On the security of CBC Mode in SSL.3.0 and TLS1.0*

Takashi kurokawa', Ryo Nojima, and Shiho Moriai
National Institute of Information and Communications Technology, Koganei, Tokyo, Japan
{blackriver, ryo-no, shiho.moriai } @nict.go.jp

Abstract

Currently, SSL (Secure Socket Layer) and TLS (Transport Layer Security) are two of the most widely
used security protocols on the Internet and TLS1.0 is one of the most supported protocol versions
through SSL/TLS. To protect the application data in SSL3.0/TLS1.0, two bulk data encryption al-
gorithms are selected by the ciphesuites of them: the stream cipher encryption or the block cipher
encryption in combination with the cipher block chaining (CBC) mode of operation. For these sev-
eral years, they have been criticized to be insecure when used in the real world. For example, the
BEAST attack against TLS1.0 and the POODLE attack against SSL3.0 had a significant impact on
the internet security not least because their techniques are clever and their computational costs are
low. In this paper, we survey their attacks and prove theoretically that the patched CBC mode in
TLS1.0 satisfies indistinguishability, which implies that it is secure against BEAST type of attack.

Keywords: SSL3.0, TLS1.0, CBC Mode, The BEAST attack, Security

1 Introduction

SSL/TLS is one of the most widely used cryptographic protocols on the Internet. SSL3.0 [16] was
released by Netscape Communications in 1996 and then TLS1.0 [9] was released by Internet Engineering
Task Force (IETF) in 1999. Updated versions TLSI.1 [10] and 7LS!1.2 [[11]] were released in 2006 and
2008, respectively.

Currently, SSL/TLS has been deployed to securely perform almost all the popular network services,
for example, online shopping and online banking. At same time, many cryptographic attacks against
SSL3.0 and TLS1.0 have been found, e.g., CRIME [30], Lucky Thirteen [2]], BEAST [13]], POODLE [26]
and RC4 biases attacks [/1, IS]E

In SSL 3.0/TLS 1.0, many cryptographic primitives have been employed, e.g., RSA [32], DH(Ef] (2],
AES [27], RC4 [34], CBC mode [14], and HMAC [28]. Among them, we are going to focus on the CBC
mode in SSL3.0/TLS1.0, which can cause security issues in SSL/TLS.

According to the SSL Pulse data [36], TLS1.0 is currently the most widely used protocol version
through SSL/T L and the CBC mode is included in many ciphersuites of the Although a software
patch was released for the CBC mode, there still remains a problem. Namely, it is not clarified whether
or not the patched CBC mode is secure against a BEAST type of attack, or how secure it is.

Journal of Internet Services and Information Security (JISIS), volume: 6, number: 1 (February 2016), pp. 2

*This paper is a full version of the work originally presented at the 2015 Asian Conference on Availability, Reliability and
Security (AsiaARES’15), Daejeon, Republic of Korea, September 2015 [20].

TCorresponding author: Security Fundamentals Laboratory, Network Security Research Institute, National Institute of In-
formation and Communications Technology (NICT), 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan, Tel: +81-42-
327-5803
IFor the overview of these attacks, see [33].
2DHE denotes ephemeral Diffie-Hellman key exchange.

3 As of December 2015, 98.8% of the sites surveyed by the SSL Pulse support TLS1.0.
4As of December 2015, 0.3% of the sites surveyed by the SSL Pulse support only RC4 ciphersuites.

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

Although we have showed that the patched CBC mode satisfies indistinguishability in our previous
paper [20], we need to clarify a relation between indistinguishability and security against a BEAST type
of attack. In this extended paper, we will demonstrate these connections in addition to related topics
for the attacks. The rest of the paper is organized as follows. In Section 2 we give a brief overview of
SSL3.0 and TLS1.0 and the attacks against them. In Section 3 we describe the preliminaries. In Section
4, we describe the original CBC mode and the patched CBC mode and discuss the connection between
indistinguishability of the patched CBC mode and BEAST type of attack. In Section 5, we present the
proof of indistinguishability. In Section 6, we conclude the paper.

