactive Markov chains (IMCs) were proposed in [24] as a stochastic, compositional, extension
of classical models of concurrency, in which the classical and stochastic features are treated in an har-
monious manner. Furthermore, the model has extensive tool support for analysis and model checking,
CADP [21] and IMCA [22] being popular examples. It is therefore reasonable to discuss to what extent
IMCs can be effectively used to serve as semantic model for Stochastic Reo.

The paper extends our previous work along this path, documented in [39]. The basic idea is that
treating IMCs as a first-call citizen model, instead of using a separate automaton model as intermediate
semantics, gives rise to more faithful models and has the obvious efficiency advantages. Moreover,
and crucial in reasoning about composed systems, it avoids the lack of full compositionality present in
some automata models. Finally, this enables, without significant effort, the use of typical IMC tools and
associated techniques to reason about qualitative and quantitative aspects of Stochastic Reo models.

Contributions. This work provides a detailed account of this research programme, extending our ACM
SAC’2014 (SOAP track) paper [39] as follows:

• results concerning compositionality are extended to behavioural equivalence and substitutability,

• all proofs are included and extra details developed within the examples,

• tool support, as well as more detailed techniques of analysis, are discussed,

• the formal framework is applied to a new case study.

Outline. The paper is organised as follows. Section 2 recalls the basic definitions of IMC and stochastic
Reo. The IMCReo framework is introduced in detail in Section 3. Section 4 characterises composition
operators for IMCReo and investigates their properties. A tool chain for analysis of Stochastic Reo

connectors in this setting, along with a description of its application to (a fragment of) a case study is
presented in Section 5. Finally, related work and future research directions are discussed in Sections 6
and 7, respectively.

2 Background

This section recalls, for future reference, basic definitions and results on interactive Markov chains (IMC),
the coordination language Reo, and its stochastic variant.

2.1 Reo and Stochastic Reo

Reo [5, 1, 2] is a channel-based model for exogenous coordination. A channel is a normally directed,
communication device with exactly two ends: a source and a sink end; but Reo also accepts undirected
channels (i.e., channels with two ends of the same sort). A channel is synchronous when it delays the
operations at each of its ends so that they can succeed simultaneously. Otherwise it is classified as asyn-
chronous, exhibiting memory capabilities or the possibility of specifying an ordering policy for content
delivering. Moreover, it may also be lossy when it delivers some values but loses others depending on a
specified policy. Figure 1 depicts the basic channels used in Reo.

sync lossy syncdrain fifoe

•
fifof

Figure 1: Primitive Reo channels.

4

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

The sync channel transmits data from one end to another whenever a request is simultaneously
present at both of them, otherwise one request has to wait for the other. The lossy channel behaves
likewise, but data may be lost whenever a request at the source end is not matched by another one at the
sink end. Differently, a fifo channel has buffering capacity of (usually) one memory position, therefore
allowing for asynchronous occurrence of input/output (I/O) requests. The qualifiers e or f refer to the
channel internal state (either empty or full). Finally, the syncdrain channel accepts data synchronously at
both ends and loses it.

Channels are combined by plugging their ends to define more complex coordination structures — all
of them referred to as software connectors. A node may be of three distinct types: (i) source node, if it
connects only source channel ends, (ii) sink node, if it connects only sink channel ends and (iii) mixed
node, if it connects both. Source and sink nodes constitute the connector ports. Three typical connectors
are depicted in Figure 2.

a

b

c
j

replicator

a

b

c
j

merger

a

b

c

l

m

j
k

router

Figure 2: Some Reo connectors.

The replicator copies data flowing from port a to ports b and c, in parallel, through the mixed node j.
This behaviour, which is synchronous, only holds when there are pending requests in all the connector
ports. Dually, the merger merges data coming from ports a and b to port c, through j. Data merging
is synchronous but only on two ends at each time: either on a and c or on b and c. This means that
node j performs a non-deterministic choice whenever all all boundary ports have pending requests, thus
preventing the firing of one of the input ports. The router connector, usually depicted as , is a mutual
exclusive router of data, taking data from input port a into either b or c, depending on the existence of
pending requests. When there are pending requests in both output ports, k chooses non-deterministically
which of group of ports will synchronously fire: either a and b or a and c.

Some connectors exhibit context-dependent behaviour. The lossy channel is a typical example:
whether it loses data or not depends exclusively on the environment issuing or not I/O requests at its
boundary nodes. The router is another interesting case of a connector with both context-dependent and
non-deterministic behaviour. Actually, context-dependency is a desired characteristic of some Reo chan-
nels, and as such, required to be correctly captured by any Reo semantic model.

Stochastic Reo [3, 36] extends Reo by adding non-negative real (stochastic) values to both chan-
nels and their ends to represent, respectively, processing delays and I/O arrival rates. The former models
the time needed for the channel to internally process/conduct data from one point to another. A point in
this context is either a channel end, a buffer or a null space where data is lost or automatically produced.
One channel may be annotated with more than one processing delay, depending on their operational be-
haviour. On the other hand, I/O arrival rates model the time between consecutive arrivals to a channel
end of environment-issued I/O requests. Figure 3 shows the basic channels of stochastic Reo, repre-
sented as normal Reo channels, but annotated with stochastic values.

Stochastic Reo is still compositional. Each composed channel retains its processing delay stochastic
value. The request arrival rates, however, are only preserved at the boundary nodes of the connector.
Once mixed nodes are internal (hidden from the exterior) the arrival request rates associated to the in-

5

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

γab

γbγa

sync

γab

γaL γbγa

lossy

γab

γbγa

syncdrain

γaB γBb

γbγa

fifoe

γab

γaLγa

γbB γBc

γc

lossyfifo

Figure 3: Primitive stochastic Reo channels.

cident channel ends are ignored (c.f., lossyfifo connector in Figure 3), meaning that these nodes are
always ready to read/write data from/to the channels, a behaviour popularised by the metaphor of a
self-contained pumping station, firstly mentioned in [3].

2.2 Interactive Markov chains

Interactive Markov Chains (IMC) [24, 25] were initially proposed as a model for performance evaluation
of distributed systems, combining continuous-time Markov chains (CTMC) [9, 6] and process algebra [7].

Therefore, an IMC evolves through tow kinds of transitions: interactive and Markovian. Interactive
transitions capture the system’s interaction with the environment through actions, as in process algebra.
Their occurrence is assumed to be atomic (i.e., with no duration), since they are externally triggered.
τ-transitions are a special case, representing internal (unobservable) activities. They are assumed to
take place immediately, since no interaction with the environment is required. Markovian transitions,
on the other hand, model a random delay in the system’s evolution governed by a negative exponential
distribution with a parameter γ ∈ R+. The introduction of this second type of transitions smoothly
extends classical labelled transition systems, bringing into scene continuous time and specifying the
delay probability for a state to change. Formally,

Definition 1. An IMC is a tuple I = (S,Act, , ,s), where S is a nonempty set of states; Act is a set
of actions; ⊆ S×Act×S is the interactive transition relation; ⊆ S×R+×S is the Markovian
transition relation; and s ∈ S is the initial state.

A Markovian transition s
γ

s′ abstracts a move from state s to state s′ with probability 1− e−γ.t ,
where t is the amount of time units within which the transition must occur. Interactive transitions (s,a,s′)
are denoted as s a s′ and represent a change in the system from state s to state s′ through an external
(single) action a that may be executed either immediately or blocked until the environment triggers
it. Internal (interactive) transitions — τ-transitions — play an important role on an IMC. Since they
do not interact with the environment, they are not delayed. Therefore, if an internal and a Markovian
transition share the same source state, the internal transition will be fired before the Markovian, because
the probability of the latter executing within 0 time units is always null: 1− e−γ.0 = 1− e0 = 1−1 = 0.
This fact is known as the maximal progress assumption and, in practice, has the effect of reducing the
IMC size, by restricting both its state space and the number of transitions. Notice, however, that this only
concerns Markovian transitions; interactive transitions may as well execute immediately. For further
reference, states with outgoing τ-transitions are classified as unstable (stable, otherwise).

6

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

3 Interactive Markov chains for Stochastic Reo

This section introduces a semantic model for Stochastic Reo based on interactive Markov chains. In
order to capture the behaviour of Reo, the underlying state space, as well as the labels used in interactive
transitions, are suitably structured. Composition builds on the usual parallel composition for IMC, but
discharging, through a synchronisation operator, all transitions which are not compliant with Reo opera-
tional semantics. This two-step composition is very much in the same spirit as the one defined for Reo
automata [16].

Before introducing our proposal of an IMC model for stochastic Reo, referred to as IMCReo in the
sequel, some remarks on what a transition and a state represent in this context are in order to build up
intuition.