2 SSL3.0 and TLS1.0

2.1 Overview of the Record Layer

SSL3.0 and TLS1.0 consist mainly of the Record Protocol, the Handshaking Protocol, the Change Ci-
pher Spec Protocol and the Alert Protocol. We omit explanations of other protocols than the record
protocol. By the record protocol, the data passed by higher layers is fragmented to information blocks.
One of the specified information blocks is the SSLCiphertext or the TLSCiphertext as shown below (See
Listing [I] [2). In case that the block cipher encryption is chosen by the CipherSuite in the SSL/TLS, the
GenericBlockCipher is selected as the fragment.

Listing 1: SSLCiphertext structure in SSL3.0

struct {
ContentType type;
ProtocolVersion verions;
uint16 length;
select (CipherSpec.cipher_type) {
case stream: GenericStreamCipher;
case block: GenericBlockCipher;
} fragment;
} SSLCiphertext;

block-ciphered struct {
opaque Content [SSLCompressed.length];
opaque MAC[CipherSpec.hash_sizel;
uint8 padding[GenericBlockCipher.padding_lengthl];
uint8 padding_length;
} GenericBlockCipher;

Listing 2: TLSCiphertext structure in TLS1.0

struct {
ContentType type;
ProtocolVersion verions;
uint16 length;
select (CipherSpec.cipher_type) {
case stream: GenericStreamCipher;
case block: GenericBlockCipher;
} fragment;
} TLSCiphertext;

block-ciphered struct {
opaque Content [TLSCompressed.lengthl;
opaque MAC[CipherSpec.hash_size];
uint8 padding[GenericBlockCipher.padding_lengthl];
uint8 padding_length;
} GenericBlockCipher;

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

The GenericBlockCipher is encrypted by the selected block cipher in combination with the CBC
mode of operation. In order to force the total length of this block structure to be an integral multiple of
the block size of the chosen block cipher, the padding is appended just after the MAC.

In SSL3.0, each byte of the padding is indefinite and the padding length is less than the block cipher’s
block size or zero. In TLS1.0, each byte of the padding is filled with the padding_length value and the
padding length is up to 255 bytes long.

The MAC is generated by the following computation (See Listing [3] [). Note that the seq_num
denotes the sequence number of the record.

Listing 3: MAC in SSL3.0

hash(MAC_write_secret + pad_2 +
hash(MAC_write_secret + pad_1 + seq_num +
SSLCompressed.type + SSLCompressed.length +
SSLCompressed.fragment)) ;
where "+" denotes concatenation.

Listing 4: MAC in TLS1.0

HMAC_hash (MAC_write_secret, seq_num + TLSCompressed.type +
TLSCompressed.version + TLSCompressed.length +
TLSCompressed.fragment)) ;

where "+" denotes concatenation.

2.2 The CBC Mode in SSL3.0 and TLS1.0

In the SSL/TLS, a plaintext is “tagged” before the encryption and the tag is computed as the MAC,
as described above. In other words, before encrypting a plaintext M, the tag ¢ is firstly generated and
secondly appended to M, then the message

M =Mt
is thirdly encrypted using the CBC mode (See Figure[T)). Then, the ciphertext of the (tagged) message
M = M'[0],M'[1],....M'[m—1])
is represented as
Fr(IVeM'(0]),..., Fk(Clm—2]®M'[m— 1]||padding| padding length), (1)

where .Fk : {0,1}* — {0,1}* is a secure block cipher which can be modeled as the pseudorandom
permutation (See Section [3.1), A is the block length, IV is an initial vector, padding is the padding of
the GenericBlockCipher structure, padding_length is the length of padding,

Fr(IVeM'[0]) for i =0,
Cli] = { Zx(Cli— 1)@ M'[i)) for 1 <i<m—2,
Fk(Clm—2]®M'[m—1]||padding||padding length) for i=m— 1.

The IV for the first record is generated from the SecurityParameters in the the SSL/TLS and an IV
of the next record is set from a ciphertext block of a previous record.

The CBC mode in the SSL/TLS has two potential weaknesses: one is in the padding scheme and the
other is in the handling of the initial vector IV [25]].

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

v S7) S ---->0

cfo] o 1) [Clm-1]

Figure 1: The CBC mode in SSL 3.0 and TLS 1.0

Padding: In the encryption of the form Eq.(I)), which follows the Mac-then-Enc paradigm [17], the
message authentication code is not applied to the padding. In other words, the padding is appended after
the generation of the tag. When catching an error in this form, we can consider two cases: the error of
the padding scheme and that of the message authentication code. If these two cases can be distinguished
by an adversary, an attack which is known as the padding oracle attack [37] may work. For example, a
timing analysis [8] enables the adversary to distinguish these two cases. There is also a possibility that
other side channel information can be exploited to attack the CBC mode. In fact, the Moller et al. [26]]
found a practical attack against the CBC mode in SSL3.0, named the POODLE attack (See Section
[2.3.2). Because TLS employs a different padding scheme than that of SSL, this attack cannot be applied
directly to the CBC mode in TLS. However, some implementations of TLS was affected by the POODLE
attack [22].

Choice of TV: In SSL 3.0 and TLS 1.0, the initial vector IV after the first record is chosen from the
last block of the ciphertext, therefore the adversary who can eavesdrop the ciphertexts knows the IV
before the next plaintext is encrypted [31]]. Since this means that IV is predictable from the adversary’s
viewpoint, the CBC mode in SSL 3.0 and TLS 1.0 does not satisfy indistinguishability. This fact does not
immediately imply that the adversary can recover the whole plaintext, and moreover it would be expected
that the time complexity of the recovering the plaintext would be O(2*) for one block of ciphertexts.
However, Duong and Rizzo demonstrated the BEAST attack [13] whose time complexity is O(4).

In TLS1.1 [10] and TLS1.2 [11]], the subsequent IV is securely sent from one to the other by the
following structure (See Listing [5).

Listing 5: GenericBlockCipher structure in TLS1.1 and TLS1.2

block-ciphered struct {
opaque IV[CipherSpec.block_length];
opaque content [TLSCompressed.length];
opaque MAC[CipherSpec.hash_sizel;
uint8 padding[GenericBlockCipher.padding_length];
uint8 padding_length;
} GenericBlockCipher;

2.3 Attacks against SSL.3.0 and TLS1.0

In this section, we give outlines of the BEAST attack in addition to the POODLE attack and RC4 biases
attacks by way of comparison.

Some web browsers and web application programming interfaces (APIs) adopt Same-Origin Policy
(SOP) [6] to restrict interactions between different domains. Therefore, a security flaw in SOP involves

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

Rogue Server
Attacker

Control

Detection of

Injection of Errogs
Access Malicious

Code Eavesdropping and/or
Manipulation of data

’ HTTPS Access
(Cookie, Sensitive data, etc.)

Victim user Legitimate Server

El

Figure 2: Schematic View of Attack Scenarios

substantial risk of data theft such as secret information typed into legitimate web sites and HTTP cook-
ies [5]] by an attacker.

In the attacks cited below, we make an implicit assumption that a target of an attacker knows a
vulnerability of SOP in a web browser of a target, etc..

Let us suppose that an attacker can control the following actions of the target (See Figure [2):

S1. To direct a target to a rogue web server under an attacker’s control and access to it.
S2. To infect a target with malicious code inserted into a web page on a rogue web server.
S3. To direct a target to a legitimate web server and access to it.

S4. To make a target send his secret information to a legitimate web server.