As expected, states capture the possible behaviour of a connector, i.e., data arrivals and data flowing
through ports. A set of node/port names, N , and a set of internal state names, Q, are assumed. Thus
the state of a IMCReo model comprises three components — (R,T,Q) — where R,T ∈P(N) denote,
respectively, the set of requests and transmissions, i.e., the sets of ports with, respectively, pending
requests and data being transmitted; and Q ∈ Q is an internal state identifier. The latter is used to
distinguish between control states in state-based connectors. For example, in the fifo it may indicate
whether the buffer is empty or full, making Q = {empty, full}. The selectors for a IMCReo state s are
denoted by Rs,Ts,Qs, respectively.

Markovian transitions are labelled by γ ∈ R+. The negative exponential distribution parameter, γ ,
encodes, in each case, the connector processing delays and the rates of data arrival at its ports.

Interactive transitions, on their turn, are labelled with a set F of ports which, when firing, allow data
to flow through them. Such ports correspond, therefore, to the set of actions observable at the relevant
IMC state. The decision to take sets of actions (rather than a single action) to label interactive transitions
is crucial to correctly capture synchrony in the semantics of Reo. In fact, ports firing synchronously to
enable data flow are the rule rather than the exception in Reo.

In a nutshell, an IMCReo modelling a Reo channel, is an instance of a classical IMC with a structured
set of states and labels. Formally,

Definition 2. An IMCReo is a tuple (S, Act, , , s), where S⊆P(N)×P(N)×Q is a nonempty
set of states; Act ⊆P(N) is a set of actions; ⊆ S×Act× S is the interactive transition relation;
⊆ S×R+×S is the Markovian transition relation; and s ∈ S is the initial state.

Markovian transitions (s,γ,s′) are written as s
γ

s′; whereas notation s a1a2... s′ is used for interac-
tive transitions (s,{a1,a2, ...},s′). An interactive transition with an empty set of actions is said to be
unobservable and is denoted by s τ s′.

States of the form (R, /0,Q) are referred to as request states and depicted as R Q; states of the form
(/0,T,Q) are referred to as transmission states and depicted as {T}Q; states of the form (R,T,Q) are called
as mixed states and are rdepicted as R {T}Q; finally, states of the form (/0, /0,Q) are represented as /0Q and
denote the absence of both requests and data transmissions. For all representations, the buffer qualifier
Q may be omitted, whenever clear from the context.

Figure 4 depicts the IMCReo models corresponding to the basic stochastic Reo channels. To simplify
the picture transition overlapping is avoided by the graphical replication of states suitably annotated with
a dashed circle.

The IMCReo model of a stochastic sync channel is interpreted as follows: initially, no requests are
pending neither in port a nor in port b. Request arrive at port a (respectively, b) at rate γa (respectively,
γb). The channel blocks until a request arrives to the other port. When state a,b is reached, representing a
configuration in which both ports have pending requests, then both may fire. That is, actions a and b may
be activated simultaneously. At this moment, the channel starts transmitting data between a and b and

7

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

/0 a

b a,b {a,b}

γa

γb γb

γa ab

γab

γab

γbγa

γab

γbγa

sync and syncdrain

/0 a

b a,b {a,b}

{a}
γa

γb γb

γa ab

γab

a

γaL

γab

γaL γbγa

lossy

/0e a e

b e a,b e

{a}e

b {a}e

/0 f a f

b f a,b f

{b} f a {b} f/0e a e

γa a γaB γa

γb γb γb γb γb

b

γa a γaB γa

b

γBbγBb γa

γaB γBb

γbγa

fifoe

Figure 4: IMC for the basic stochastic Reo channels.

evolves back to the initial state with a delay rate of γab. For a syncdrain the interpretation is similar. The
IMCReo model of a stochastic lossy channel is also similar. However it exhibits two additional transitions
to model the possibility of losing data: at state a , port a may fire, because there is no pending request
at port b. This state captures the context-dependent behaviour characteristic of this channel. The fifoe
stochastic channel differs from the formers by introducing an internal state. Notice how pending requests
at port a automatically fire when the buffer is empty (states a e and a,b e), and requests at port b block
until it is full (states a,b e and b {a}e). Also, notice that, to maintain consistency, the internal state of this
channel only changes after Markovian transitions representing processing delays succeed. Actually, this
will be the rule in IMCReo models.

4 New connectors from old

Reo connectors are composed through aggregation and sharing of border nodes. This section formalises
this mechanism as IMCReo combinators and proves their compositionality.

8

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

4.1 Parallel composition

Our starting point is an adaptation of the usual definition of IMC parallel composition, dealing explicitly
with sets of actions.

Definition 3. Let I = (SI,ActI, I, I,si) and J = (SJ,ActJ, J, J,s j) be two IMCReo models.
The parallel composition of I and J with respect to a set of actions M is defined as

I ‖M J = (S,Act, , ,(si,s j))

where S = SI×SJ , Act = ActI ∪ActJ , and and are the smallest relations satisfying

1. If i1
AI

I i2 and AI ∩M = /0, then (i1, j) AI (i2, j), for j ∈ SJ .

2. If j1
AJ

J j2 and AJ ∩M = /0, then (i, j1)
AJ (i, j2), for i ∈ SI .

3. If i1
AI

I i2, j1
AJ

J j2 and (AI ∩AJ)⊆M, and AI,AJ 6= /0 then (i1, j1)
AI∪AJ (i2, j2).

4. If i1
γ

I i2, then (i1, j)
γ

(i2, j), for j ∈ SJ ,

5. If j1
γ

J j2, then (i, j1)
γ

(i, j2), for i ∈ SI ,

The first three clauses in the definition above deal with interactive transitions: the first two tackle
the independent evolution of each connector; the third one addresses their (synchronous) joint evolution.
Clauses 4. and 5. deal with Markovian transitions which are always interleaved. Figure 5 depicts a
fragment of the IMC resulting from the parallel composition of a lossy and a fifoe channel with respect to
set M = {b} of shared nodes. A pair of states (i, j) is depicted as i| j. The complete IMC has 72 states
and 182 transitions.

/0| /0e

a | /0e

b | /0e. . .

a | c e

a | b e

. . .

{a}| c e. . .

{a}| b e. . .

a,b | b,c e {a,b}| c {b}e

/0| c {b}e. . .

{a,b}| c f . . .

γa

γb♣

γc
. . .

γb♣

a♦

a♥

. . .♣
ab

γab

γbB♠

Figure 5: Parallel composition of a lossy and fifoe.

Note that clause 3 of Definition 3 does not capture the joint evolution of τ-transitions (which is pre-
cluded by condition AI,AJ 6= /0). Actually, this is just a design decision in accordance to the homologous
definition in [24]. We could otherwise allow remove the condition and allow for the joint evolution of two
or more τ-transitions. In practice, this would result in an extra internal transition; however the resulting
IMCReo chains would be equivalent (at least in a weaker way) due to the maximal progress assumption.

To illustrate both alternatives, consider the composition of two double−fifoe connectors. A fragment
of the IMCReo model for each double−fifoe is depicted in Figure 12. Let us focus on the joint state /0 f | /0e,
assuming, for simplicity, their piecewise union. Figure 6 shows the configuration of the two channels, at
that state, alongside with a fragment of the corresponding IMCReo models, which we want to compose in
parallel for the set of ports {a,c}.

Applying the parallel composition, as given by Definition 3, will create the IMCReo, a fragment of
which is depicted in solid black in Figure 7. State /0 f e| /0 f e has four Markovian transitions (from the ap-
plication of clauses 4 and 5) and two τ-transitions (from clauses 1 and 2). If, otherwise, the alternative
version of clause 3 is assumed, without the AI,AJ 6= /0 condition, the extra transition /0 f e| /0 f e

τ {b} f e|{d} f e,
depicted in grey in Figure 7 would be possible.

9

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

γa b

γc

•
γa

d γc
•

. . . /0 f e

a f e . . .

c f e . . .

{b} f e /0 f e

c f e . . .

a f e . . .

{d} f e . . .

γa

γc

τ

γc

γa

τ‖{a,c}

Figure 6: Composing two double−fifoe connectors.

. . . /0 f e| /0 f e

a f e| /0 f e . . .

/0 f e| a f e . . .

c f e| /0 f e . . .

/0 f e| c f e . . .

{b} f e| /0 f e . . .

/0 f e|{d} f e . . .

{b} f e|{d} f e . . .

γa

γa

γc

γc

τ

τ

τ

τ

τ

•

•

•

•

•

•

••

τ

τ

τ

τ

τ

Figure 7: Parallel composition of two double−fifoe (fragment) and the corresponding circuit evolution.

4.2 Synchronisation

The definition of parallel composition, however, has to be adjusted to correctly capture the intended
semantics for channel composition in Reo. The mismatch concerns Reo mixed nodes which are not
supposed to actively block behaviour, rather acting like self-contained pumping stations, in the popular
metaphor of [3]. Failing to take this into account generates unwanted behaviour, making the semantics
unsound. Consider, for example, the composition of a lossy and a fifoe partially depicted in Figure 5.
The presence of transition a | b e

a
{a}| b e shows that in the composed connector a data token arriving

to port a could be lost, even when the buffer is empty. This possibility, however, violates the mixed node
assumption in the Reo rationale in the sense that transitions cannot occur from a state which actively
blocks a mixed node. The following definition captures this notion of active blocking.

Definition 4. Given an IMCReo model over a composed state space (S1×S2,Act, , ,s), a state (i, j)
actively blocks a set of nodes M if there exists a transition (i, j) X

(,) with X ∩M = /0, Ri ∩M = /0
and R j ∩M 6= /0, or vice-versa.

Clearly, in the example above, state a | b e actively blocks the (singleton) set of mixed nodes M = {b} in
the composition of the two connectors.

We are now ready to introduce a synchronisation operation to prune this sort of unwanted transitions.
Notation i�M, given a state i = (R,T,Q) and a set of ports M, identifies a restricted state from i in which
all ports in M are hidden (i.e., i�M= (R\M,T,Q)), and therefore removed from the set of active requests
in i. This extends to composite states (i, j) in the obvious way: (i, j)�M= (i�M, j�M).

Definition 5. Let I = (S1× S2,Act, , ,s) be an IMCReo model over a composite state space, and
M a set of nodes. The synchronisation of I with respect to M is given by

∂MI = (SM,Act \M, M, M,s)

10

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

where SM = {(i, j)�M| (i, j) ∈ S1×S2} and M and M are the smallest relations satisfying, respec-
tively, conditions 1 and 2 below:

1. If (i, j) X
(i′, j′), and (i, j) does not actively block M, then (i, j)�M

X\M
M (i′, j′)�M.

2. If (i, j)
γ

(i′, j′) and (Ri′ ∪R j′)∩M = /0, then (i, j)�M
γ

M (i′, j′)�M.

In Figure 5, interactive transitions that need to be deleted because their origin states are actively
blocking a set of mixed nodes, are labeled with ♥. One such transition is a | b e

a
{a}| b e, where, as

explained above, for M = {b}, X = {a}, clearly X ∩M = /0, R a ∩M = {a}∩M = /0, and R b e
∩M holds

{b}∩M 6= /0. That is, port b, which was expected to automatically fire, is blocked and only port a fires.
On the other hand, Markovian transitions going to states with requests in the mixed nodes are labeled
with ♣. An example is transition /0| /0e

γb
b | /0e , where for M = {b}, (R b ∪R /0e)∩M 6= /0.

Composition in IMCReo can finally be defined resorting to both parallel and synchronisation,

Definition 6. The composition of IMCReo models I and J with respect to a set of actions M is given by

∂M(I1 ‖M I2)

4.3 Properties

This section discusses a number of properties of these operators with respect to (strong) bisimilarity. We
start by defining the latter as a slight extension of standard IMC bisimilarity [24] to sets of labels.

Definition 7 (Strong bisimulation). Let I = (S,Act, , ,s) be an IMCReo model. An equivalence
relation R ⊆ S× S is a strong bisimulation if for any (i, j) ∈ R and equivalence class C ∈ S/R the
following holds:

1. for each A⊆ Act and some i′ ∈C, if i A i′ then there exists a state j′ ∈C such that j A j′, and
(i′, j′) ∈R, and vice-versa;

2. if i is a stable state then Γ(i,C) = Γ(j,C);

where Γ : S×P(S)→ R+ is a function that cumulates rates specified to reach a set of states Q from a
state i: Γ(i,Q) = Σi′∈Q[γ | i

γ
i′].

Two IMCReo models I and J with disjoint state spaces SI and SJ and initial states i and j, respectively,
are strong bisimilar (denoted I ∼ J) if there exists a strong bisimulation R on SI∪SJ such that (i, j)∈R.
Strong bisimilarity is the largest strong bisimulation, which is as expected an equivalence relation.

Theorem 1. Let I, I1, I2 and I3 be IMCReo models, where Act1 is the alphabet of I1 and M,N are sets of
mixed nodes. The following holds:

1. ∂M(I1 ‖N I2)∼ I1 ‖N ∂MI2, if Act1∩M = /0

2. ∂N(∂MI) = ∂M(∂NI) = ∂M∪NI

3. (I1 ‖M I2) ‖M I3 ∼ I1 ‖M (I2 ‖M I3)

4. I1 ‖M I2 ∼ I2 ‖M I1

Proof. For 1. note that transitions in ∂M(I1 ‖N I2) can be of one of the following forms:

11

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

• a M restriction of a transition (i, j) X
(i′, j), such that i X i′ exists in I1, X ∩N = /0 and (i, j)

does not actively block M.
• a M restriction of a transition (i, j) X

(i, j), such that j X j′ exists in I2, X ∩N = /0 and (i, j)
does not actively block M.

• a M restriction of a transition (i, j) X1∪X2 (i′, j′), such that i X1 i′ and j X2 j′ exists in I1 and I2,
respectively, X1∩X2 ⊆ N and (i, j) does not actively block M.

All such transitions are possible for I1 ‖N ∂MI2, but it remains to show that in neither of them can the
origin state block M. Consider the first type of transitions (the argument for the others are similar). Note
that there are only two ways of state (i, j) being able to block M. The first possibility is X ∩M = /0, which
is the case: Ri∩M = /0 because Act1∩M = /0, and R j ∩M 6= /0, which is false because all labels in any
transitions in ∂MI2 do not contain elements of M. The second alternative requires X ∩M = /0 again, and
R j∩M = /0, which holds as discussed above, but also Ri∩M 6= /0 which is false by hypothesis. Therefore,
allowed transitions in I1 ‖N ∂MI2 do not block M. In principle, it could exhibit more interactive transitions
than ∂M(I1 ‖N I2), namely transitions in I1 with elements in M. This cannot be the case, however, because
of the assumption Act1∩M = /0.

In turn, Markovian transitions in ∂M(I1 ‖N I2) can be of one of the following forms:

• a M restriction of a transition (i, j)
γ

(i′, j), such that i
γ

i′ exists in I1 and (Ri′ ∪R j)∩M = /0.

• a M restriction of a transition (i, j)
γ

(i, j′), such that j
γ

j′ exists in I2 and (Ri∪R j′)∩M = /0.

Both cases also occur in I1 ‖N ∂MI2; it remains to show that the request sets of the target states of
these transitions do not have elements in M. In fact, assumption Act1 ∩M = /0 implies that Markovian
transitions in I1 cannot have target states i′ with Ri′ ∩M 6= /0; and, by definition, for all the target states j′

of Markovian transitions in ∂MI2, R j′ ∩M = /0 holds. Hence, Markovian transitions in I1 ‖N ∂MI2 are the
same as in ∂M(I1 ‖N I2), which preserves the cumulation of rates.

For 2. it is enough to note that in both sides of the bisimilarity equation interactive and Markovian
transitions are restricted to M∪N, and also that interactive transitions in I whose origin state does not
actively block neither M nor N do the same for M∪N.

Associativity and commutativity of ‖M are easy to prove: for Markovian transitions strict interleaving
applies and therefore the contribution of each chain is always preserved; for interactive transitions, when
in presence of sharing, associativity and commutativity of ∪ entail 3. and 4., respectively.

Theorem 2 (Substitutability for ‖M). Let I1, I2 and I3 be IMCReo models, and M be a set of nodes, such
that I1 ∼ I3. Then, I1||MI2 ∼ I3||MI2.

Proof. Every interactive transition of I1 is exactly matched by an equally labelled transition in I3, be-
cause I1 ∼ I3. Therefore, the contribution of both I1 and I3 for interactive transitions of their parallel
composition with I2 is the same. For Markovian transitions I1 ∼ I3 guarantees that for bisimilar states the
cumulative rate in both chains is the same. In the parallel composition Markovian transitions of I1 are
interleaved with those of I2. Once a state of I1 is replaced by a bisimilar one, the cumulative rates are not
affected, even if the number of Markovian transitions may differ.

This result establishes substitutability for parallel composition with respect to a set of nodes M. A
similar result for ∂M holds only for a stricter notion of equivalence. Actually, synchronisation prunes
a number of transitions which depend on data requests active in each state. This entails the need to
incorporate this sort of information in a suitable definition of behavioural equivalence.

Definition 8 (Behavioural equivalence). Two IMCReo models I and J are behaviourally equivalent, de-
noted by I ≡ J, if they are strong bisimilar and for each pair (i, j) of related states, their sets of requests
are equal: Ri = R j.

12

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

Clearly ≡⊆∼. With this coarser equivalence substitutability for ∂M can be established.

Theorem 3 (Substitutability for ∂M). Let I1 and I2 be two IMCReo models , and M a set of nodes, such
that I1 ≡ I2. Then, ∂MI1 ≡ ∂MI2.