2.3.1 The BEAST Attack

The BEAST attackﬂ [13] is the chosen-plaintext attack against SSL.3.0 and TLS1.0 and is mainly divided
into two phases described below (See Figure [3):

B1. Chosen Boundary Phase:

(a) An attacker generates a string of a certain length and sends it to a target.

(b) A target (unknowingly) prepends it to a plaintext to be encrypted and encrypts the resulting
text in CBC mode and sends the ciphertext to a server.

(c) An attacker knows the ciphertext.
B2. Blockwise Phase:

(a) An attacker XORs a certain block of a plaintext, a certain and the last block of a ciphertext
and sends it to a target.

(b) A target (unknowingly) encrypts the resulting text and sends the ciphertext to a server.

SBEAST stands for “Browser Exploit Against SSL/TLS”.

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

block boundaries |
Fomio)
P*[0] PH[1] -eeeeeee PHn-1] | C*0]D C*n-11D(r Il i)
i=0,...,.255
v y v v
v H - EB >0 _>EB >0
I Lo I !
v N v v o
C*[0] CH*[1] ++-eee C*[n-1] C*[n] = C*[1]
Chosen Boundary Phase Blockwise Phase

Figure 3: Schematic View of the BEAST Attack

block boundaries

N\

r Em[O]

r 4 Em[()]im[l]

Figure 4: Sequential Alignment in the Chosen Boundary Phase in the BEAST Attack

(c) An attacker repeats the above procedures until a certain condition is satisfied.

We refer to such a attack as BEAST type of attack. Note that, in the first phase, it is crucial to make
the first unknown byte put the last byte of a certain (but not first) block of a plaintext and, in the second
phase, an attacker can learn the IV of the next record as the last block of the last ciphertext though he
does not know the first IV. Moreover, an attacker can learn the unknown byte m[0] if he continues to

encrypt forged blocks C*[0] & C*[n— 1] @ (r||i)(i = 0,...,255) until the resulting encrypted block C*[n]
equals to a former block C*[1] (See Figure [3)).
In fact, at the second block of the first record, we have

F'(C) =c0]e P 1] =C*[0]& (r||m[0]),
and at the first block of the second record, thanks to the cancellation of C*[n — 1], we have
Z (Ch) =Ch-1a(C0eC -1 (i) =C o] ().

Then m[0] = i when the equality C*[n] = C*[1] holds.
The other unknown bytes of a plaintext can be decrypted if an attacker adjusts a length of a prepended
string in the manner as mentioned above (See Figure).

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

To mount the BEAST attack, two underlying conditions are necessary. One is that there exists a
vulnerability to bypass Same Origin Policy (SOP) in the browser and the other is the predictability of
IV, which is the case of the CBC mode in SSL3.0/TLS1.0. The attack had a huge impact since Duang
and Rizzo presented the software bug on SOP in Java. There is a possibility that there are many software
bugs other than Java. Hence, browser vendors such as Google, Microsoft and Mozilla released a software
patch for the CBC mode in addition to the patch for Java [33]].

2.3.2 The POODLE Attack

The POODLE attackﬁ [26] is the man-in-the-middle attack against CBC mode in SSL3.0, which exploits
weakness of validity check of the padding scheme, and is mainly divided into two phases described
below (See Figure[5)):

P1. Chosen Boundary Phase:

(a) An attacker generates strings and sends it to an target.

(b) A target (unknowingly) inserts them to a plaintext so that only an unknown byte is put at
the last byte of a certain block and a boundary between a rightmost byte of the MAC and a
leftmost byte of the padding becomes a block boundary.

(c) A target encrypts the resulting text in CBC mode and sends the ciphertext to a server.
P2. Blockwise Phase:

(a) An attacker substitutes a certain block of the ciphetext including the unknown byte for the
last block of the ciphertext.

(b) An attacker continues the above phases until a server can decrypt the manipulated ciphertext
without errors.

block boundaries dding length = block size - 1
oc oun"a.rl.e.s.\.\ pas mlg eng ock size
g m righ:::;:(’jl“k paddingg

P[0] P[1] oo P[n-2] P[n-1]

v l l l

v >D > ——D —OD

‘ Lo ! !