Proof. An interactive transition in ∂MI1 is the M restriction of a I1 interactive transition, say (i, j) X

(i′, j′) such that (i, j) does not actively block M. As I1 ∼ I2 there exists a transition (k, l) X
(k′, l′)

in I2 for bisimilar states (i, j) and (k, l). The extra condition in the definition of ≡ further imposes
that R(i, j) = R(k,l), which, both being composed states, has to be stated piecewise, i.e., Ri = Rk and
R j = Rl . But this means that if the original transition in ∂MI1 does not block M, this one in ∂MI2 has
the same property. A similar argument applies to the analysis of Markovian transitions. Actually,
for stable, bisimilar states (i, j) and (k, l) in I1 and I2, respectively, and each bisimilarity equivalence
class C, Γ((i, j),C) = Γ((k, l),C). This equality does not necessarily holds when comparing ∂MI1 and
∂MI2 because the definition of synchronisation considers only (M restrictions of) Markovian transitions
(i, j)

γ
(i′, j′) such that (Ri′ ∪R j′)∩M = /0 and so, unless Ri′ = Rk′ and R j′ = Rl′ , one can not conclude

that the corresponding cumulative rates Γ((i′, j′),C),Γ((k′, l′),C) are equal, because different markovian
transitions could have been pruned in ∂MI1 and ∂MI2. But such is the case, however, if I1 ≡ I2.

4.4 Cleaning up unintended transitions

In general, when Reo channels are set in parallel within a connector, they evolve independently. However,
when connected through their ends, data flows from one to the other, in sequence, and there is a clear
intended flow direction. Until now, however, we have refrained from explicitly modelling the difference
between input and output ports, which are responsible for setting the data flow direction. This may
generate unintended transitions. In Figure 5, for example, node {a,b}| c {b}e evolves interleaved via γab or
γbB to the same state. However, this leads to an artificial configuration in which the buffer becomes full
before data is transmitted through the lossy channel. Moreover, when a channel is transmitting data from
one port to another, arrival of requests might be undesirable, as ports are busy.

Definition 9. Let M ⊆ N and I = (S,Act, , ,s) be an IMCReo model. Suppose there exists a
relation < on N such that a < b when data flows from a to b, with a,b ∈N . The cleaning of I with
respect to M, denoted CMI, corresponds to restricting ∂MI so that for all its Markovian transitions i

γ
f

1. R f ∩AN(i) = /0∧Ri ⊂ R f , where AN(i) = Ti∪{ j| ∃k∈Ti . j < k∧ k < j};

2. Tf ⊂ Ti;

hold, and all its interactive transitions j X k respect the following condition

3. ¬∃
j

Y
l∈

· X = Y ∧Tk∩M = /0∧Tl ∩M 6= /0.

Informally, an IMCReo model failing to respect condition 1. allows requests on nodes that are actively
transmitting data. On the other hand, whenever condition 2. does not hold, the model fails to preserve
transmission sequencing. Finally, if condition 3. fails, nondeterminism is enforced where it should not
exist.

Illustration of conditions 2. and 3. can be found in Figure 5. Note, for example, that the transition
marked with ♠ does not respect transmission sequencing: {a,b}| c {b}e

γbB {a,b}| c f . Actually Ti =
T{a,b}| c {b}e

= {a,b} and Tf = T{a,b}| c f = {a,b}, so Ti 6⊂ Tf .
On the other hand, the transition marked with ♦ enforces nondeterminism. Note that state a | c is

equal to a,b | b,c , modulo �M, for M = {b}. Therefore, after synchronisation the following transitions

13

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

coexist: a | c a
{a}| c and a | c a

{a,b}| c {b}. Nondeterminism is enforced because both transitions are
equally labelled and T{a}| c ∩M = /0 and T{a,b}| c {b}∩M 6= /0.

The composition illustrated in Figure 5 is revisited in Figure 8 after synchronisation and cleaning.

/0| /0e a | /0e a | c e...
...

{a,b}| c {b}e /0| c {b}e. . .
γa γc a γab

Figure 8: Parallel composition of a lossy and fifoe after synchronisation and cleaning.

A substitutability result for CM can only be formulated in terms of a slightly coarser version of strong
bisimilarity as follows.

Definition 10 (Time-independent strong bisimulation). Let I = (S,Act, , ,s) be an IMCReo model.
An equivalence relation R ⊆ S× S is a time-independent strong bisimulation if for any (i, j) ∈R and
equivalence class C ∈ S/R the following holds:

1. for each A ⊆ Act and some i′ ∈ C, if i ∗ A ∗ i′, then there exists a state j′ ∈ C such that
j ∗ A ∗ j′, and (i′, j′) ∈R, and vice-versa,

where ∗ represents a possibly empty sequence of Markovian transitions.

Two IMCReo models I and J with disjoint state spaces SI and SJ and initial states i and j, respec-
tively, are time-independent strong bisimilar (denoted I ∼ti J) if there exists a time-independent strong
bisimulation R on SI ∪SJ such that (i, j) ∈R.

Theorem 4. Let I and J be two IMCReo models, such that I ∼ J. Then I ∼ti J.

Proof. From the structure of a IMCReo model, it is obvious that each interactive transition may be pre-
ceded/followed by a (possibly empty) number of Markovian transitions. Thus, each interactive transition
of I is of the form i ∗ A ∗ i′, where i (respectively, i′) is the target (respectively, the source)
state of some interactive transition. The same goes to J: each interactive transition is of the form
j ∗ A ∗ j′, with j (respectively, j′) being the target (respectively, the source) state of some inter-
active transition in J. Since I ∼ J (by assumption) then, i and j are bisimilar and so are i′ and j′. This is
exactly the case when I ∼ti J.

Theorem 5. Let M ⊆N and I and J be two IMCReo models, such that I ∼ J. Then CMI ∼ti CMJ

Proof. From Theorem 4, I ∼ti J. Therefore, removing Markovian transitions from I and J in the context
of the cleaning operation does not affect the ∼ti relation. It is then only necessary to show that removing
interactive transitions (that enforce nondeterminism) does not affect the relation as well.

In case that no interactive transition enforces nondeterminism in I (consequently there is also no
such transitions in J, because I ∼ J), then I ∼ti J holds trivially. In case that there is a transition i A i′

enforcing nondeterminism in I, then there is also such a transition j A j′ in J. Thus, they are both
removed, in I and J, on cleaning. Possibly there remain Markovian transitions that have also to be
removed as their source states become unreachable after the interactive transitions above are eliminated;
but this will not affect the relation (because I ∼ti J). Possible interactive transitions removed in I for the
same reason are also removed in J. Thus, CMI ∼ti CMJ.

Note, however, that CMI ∼ CMJ when I ∼ J, or even when I ≡ J, does not hold in general. Suppose,
for example, that I ∼ J, where after synchronisation I and J are as depicted in Figure 9.

After cleaning, transitions a | c a
{a}| c 0.5 /0 in I will disappear. Clearly, states {a,b}| c {b} (in both

chains) will not remain bisimilar since their commutative rates become 0.4 in I and 0.9 in J.

14

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

/0 · · · a | c

{a}| c

{a,b}| c {b} · · ·

a

0.5

a
0.4

I

/0 · · · a | c {a,b}| c {b} · · ·
a

0.5

0.4

J

Figure 9: A counterexample.

4.5 Composition examples

To illustrate composition in IMCReo, this section discusses three different examples, each one with a
specific particularity worth to point out.

Let us start with the composition of a lossy and a sync channel depicted in Figure 10. The result is an
IMCReo corresponding to a lossy channel with ports a and c and a processing delay rate φ(γab,γbc), which
combines (via convolution) the exponential distributions modelled by γab and γbc as an approximated
exponential distribution.

Up to this rate the sync channel behaves as the identity for IMCReo composition, as it happens in Reo.
This is confirmed when comparing lossy and lossysync via time-independent strong bisimilarity.

/0| /0 a | /0

/0| c a | c

{a,b}|{b,c}

{a}| /0

/0|{b,c}

γa

γc γc

γa

ac

γab

γbc

a

γaL

γab

γaLγa

γbc

γc

Figure 10: Composing a lossy and a sync channel.

Figure 11 depicts the composition of a lossy and a fifoe channel, i.e.the lossyfifo connector first shown
in Figure 3. Observe that data is not lost when the buffer is empty, as it may be the case in other semantic
models for Reo unable to capture context dependency (see discussion in [16]). Rather data is lost only
when the buffer is full and there is a request at the input port.

Finally, figure 12 shows a fragment of the composition of two fifoe channels (the complete model has
39 states and 75 transitions). Note that when the first buffer is full and the second one empty, data may
flow immediately to the latter, freeing the former. The τ-transitions, which appear after synchronisation,
explicitly model this behaviour. Consequently, the maximal progression assumption can simplify the
overall chain by deleting Markovian transitions leaving from such unstable states. The model would be
reduced to approximately 35 states, depending on the bisimulation algorithm used for minimisation.

Note that the decision of modelling a two or more memory position fifo channel by the composition
of several one-position fifo channels, although typical in the Reo rationale (obtain complex connectors
from the composition of simpler ones), brings inefficiency to composition as the state space grows with
the growth of memory positions. An alternative solution would be to regard fifo channels as normal
queues with a bounded capacity. This would require, for instance, that states in IMCReo were modelled as
triples (R,T,n), where n stands for the number of free memory positions.

15

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

/0| /0 a | /0e

c | /0e a | c e

{a,b}|{b}e

{a,b}| c {b}e

/0|{b}e

/0| c {b}e

/0| /0 f a | /0 f {a}| /0 f

/0| c f a | c f {a}| c f

/0|{c} f a |{c} f {a}|{c} f

{a}| /0e {a}| c e

a | /0e

/0| /0e /0| c e

γa

γa

γc γc

a

a

γc

γab

γab

γc

γbB

γbB

γc

γa

γa

c

γc

c

a

γc

c

a

γa a

γBc

γaL γc

γaL

γaL

γaL

γBc

γBc

γaL

Figure 11: Composing a lossy and a fifoe channel.

/0e| /0e

/0e| c e

a e| /0e

a e| c e

{a}e| /0e

{a}e| c e

/0 f | /0e

a f | /0e

/0 f | c e

a {b} f | /0e

{b} f | /0e

{b} f | c e

. . .

. . .

. . .

. . .

. . .

γa

γc

γa

γc

a

a

γc

γaB

γaB

γc

γa

τ

τ

τ

γaB γBb

γa

γbB γBc

γc

Figure 12: Composition of two fifoe channels (fragment).

It can be argued that the examples above are simple in the sense that each node connects, at most,
two channel ends, while in practice this number is often bigger. We assume, however, that composition is
always performed in this binary way; when three or more channel ends have to be joined, the connector
design is refactored to comply to this assumption through the use of mergers, replicators and routers
which are given as stochastic primitive three-port channels.

Figure 13 (first row) presents the stochastic version (abstracted) of the replicator, the merger and the
router connectors. The corresponding IMCReo models are given in Figure 14. These abstractions assume
that the processing delays shown correspond to the composition of all delays involved in each relevant
data flow path: in a replicator there is only one such path which involves all the nodes of the connector. In
a merger there are two: one involving nodes a, j and c1, and another involving nodes b, j and c. Finally,
in a router there are also two paths: one involving nodes a, j, l,k and b and the other a, j,m,k and c.

The second row of Figure 13 illustrates how a connector can be transformed to comply to the as-

1These node names refer to the connectors depicted in Figure 2.

16

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

γa

γb

γc

γabc

replicator

γa

γb

γc

γac

γbc

merger

γa

γb

γc

γab

γac

router

γa

γb

γc

γd

γe

γat

γbt

γct

γ ft

γdt

γet

γa

γb

γc

γd

γe

γat

γbt

γct

γ ft

γdt

γet

γm11

γm12 γm21

γm22

γr1

γr2

Figure 13: Stochastic three-port basic connectors and connector refactoring.

sumption that each node connects, at most, two channel ends. The processing delays in each three-port
channel may be negligibly low to cope with the self-contained pumping station assumption of Reo nodes;
otherwise, they shall model the delay that a node take to copy data or to make decisions.

5 A case study

This section discusses a (fragment of) a case study which is part of a broader analysis of the ASK
system [34] with respect to performance and resource usage. A similar analysis conducted in Stochastic
Reo is reported in [34] which makes possible a comparison with the approach proposed in this paper.

5.1 Tool support

The main motivation for using IMC as a semantic model for Stochastic Reo is the availability of well-
tested tools, developed within the IMC community. These can be reused in a tool chain organised in two
stages: one for developing IMCReo models, another for their quantitative/qualitative analysis. Building
IMCReo models from Stochastic Reo connectors involves tree main stages: parallel composition, syn-
chronisation and cleaning. With just paper and pencil this is a cumbersome process. Therefore, an extra
tool to design connectors and systematically convert them into IMCReo models was developed and is part
of the tool chain mentioned above.

5.1.1 Modelling

The first element in the tool chain allows precisely for the design of complex connectors in Reo-like
coordination models. It was proposed in [38, 37], and made available as an Eclipse plugin editor and
a front-end for the CooPLa language [38]. The latter is the design language for connectors, introduced
as reusable coordination patterns in Reo like formalisms. The editor is fully-functional, providing syn-
tax highlighting, syntactic and semantic error reporting and intelligent code completion at edition-time.
In addition, it incorporates a connector visualiser (as a graph of channels) that is assembled again at
edition-time. A screenshot is shown in Figure 15. The editor is prepared for several source-to-source
transformations which makes possible the translation of CooPLa patterns into Reo networks (preparing
input for ECT [4]) or Vereofy models [8].

17

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

/0 b

a

c

a,c

a,b

b,c

a,b,c

{a,b,c}

a,c /0

γa

γb

γc

γc

γb

γa

γc

γa

γb

γb

γc

γa
abc

γabc

replicator

/0 b

a

c

a,c

a,b

b,c

a,b,c

b {a,c}

a {b,c}

{a,c}

{b,c}
a,c

a

b

/0

/0

γa

γb

γc

γc

γb

γa

γc

γa

γb

ac

bc

γb

γa

γc
ac

bc

γac

γbc

γac

γbc

merger

/0 b

a

c

a,c

a,b

b,c

a,b,c

{a,c}

{a,b}

b {a,c}

c {a,b}

a,c

b

a

a,b,c

/0

γa

γb

γc

γc

γb

γa

γc

γa

γb

ac

ab

γb

γa

γc

ac

ab

γac

γb

γab

γc

γac

γbc

router

Figure 14: IMCReo for the replicator, merger and router three-port channels.

CooPLa was recently adapted to Stochastic Reo, making it possible to model arrival rates and
processing delays in several instances of a single pattern. In Figure 15, a stochastic instance lossyfifo of
the LossyFifo pattern is presented. It associates arrival rates to the ports of the pattern, and processing
delays to the flows in its channels (marked with an identifier preceded by a #).

The second element in the tool chain is an engine, referred to as IMCREOtools, which translates a
Stochastic Reo connector to an IMCReo model. It is based on two main components: the generator and
the prismer. The generator takes the CooPLa description of a connector and processes it by composing
a (randomly selected) initial channel with the subsequent ones. This creates an IMCReo model that can
be exported in several formats accepted by typical IMC tools, for example CADP [21] or IMCA [22]. The
prismer component converts an IMCReo model into a format compatible with the PRISM probabilistic
model-checker [29].

IMCREOtools exists both as a command line tool and a plugin for the CooPLa editor (as shown in
Figure 15). The plugin improves the tool usage by automating tasks that in the command line version
require user intervention and acquaintance with specific tools (e.g. CADP).

18

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

Figure 15: The CooPLa development environment.

5.1.2 Quantitative analysis

For analysis the tool chain resorts to powerful external tools, namely IMCA, CADP or PRISM. The CADP

tool plays an important role in it since it is able to perform both transient- and steady-state analysis.
Moreover it may be used as an interface for other tools in the chain: for example, bcg io, to convert
aut models (a possible output format of IMCREOtools) into bcg models (the input format for CADP);
reductor (along with bcg open), to reduce IMC with τ-transitions; or bcg min, to minimise IMC with
respect to different bisimulation algorithms. The IMCA tool also allows for performance analysis with
focus on reachability probabilities. It is not as powerful as CADP, but depending on the objectives of
the analysis it may be a suitable alternative. Its input is a textual representation of a Markov automaton
(ma) which IMCREOtools is able to export. The PRISM model checker does not accept IMC, so it is
necessary to convert IMCReo models into continuous-time Markov chains (CTMC). This transformation
starts by generating an IMCReo model where all interactive transitions are made internal. This model
is then passed to the reductor CADP tool2 for both minimisation with a weak trace equivalence relation
and determinisation. In the end, the resultant CTMC model is serialised into an aut file that is converted
by the prismer tool of IMCREOtools, into sm PRISM files. For stochastic analysis, PRISM provides a
comprehensive set of facilities which largely extends the analysis scope.

The graph depicted in Figure 16 illustrates some possibilities of combining these tools for quantitative
analysis of IMCReo models.

5.2 The ASK system

The ASK (Access Society’s Knowledge) system is an industrial solution from the Dutch company Al-
mende. It is a communication software that facilitates mediation between consumers and service pro-

2http://cadp.inria.fr/man/reductor.html

19

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

CooPLa
editor

RLF

MA

AUT

DOT

IMCA

PRISMreductor bcg_min
bcg_io SMAUT

bcg_transient

bcg_steady

cunctator

GraphViz

generator

prismer
bcg_io

IMCREOtools

IMCREOtools
CADP. . .

Figure 16: Tool chain for the analysis of IMCReo models.

viders. The mediation is made by matching mechanisms which take into account the needs of the con-
sumers and the profiles of the providers. Performing these matches and connecting the matched entities
in an efficient and correct way is the main objective of this system.