Tk Tk Tk Tk

v \ v v
C[0] C[1] «+eevees C[n-2] CIn-1] <— (C[1]

Figure 5: Schematic View of the POODLE Attack

SPOODLE stands for “Padding Oracle On Downgraded Legacy Encryption”.

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

An attacker can learn the unknown byte m when a server decrypts the ciphertext without errors (256
times on average). In fact, at the second and the last block, we have

F(C) =coj@P[l] and Fg'(Cln—1])=Cn—2]®Ph—1],
and under the condition that no error is occurred when decrypting, we have
P[1]=Cl0]® F¢ ' (C[1]) =C[0]® F¢ ' (Cln—1]) =C[0] & C[n—2] & P[n—1].
Then

m = the last byte of P[1] = the last byte of (C[0] ©Cln—2]® P[n—1])
= the last byte of (C[0] ® C[n —2]) @ (block size — 1),

because a server only checks whether or not the last byte of (%' (C[1]) ® C[n —2]) equals to the padding
length when decrypting.

To avoid the POODLE attack, SSL 3.0 was disabled by default in some web browsers [21} 13, 24] and
was then deprecated by IETF RFC 7568 [4].

2.3.3 RC4 biases Attacks

RC4 biases attacks are plaintext recovery attacks in the broadcast setting where a same plaintext is
encrypted with different keys (See Figure [6). Needless to say, these attacks are not related to the CBC
mode. Several biases of the RC4 keystream have already been found (See [18 [1]).

K c®
1/

plaintext P -

! different

/
\kn
\ e

ciphertexts

Figure 6: Schematic View of the Broadcast Setting

Key H H Zl’ ZZ’ Z3724,ZS

Figure 7: The RC4 Key Stream

For example, in the broadcast setting, second byte of the RC4 keystream (See Figure|[/) is biased to
zero [23]]. In other words, Z, = 0 occurs with twice the expected probability. So most frequent value of
a ciphertext Co(= P, © Z) can be regarded as a plaintext P, in this case. Given 232 ciphertexts, the first
257 bytes of the RC4 key stream Z;,2,, ..., Zps7 can be extracted with the probability more than 0.5 [19].

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

Note that an attacker does not need multiple receivers and the broadcast setting can be feasible in other
attack scenarios.

Because of RC4 biases attacks, IETF RFC 7465 [29] prohibits the use of the RC4 ciphersuites in
TLS.

3 Preliminaries

3.1 Definition

Let A and 7 denote security parameters, where each of them represents the length in byte. The length A
is the block cipher’s block size, and hence A is a multiple of eight. The negligible function is denoted by
€(A), or simply by &.

Pseudorandom Function and Permutation: A pseudorandom function (PRF) & consists of a pair of
algorithms (¢, .):

e The key generation algorithm %" is a PPT (probabilistic polynomial time) algorithm and generates
akey K.

e The evaluation algorithm . is a deterministic polynomial time algorithm. It generates .# (K, x)
given the key K and a point x.

Definition 3.1 (Pseudorandom Function, PRF). We say that & = (¢ ,.F) is PRF if for any PPT algo-
rithm A,

}Pr[K<i AT K = 1] —Pr[gz' ﬁ% A7) = IHS eprr(A),

where % is a set of all functions such that both the domain and the range are the same as ¥ (K,-),
respectively.

If the function .#k(-) := .% (K, -) is a permutation, then we say that % is a pseudorandom permuta-
tion (PRP). In this case, we denote the negligible function by &pgrp.