The architecture of the ASK system is modular, based on components that, in turn, are built from
smaller components communicating with each other. The higher level components are a web front-end,
a database, and a contact engine. The front-end serves as the interface between the consumers/providers
and the system; the database stores typical system data, along with specific data for the improvement
of the matching algorithm. The contact engine consists of the following components: a Reception,
which receives the requests and converts them into tasks to be processed to fulfil the request; a Matcher,
which determines the best providers/consumers to attend a request; an Executer, which defines how the
matched entities should communicate; a Resource Manager, which establishes the connection between
the matched entities; and a Scheduler, which schedules requests taking into account time constraints of
requests stored in the database.

The ASK’s workflow considered in this case study starts with the issuing of requests by consumers (or
triggered by the scheduler). These requests are sent to the Reception component, wherein a HostessTask
(HT) subcomponent converts them into tasks which are enqueued into a Task-Queue (TQ). These tasks
are later dequeued by a HandleRequestTask (HRT) subcomponent, which generates new requests to the
Executer component. Within the Executer requests are also enqueued into an Execution-Queue (EQ)
until a HandleRequestExecution (HRE) subcomponent is ready to take each of them and convert it into
a connection between a service provider and the consumer.

Dealing with the high number of requests, imposes the concurrent execution of several instances
of subcomponents (of the Reception and Executer components) in multiple threads. Moreover, since
processing is not instantaneous, queues have to store incoming requests. Thus, analysing the system from
the perspective of the resources needed (e.g., number of threads running or memory used) is of paramount
importance to deliver a cost-effective performance. IMCReo provides the means to leverage such analysis,
and the associated tools allow for investigating system quantitative issues, namely, performance, costs
and resource requirements.

In [36, 33], the ASK system was thoroughly described, and part of it (the Reception component
only) was first analysed for its performance and resources allocation, resorting to basilar Stochastic
Reo tooling. In the sequel, we revisit parts of the problem addressed in [36, 33] within the approach

20

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

proposed in this paper. Furthermore, we investigate correlations between memory usage and threads
running to infer optimal performance in the Executer component.

5.2.1 Modelling: rates and delays

The case study focus on both the Reception and the Executer components. In particular, we investigate
their interplay and reason about allocation of resources, such as memory blocks and running threads, to
obtain a cost-effective performance of the overall system. Figure 17 shows the relevant part of the ASK
system involving the Reception and the Executer components with their internal subcomponents. For
simplicity, only one instance of subcomponents HT, HRT, and HRE is represented. Actually, this should
be regarded as a set of instances, each one running on its own thread. Elements TQ and EQ represent
queues that temporarily store tasks, as described above. The values over arrows represent time intervals
(in seconds) suitably explained in Figure 17.

TQHT

HRT

0.063s

0.011s

HRE

EQ
0.063s

0.703s

Reception Executer 1

2

3

4

Mean time interval between request arrival to
the Reception component.
Average time that an HRT subcomponent takes
to process a task. Equal to the mean interval
between an HRT subcomponent issuing dequeue
operations.
Mean time interval between request arrival to
the Executer component.
Average time that an HRE subcomponent takes
to process a task.

1

2

3

4

Figure 17: The ASK system model: Reception and Executer components.

Note that the data used for this case study was real, provided by the ASK team, as it is the case
in [33, 34]. However, in certain aspects, the relevant values extracted differ from the values used in the
latter. Moreover, delays of data flow between architectural elements are disregarded, as we assume them
to be contemplated in the processing delays of the elements. As a consequence the concrete results will
differ from [33, 34], precluding a detailed comparison, but not biasing the final conclusions.

Modelling in IMCReo presupposes that the stochastic information follows an exponential distribution
with some rate parameters. Without loss of generality, we assume that the values extracted for arrival
rates and processing delays of components do refer to exponential distributions. Therefore, the rate
parameters of the stochastic values in the ASK model are given as mi−1, where mi refers to each mean
time interval represented in Figure 17.

5.2.2 Analysis 1: memory issues

An important requirement of the ASK system is that it always runs smoothly, attending all incoming
requests. However, the processing of these requests is not instantaneous and therefore must be han-
dled asynchronously. Queues TQ and EQ support asynchrony, but are not unlimited and storage has an
associated cost which is intended to be kept minimal.

In this context, we want to find out how much storage capacity will be necessary in order to make the
system alive. Similarly to [36, 33] we assume that both TQ and EQ are unbounded. Such an unbounded
queue is mimicked as a lossyfifo stochastic Reo connector. Then we can use IMCReo and associated
tools to check the amount of lost requests, and to derive a minimal value of storage capacity for queues.
Figure 18 depicts the stochastic Reo connectors that abstract the coordination layer in the Reception and
the Executer components. Notice that the processing delay of the HT subcomponent is negligible. Thus

21

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

we can assume that the rate of requests arriving to TQ is equal to the rate of arrivals at HT. Notice how
∞ is used to represent a rate parameter so high that data flow delays can be safely ignored.

∞

∞

15.958

∞ ∞

94.304 ∞

∞

15.958

∞ ∞

1.422

Figure 18: A lossyfifo modelling unbounded versions of TQ (left) and EQ (right).

These connectors were created with the CooPLa editor and then supplied to IMCREOtools. The
resulting IMCReo models have 19 states and 33 transitions, each one. After minimisation and conver-
sion to a CTMC with CADP, this is reduced to 12 states and 22 transitions. Finally, the prismer tool of
IMCREOtools builds the corresponding PRISM model (Figure 19). In PRISM, a reward structure assign-
ing a unitary value to each loss is defined. Notice that prismer adds a PRISM action to each transition,
which makes simpler the definition of such reward structures and increases the legibility of the model.

Figure 19: Derived PRISM model for a lossyfifo stochastic connector.

We may now discuss storage dimensioning by investigating the expected number of lost requests in
the long-run, through the query ‘R{"losses"}=?[S]’. The expected loss is 0.4 requests per second for
the TQ and 14.5 for the EQ (both results were computed in approximately 0.004s, which is a substantial
gain when compared with the same process in [33]: 3.29s).

This fixes the optimal storage capacity for the queues in 2 for the TQ and 16 for the EQ. Notice that
these numbers are based on the assumption that losses will occur when the buffer of the fifo channel
is full. These storage limits will ensure that no requests are lost, and therefore the system will always
accept new requests. Clearly, these results are only valid for average scenarios. Worst-case and best-case
scenarios are not dealt with in this study.

22

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

5.2.3 Analysis 2: the Executer performance

Both the Reception and the Executer components rely on multithreading to haste the processing of in-
coming tasks. But is this really necessary? To find out we may compute the probability of a single
instance of HRT and HRE actually initiating its execution per second.

Computing ‘R{"run"}=?[S]/15.958’ in PRISM, returns the probability of an instance to start
running. Notice that the "run" is another reward structure associated to transitions that lead a request
from the queue to the subcomponent instance (HRT or HRE in either model). It is found out that each
instance of subcomponents HRT and HRE start executing with probability 97.6% and 8.9%, respectively.
On the one hand, the need for multithreading on the Reception component is not a must, since a single
instance takes care of the incoming requests quite well. On the other hand, the Executer component
would benefit from it, given the low probability with which an instance of the HRE subcomponent starts
running.

Resorting again to IMCReo, two different configurations of the Executer architecture were modelled
to experiment with different uses of concurrency. Figure 20 shows the corresponding Stochastic Reo

connectors. Both are based on the lossyfifo previously used, but equipped with a router connector to
route requests from the EQ to each HRE instance.

∞

∞

15.958

∞ ∞

∞ 1.422

∞ 1.422
∞

∞

15.958

∞ ∞

∞
1.422

∞

1.422

1.422
∞

1.422

Figure 20: Concurrency alternatives: 2-HRE (left) and 4-HRE (right) versions.

The derived IMCReo models of these connectors are quite large, even after minimisation. The 2-
HRE version has 66 states and 155 transitions, and the 4 HRE version counts on 690 states and 1723
transitions. The reason is that a router connector with n output ports will be refactored into n−1 three-
ports router channels (c.f., Figure 13), and, in turn, each of these channels is modelled as an already
complex IMCReo chain (c.f., Figure 14). However, these numbers place no problems for PRISM, as can be
seen from the execution times presented in the last column of Table 1.

Table 1: Memory and execution analysis (per second) on 2-HRE and 4-HRE models.

Model Losses (requests) Storage (requests) Execution (%) PRISM Time (s)
2-HRE 13.15 15 17.55 0.09
4-HRE 10.47 12 34.38 4.218
HREx2 13.19 15 17.35 0,004
HREx4 10.75 12 32.59 0.004

Analysing these models with respect to storage needs and the execution probability properties already
discussed, leads to the values shown in Table 1 (first two rows). Not surprisingly, the more instances set
in concurrent threads, the less losses will occur, and therefore, the lower the need for storage capacity
becomes. For the execution probability, it is observed a linear growth by a factor close to 2. From here,
it is predictable that 12 would be an optimal number for concurrent HRE instances in order to maximise
the probability with which they start executing at each second.