Symmetric Key Encryption: The symmetric key encryption (SKE) scheme .& consists of a triple of
algorithms (#,&,2):

e The key generation algorithm %" is a PPT algorithm which generates a key K.

e The PPT encryption algorithm & takes a key K and a plaintext M as input, and outputs a ciphertext
C. If we consider a stateful SKE, then & has additional input st as a state, and outputs a new state
st’ as well.

e The decryption algorithm & is a deterministic polynomial time algorithm. This algorithm takes a
ciphertext C and a key K as input and outputs a plaintext M or L representing an invalid ciphertext.
If we consider a stateful SKE then Z is given a state st and outputs a new state st’ in addition.

The SKE scheme must be “decryptable.” That is, for any key K and any plaintext M,
P2(K,&(K,M))=M

holds.
To define the security, we consider the left-or-right oracle LRg ,(My,M;) = & (K, M), where b €

{0,1}.

10

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

Definition 3.2 (IND-CPA). We say that the SKE ./ & = (¢, &, 9) satisfies the (€ip,q) IND-CPA if for
any PPT algorithm A,

1
Advinp(A) = [Pr(K & 2, b & {0,115/ & AR C) | = p] - 5| < enn(2),

where q is the number of queries to LR oracle.

Message Authentication Code (MAC): The message authentication code (MAC) scheme .# </ consists
of a triple of algorithms (#",.7, 7).

e The key generation algorithm %" is a PPT algorithm and outputs a key K.

e The tag generation algorithm .7 is a deterministic polynomial-time algorithm. This algorithm
takes a key K and a plaintext M as input and outputs a tag ¢ of length 7.

e The verification algorithm ¥ is a deterministic polynomial-time algorithm. This algorithm takes a
key K, a message M, and a tag ¢ as input, and outputs O or 1.

We say that .# <7 satisfies the completeness if ¥/ (K,M,t) = 1 is equivalent to t = 7 (K,M). We
assume that, for a randomly chosen key K, .7 (K, -) is a pseudorandom function. The negligible function
is denoted as &ppg.

3.2 The Format in the SSL/TLS

In the CBC mode of the SSL/TLS, before encrypting the plaintext Content, some additional information
for maintaining the SSL/TLS session is appended. That is, according to the record layer (See Section

2.1,
Content,MAC,padding,padding length

are encrypted, simultaneously. Here padding is a padding, padding length is the length of the
padding, and MAC is a tag of

MAC write_secret,seq.num,type,version,length, fragment

computed by the message authentication code HMAC.

A sequence number seq_num is a binary sequence of 64 bit length. This is a counter starting from O,
and it is incremented for each record. This is originally designed for preventing the replay attack, but we
show later that this counter makes the “patched” CBC mode in TLS1.0 indistinguishable. There is other
information such as type, versions, etc., but these are not related to our security analysis and we will
omit them henceforth.

4 The Effect of the Patch to the CBC mode

Let A be a block length of the underlying block cipher (in byte), and let || be concatenation. Then, for a
binary sequence X, we define X[i] and X[i..] as

A byte A byte <A byte A byte <A byte
X =X[0] | X(A][[--- | X[n—1], X[i..]= X[] [|--- | X[n—1].

11

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

Algorithm L%/weakCBC Algorithm (g}WeakCBC (K, M; St)

Kg%RP IV« st
Output K M0],....Mn—1]+ M
C[0] +— Fprp (K, M[0] © IV)
Fori=1ton—1
Cli] + Fpre(K,M[i] © C[i — 1])
Output C = (IV,C[0],...,C[n—1]) and st =C[n— 1]

Table 1: The original CBC mode in TLS1.0 (WeakCBC mode)

Algorithm JZjeaxtisio Algorithm Zyeartisio(K,C;st)
Kyeaxcre & HiieakcBe Parse st as ¢
Kwa & 2 Parse K as (Kyeaxcec, Kua)
K < (Kyeaxcec, Kua) M’ < Dyeaxcac(Kueaxcec,C)
Output K M" «— Pad~ (M)
If M" # 1 then parse M" as M ||t
Algorithm &yeaxisio(K,M;st) else output L
Parse st as (Styeaxcsc, €) If 7 (K, c|||M|||M) =1,
Parse K as (Kyeaxcac, Kua) output (M, c+ |M|)
t <+ T (Kua,cl|||M|||M) else output |
(C, styeaxcec) < Sueaxcac(Kueaxcec, Pad(M||7);st)
Output (Ca (StWeakCBC,C + ’MD)

Table 2: Unpatched CBC (WeakTLS1.0)

Hence, except for the last block X[n — 1], X[i] is A bytes. Let X[i] be a byte sequence of A'(< 1) bytes.
Then we define X [i|[j] and X[i][j..] as

1 byte 1 byte
X[i] =X[@(O][|--- 1X[I[A" = 1], X[I[j.] = XI[AN--- [IX[A" = 1].

4.1 Weak CBC Mode in TLS1.0

Let & = (prp, Fprp) be a PRP. The CBC mode in TLS1.0 is implemented as Table where we assume
that the length of the message M is a multiple of A, and the initial vector IV is randomly chosen at the
beginning. The decryption algorithm Zyeaxcre is not described since it is trivial.

We call this version of the CBC mode as the WeakCBC mode. Clearly, in the WeakCBC mode, since
the adversary knows IV(= C[n — 1]) in advance, it does not satisfy the IND-CPA security. This is the
reason why the original CBC mode (WeakCBC) is vulnerable to the BEAST attack.

4.2 Unpatched CBC

In TLS1.0, the encryption is done by Mac-then-Enc. Hence, the tag is generated before the message is
encrypted in the CBC mode. (See Table[2]) In Table [2] ¢ plays the role of the counter which starts from
0. The counter represents the sequence number seq_num in Sec[3.2] The other information such as type
is not related in our security analysis, and hence we will omit it from this algorithm.

12

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

Algorithm Jg/SplTLSLO Algorithm gSplTLSl.O (K, M; St)
$
K < HyeaxtLs (Co,st) < SyeaxtLst.o(K,M[0][0];st)
Output K If M is one byte then output (C, st)
else (Cl,St) — éaWeakTLSLO (K,M[O][l],st)
and output (Cp,C)) and st

Table 3: Patched CBC (SpITLS1.0)

M{o][0], T(clllen(at0][0]) | M0][0]) MIO][1..], T(c+len(MI0][1..]) | len(MIO][1..1) [MO][1..]) |

|| is concatenation, len(x) is length of x f

’ padding ‘ ’ padding
v —>® S @ ---->@ S
IE E | I IE

,,,

Figure 8: Patched CBC: 1/n — 1 Record Splitting Patch Applied WeakTLS1.0 (SpITLS1.0)

We call the authenticated encryption of Table [2| as WeakTLS1.0. The algorithm Pad is the padding
algorithm which is defined as Eq., and Pad ™! is the algorithm which removes the padding. As defined
in Section Mo = (S, 7, V) is the message authentication code.

Since IV is predictable, WeakTLS1.0 does not satisfy the IND-CPA property as well.

4.3 Patched CBC

To fix security flaws of the CBC mode, some software patches for the WeakTLS1.0 described in Sec4.2]
have been released by browser vendors. For example, a countermeasure to prepend an empty plaintext
record before sending the actual plaintext records is no longer used since it is not sufficient for the
practical use due to the lack of interconnectivity [25]. At present, the software patch named 1/n — 1
Record Splitting Patch [35] is widely used, which is implemented as Table [3] and Figure [§]

We call the authenticated encryption scheme described in Table [3]as SpITLS1.0. For the decryption,
the algorithm outputs the plaintexts using Zyeaxrrs1.0 multiple times.

In SpITLS1.0, the encryption algorithm for WeakTL.S1.0 is invoked two times to encrypt the message
M. For the first time, the first byte of the message M[0][0] is encrypted, and for the second time the
remained message M[0][1..] is encrypted. The security proof of SpITLS1.0 is given as follows:

Theorem 4.1. If & is PRP, and .# < is (complete) PRF, then SpITLS1.0 satisfies (€inp,q) IND-CPA
security, where
2

q
+8G4+2H.