23

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

We played further with these models to understand what would be the difference between adding
concurrency or increasing individual performance (by diminishing the processing delay in individual
components) by the same scalar factor. The results relative to the latter alternative are shown in the last
two rows of table 1. While for low values of this factor the differences are not that significative, for
higher values they grow exponentially. In general improving the processing time of a single instance, is
less efficient than increasing concurrency.

6 Related work

6.1 Semantic models for Stochastic Reo

Many semantic models for Reo have been proposed in the last few years [27], usually capturing dif-
ferent aspects of the coordination language. Constraint automata [10], for example, makes explicit the
constraints on data when flowing through nodes that synchronously fire in each step of execution. Inten-
sional automata [18], on the other hand, focus on both the internal and the external state of the connector.
The former concerns its buffering capacities; the latter deals with the arrivals of I/O requests to the
connector boundary nodes. This model, differently from constraint automata, is able to capture context-
dependency. The same is true of Reo automata [15, 16], which do it in a more natural way using guards
to assert conditions on the presence or absence of requests at the connector ports, and define the firing of
I/O actions.

Most of these automata-based semantic models for Reo have been extended to support the stochastic
behaviour. For example, continuous-time constraint automata [11] extend constraint automata by incor-
porating continuous-time. Therefore, they introduce a new type of transitions that mimic continuous-time
Markov chains, resembling the notion of IMC and, therefore, the IMCReo model proposed in this paper.
The model inherits relevant properties from constraint automata, namely compositionality, but fails to
capture context-dependency.

Quantitative intensional automata [3], spring from intensional automata by adding extra information
to transitions: data constraints, as in constraint automata, and quantitative information to model delays
and arrival rates of interaction actions. This model correctly captures context dependency, but it suffers
from state explosion even when representing simple connectors which restricts scalability. Moreoever it
is not a compositional model, because of its unstructured composition operator.

Stochastic Reo automata [35, 36], extend Reo automata by incorporating processing delays into
transitions, and arrival rates of I/O requests into the nodes of the Reo connector. The resulting models
are compact, capture context-dependency and compositionality is inherited from Reo automata. The
practical use of stochastic Reo automata is, however, constrained by the lack of tool support. In an attempt
to bridge this gap, in [36] partial translations were provided to CTMC and IMC, so that tool support from
these standard models could be used. However, the translations were shown not to be compositional,
which forces the user to recalculate the whole model every time a tiny change occurs in the connector.

If our research has Reo like coordination as its starting point, a reference is in order to other ap-
proaches that inspect stochastic properties of composed systems based on coordination models. Stochas-
tic BIP (SBIP) [13] is one of the most recent and acclaimed examples. SBIP is a stochastic extension of
the BIP coordination model [12]. It allows for the specification of stochastic aspects of atomic compo-
nents in BIP and introduces a stochastic semantics based on transition systems, modelling both stochastic
and non-deterministic behaviour. SBIP is supported by suitable tools and algorithms that cater for statis-
tical model checking of quantitative and qualitative properties expressed in (probabilistic) bounded linear
temporal logic. A major feature of SBIP is the possibility of specifying systems with non-deterministic
behaviour. However it must be determinised, using a notion of priority scheduling in BIP, for analysis
with the statistical model checker. Our approach is likewise. IMCReo also allows for non-determinism but,

24

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

for instance, its analysis in PRISM requires a purely stochastic model. Such a conversion is made by de-
terminising IMCReo models with CADP. Differently from IMCReo, SBIP is not restricted to the exponential
distribution.

6.2 Other stochastic models

IMC were used in this paper as a semantic basis for Stochastic Reo. However, a plethora of semantic
models dealing with random processes exists in the literature. In the domain of Markovian models, CTMC
lack of compositionality, but Markov automata [19] subsume IMC and provides flexible ways to model
probabilistic behaviour. This could replace IMC in the approach proposed here by replacing interactive
transitions by probabilistic ones with some distribution associated. However, Stochastic Reo does not
take this into account (interactions occur with constant probability of 1) and therefore IMC do qualify as
a more concise alternative.

Stochastic Petri nets [32, 30] associate exponential distributions to transition firing, which allows the
derivation of CTMC from the graph-based specifications of Petri nets. However, it is not a compositional
model and does not take into account the global synchrony of events that is required in Reo. Differently,
stochastic process algebra [26, 14, 17] is a compositional formalism that incorporates both process alge-
bra and stochastic processes in one specification framework, as much as IMC do. The main drawbacks
for their use on this work is the size of the transition systems generated by their operational semantics as
well as the lack of specific tool support.

Queueing theory [23] also plays an important role in the stochastic modelling of systems. In fact,
components can be reduced to queues and a system to a network of queues. A queueing network can
thus be regarded as a graph whose nodes are queueing stations (with some service rate) and edges are
connections between queues (with some probability associated). The performance analysis of such net-
works is also based on the theory of Markov chains (mainly on CTMC). Although Reo channels can be
modelled as queues and a connector modelled as a network, there are several Reo properties that are not
covered by such a theory, at least in a direct way. A typical example is context-awareness.

A similar alternative are stochastic automata networks [40, 20], a model that became popular in the
late nineties to formalise parallel and distributed systems. Each component is modelled as a stochastic
automaton that interact with the others. It mitigates the state space explosion problem of Markovian
models as they are represented by small matrices, and relevant properties of the system may be inspected
without the need for computing a global matrix. But a requirement of these systems is that they oper-
ate nearly independently and very rarely synchronise. Reo is otherwise; it requires a global notion of
synchronisation.

In this context, IMCs seem to provide a suitable, yet simple alternative as a semantic basis for
Stochastic Reo, with suitable tool support.

7 Conclusions

The Stochastic Reo semantics proposed in this paper, and directly based in Interactive Markov Chains,
aims at providing a direct stochastic semantics to this coordination framework. In comparison with
the approach proposed in [36], the basic insight is that the absence of an intermediate automata model
avoids extra translation steps; and makes possible to directly inheriting compositionality from classic
IMC. Moreover, IMC is a well-studied formalism with several tools and a mature theory. Therefore, typical
measures obtained from IMC analysis become available for the study of stochastic Reo circuits. A tool
— IMCREOtools3 — was developed to translate Reo connectors into IMCReo. Its output is compatible

3http://reo.project.cwi.nl/reo/wiki/ImcReo

25

http://reo.project.cwi.nl/reo/wiki/ImcReo

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

with several well-known tools for IMC (e.g. CADP [21], PRISM [29], and IMCA [22]), leading to a tool
chain for qualitative and quantitative analysis of coordination models. An important point to note is that
these analysis tools do scale up (see e.g.[31] in which chains with millions of states are analysed).

Avoiding exponentially growth in the size of the generated IMCReo chains remains, nonetheless, a
relevant issue. As future work we intend to explore recent work on Reo [28], which introduces a notion
of connector partitions for distributing connector schemes over multiple machines.

Other directions for future work include relaxing the Reo assumption on mixed nodes as self-pumping
stations, which allow for data to be read and written with no processing delay. In practice this assumption
is unrealistic: I/O operations take time and, therefore, may interfere with QoS values. On the techno-
logical side, we intend to achieve a full integration of the proposed tool chain in ECT [4], a plugin-based
environment to model and analyse Reo coordination under Eclipse.

Acknowledgments. We thank Farhad Arbab for several suggestions and comments. This work is funded
by ERDF - European Regional Development Fund through the COMPETE Programme (operational
programme for competitiveness) and by National Funds through the FCT, the Portuguese Foundation
for Science and Technology, within project FCOMP-01-0124-FEDER-020537. The first author is also
supported by an Individual Doctoral Grant from FCT, with reference SFRH/BD/71475/2010.

References
[1] F. Arbab. Abstract behavior types: A foundation model for components and their composition. In Formal

Methods for Components and Objects, volume 2852 of LNCS, chapter 2, pages 33–70. Springer-Verlag, 2003.
[2] F. Arbab. Reo: a channel-based coordination model for component composition. Mathematical Structures in

Computer Science, 14(3):329–366, June 2004.
[3] F. Arbab, T. Chothia, R. van der Mei, S. Meng, Y.-J. Moon, and C. Verhoef. From coordination to stochastic

models of QoS. In Coordination Models and Languages, volume 5521 of LNCS, chapter 14, pages 268–287.
Springer-Verlag, 2009.

[4] F. Arbab, C. Krause, Z. Maraikar, Y.-J. Moon, and J. Proença. Modeling, testing and executing Reo con-
nectors with the eclipse coordination tools. In Proc. of the 5th International Workshop on Formal Aspects of
Component Software (FACS’08), Malaga, Spain, September 2008.

[5] F. Arbab and F. Mavaddat. Coordination through channel composition. In Coordination Models and Lan-
guages, volume 2315 of LNCS, chapter 6, pages 275–297. Springer-Verlag, March 2002.

[6] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous-time markov chains. ACM
Transactions in Computer Logic, 1:162–170, July 2000.

[7] J. C. M. Baeten. A brief history of process algebra. ENTCS, 335(2-3):131–146, May 2005.
[8] C. Baier, T. Blechmann, J. Klein, and S. Klüppelholz. A uniform framework for modeling and verifying

components and connectors. In Coordination Models and Languages, volume 5521 of LNCS, chapter 13,
pages 247–267. Springer-Verlag, 2009.

[9] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-Checking algorithms for Continuous-Time
markov chains. IEEE Transactions on Software Engineering, 29(6):524–541, 2003.

[10] C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling component connectors in Reo by constraint automata.
Science of Computer Programming, 61(2):75–113, 2006.

[11] C. Baier and V. Wolf. Stochastic reasoning about channel-based component connectors. In Proc. of the 8th
international conference on Coordination Models and Languages (COORDINATION’06), Bologna, Italy,
LNCS, volume 4038, pages 1–15. Springer-verlag, June 2006.

[12] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, and J. Sifakis. Rigorous Component-
Based system design using the BIP framework. Software, IEEE, 28(3):41–48, May 2011.

[13] S. Bensalem, M. Bozga, B. Delahaye, C. Jegourel, A. Legay, and A. Nouri. Statistical model checking QoS
properties of systems with SBIP. In Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change, volume 7609 of LNCS, pages 327–341. Springer-Verlag, 2012.

26

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

[14] M. Bernardo and R. Gorrieri. Extended markovian process algebra. In CONCUR’96: Concurrency Theory,
volume 1119 of LNCS, pages 315–330. Springer-Verlag, 1996.

[15] M. Bonsangue, D. Clarke, and A. Silva. Automata for Context-Dependent connectors. In Proc. of the 11th
International Conference on Coordination Models and Languages (COORDINATION’09), Lisbon Portugal,
LNCS, volume 5521 of LNCS, pages 184–203. Springer, June 2009.

[16] M. M. Bonsangue, D. Clarke, and A. Silva. A model of context-dependent component connectors. Science
of Computer Programming, 77(6):685–706, June 2012.

[17] A. Clark, S. Gilmore, J. Hillston, and M. Tribastone. Stochastic process algebras. In Formal Methods for
Performance Evaluation, volume 4486 of LNCS, pages 132–179. Springer-Verlag, 2007.

[18] D. Costa. Formal Models for Component Connectors. PhD thesis, Vrije University, October 2010.
[19] Y. Deng and M. Hennessy. On the semantics of markov automata. Information and Computation, 222:139–

168, Jan. 2013.
[20] P. Fernandes, B. Plateau, and W. J. Stewart. Efficient descriptor-vector multiplications in stochastic automata

networks. J. ACM, 45(3):381–414, May 1998.
[21] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: a toolbox for the construction and analysis of

distributed processes. International Journal on Software Tools for Technology Transfer, pages 1–19, 2012.
[22] D. Guck, T. Han, J.-P. Katoen, and M. R. Neuhäußer. Quantitative timed analysis of interactive markov

chains. In NASA Formal Methods, volume 7226 of LNCS, pages 8–23. Springer-Verlag, 2012.
[23] M. Haviv. Queues: A Course in Queueing Theory. Springer-Verlag, 2013 edition, June 2013.
[24] H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, volume 2428 of LNCS.

Springer-Verlag, 2002.
[25] H. Hermanns and J.-P. Katoen. The how and why of Interactive Markov chains. In Proc. of the 8th interna-

tional conference on Formal methods for components and objects (FMCO’09), Eindhoven, The Netherlands,
LNCS, volume 6286, pages 311–337. Springer-Verlag, November 2010.

[26] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.
[27] S.-S. Jongmans and F. Arbab. Overview of thirty semantic formalisms for Reo. Scientific Annals of Computer

Science, 22(1):201–251, 2012.
[28] S.-S. T. Q. Jongmans, F. Santini, and F. Arbab. Partially-Distributed coordination with reo. In Proc.

of the 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing
(PDP’2014), Turin, Italy, pages 697–706. IEEE, February 2014.

[29] M. Kwiatkowska, G. Norman, and D. Parker. A framework for verification of software with time and prob-
abilities. In Proc. of the 8th International Conference on Formal Modelling and Analysis of Timed Systems
(FORMATS’10), Klosterneuburg, Austria, LNCS, volume 6246, pages 25–45. Springer-Verlag, September
2010.

[30] M. A. Marsan. Stochastic petri nets: An elementary introduction. In Advances in Petri Nets 1989, volume
424 of LNCS, pages 1–29. Springer-Verlag, 1990.

[31] R. Mateescu and W. Serwe. Model checking and performance evaluation with CADP illustrated on shared-
memory mutual exclusion protocols. Science of Computer Programming, 78(7):843–861, 2013.

[32] M. K. Molloy. On the Integration of Delay and Throughput Measures in Distributed Processing Models.
PhD thesis, University of California, 1981.

[33] Y.-J. Moon. Stochastic Models for Quality of Service of Component Connectors. PhD thesis, Universiteit
Leiden, October 2011.

[34] Y.-J. Moon, F. Arbab, A. Silva, A. Stam, and C. Verhoef. Stochastic reo: a case study. In Proc. of the
5th International Workshop on Harnessing Theories for Tool Support in Software (TTSS’11), Oslo, Norway,
2011.

[35] Y.-J. Moon, A. Silva, C. Krause, and F. Arbab. A compositional semantics for stochastic Reo connectors.
In Proc. of the 9th International Workshop on the Foundations of Coordination Languages and Software
Architectures (FOCLASA’10) Paris, France, pages 93–107, September 2010.

[36] Y.-J. Moon, A. Silva, C. Krause, and F. Arbab. A compositional model to reason about end-to-end QoS in
stochastic Reo connectors. Science of Computer Programming, 80:3–24, February 2011.

27

IMCReo: interactive Markov chains for Stochastic Reo Oliveira, Silva and Barbosa

[37] N. Oliveira and L. S. Barbosa. On the reconfiguration of software connectors. In Proc. of the 28th Annual
ACM Symposium on Applied Computing (SAC’13), Coimbra, Portugal, volume 2, pages 1885–1892. ACM,
March 2013.

[38] N. Oliveira and L. S. Barbosa. Reconfiguration mechanisms for service coordination. In Web Services and
Formal Methods, volume 7843 of LNCS, pages 134–149. Springer-Verlag, 2013.

[39] N. Oliveira, A. Silva, and L. S. Barbosa. Quantitative analysis of Reo-based service coordination. In Pro-
ceedings of the 29th Annual ACM Symposium on Applied Computing (SAC’14), Gyeongju, Republic of Korea,
volume 2, pages 1247–1254. ACM, March 2014.

[40] W. J. Stewart, K. Atif, and B. Plateau. The numerical solution of stochastic automata networks. European
Journal of Operational Research, 86(3):503–525, November 1995.

——————————————————————————

Author Biography

Nuno Oliveira is a PhD fellow from the High-Assurance Software Laboratory (a
INESC TEC group) at Universidade do Minho. He holds a grant from Fundação para
a Ciência e Tecnologia (FCT) for his Ph.D. work on Architectural Reconfigurations
of Interacting Services. Previously, he received a degree in Computer Science and a
M.Sc. in Informatics, both from Universidade do Minho.

Alexandra Silva is a tenured assistant professor at the Institute for Computing and
Information Science of the Radboud University Nijmegen (The Netherlands). She
is also a member of HASLab, the University of Minho’s High-Assurance Software
Laboratory. Previously, she was a post-doc at Cornell University, with Dexter Kozen.
She did her Ph.D. at the Centrum Wiskunde & Informatica, in Amsterdam, supervised
by Jan Rutten and Marcello Bonsangue.

Luı́s S. Barbosa is an Associate Professor at the Informatics Department of Uni-
versidade do Minho, Braga, Portugal, and a senior researcher at INESC TEC in
high-assurance software and formal methods. He coordinates the joint Doctoral Pro-
gramme in Computer Science of Universidades do Minho, Aveiro and Porto.

28

	Introduction
	Background
	Reo and Stochastic Reo
	Interactive Markov chains

	Interactive Markov chains for Stochastic Reo
	New connectors from old
	Parallel composition
	Synchronisation
	Properties
	Cleaning up unintended transitions
	Composition examples

	A case study
	Tool support
	Modelling
	Quantitative analysis

	The ASK system
	Modelling: rates and delays
	Analysis 1: memory issues
	Analysis 2: the Executer performance

	Related work
	Semantic models for Stochastic Reo
	Other stochastic models

	Conclusions