(!

-1
END = 2€prr + 2Epmp + (gs/l)

13

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

and 8Aq' is the bit-length of all the ciphertexts generated by LR oracle. For €ga,
° if)L—l < 7 then, 8G4:%

—1
e clse eG4 = ‘Iz(grj.

The theorem says that the indistinguishability of the patched CBC mode depends on the tag length.
For example, if AES and HMAC-SHALI are used as & and .# <f respectively then A = 16, T = 20 and
hence g4 = q(g— 1)/2'?!. If the truncated HMAC defined in RFC 6066 [13] is used instead then T = 10
and hence £g4 = q(q —1)/27°. Advinp of SpITLS1.0 may increase in this case.

-/ EveaxtLs1.0 18 NOt secure against BEAST type of attack, as stated in Section Then, can we
apply BEAST type of attack to the patched CBC mode? We will take a look at a simple example as
follows. We will encrypt a plaintext

P=ri||r||m where |ri|=|m|=1,|n|=1-2

by SpITLS1.0 (See Figure[J).

ry m , i
P[2] § P[7]
\ i
cil——>@ i Col—®
T 7
N —
N
C[2] C[71
In Chosen Boundary Phase In Blockwise Phase

Figure 9: A Simple Example of the Record Splitting

At the first block of the second record in the chosen boundary phase, we have
C[1]® F¢ ' (C[2]) = P[2] = r2||m]|(a leftmost byte of a tag in P[2]).

Let us suppose that an attacker makes a target encrypt forged blocks ry||r2||i (where i = 0,...,255) in
the blockwise phase. So, at the first block of the second record in the blockwise phase, we have

C[6] ® F ' (C[7]) = P[7] = r2]|i]|(a leftmost byte of a tag in P[7]).
In this example, we will find the following observations because of the counter ¢ in the tag.
Ol. C[6] varies whenever C[7] is computed in the blockwise phase.

02. Both P[2] and P[7] contain leftmost bytes of different tags respectively.

14

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

Because the comparison between C|[2] and C[7] is not useful, the patched CBC mode completely defeats
all attacker’s attempts in the blockwise phase, as was presented in Section[2.3.1] Therefore, they indicate
that it is hard to apply BEAST type of attack to the patched CBC mode without enough oracle access for
both & and .# </ and then we can not distinguish plaintexts from these ciphertexts.

5 Security Proof of Theorem [4.1]

We define a sequence of games and prove its IND-CPA security. In Game i, the probability of the
adversary D outputting 1 is described by

Pr[D =1 | Game i].
Game 0O: In this game, we set b = 0 in the definition of IND-CPA. Therefore,

Pr[D = 1| Game 0].

Game 1: This is the same as Game 0 except for the following. The modification is to replace the PRP .#
with the random permutation. By the definition of PRP,

|Pr[D =1 | Game 0] — Pr[D = 1 | Game 1]| < &pgp.

Game 2: This game is the same as Game 1 except for the following. We replace the random permutation
& with the random function. By the switching lemma of [[7],

q(q —1)

|Pr[D =1 | Game 1] —Pr[D =1 | Game 2]| < To8A+T

where ¢ is the number of queries to the random permutation. Therefore, this is a total block length of
the ciphertexts.

Game 3: This is the same as Game 2 except for the following. We replace .# </ modeled as the PRF
with the random function. Since the difference is bounded by the definition of the PREF,

|Pr[D = 1| Game 2] —Pr[D =1 | Game 3]| < &ppg.

Game 4: This game is the same as Game 3 except for the following. Let M; be the i-th message to be
encrypted in LR oracle, and let c; be its counter. Also we define

1; = Pad(M;[0][0]|| 7 (cil| |M:[0][0] ||| M;:[0}[0]))

In this game, if there exists a pair (i, j) (i # j) such that [;[0] = I;[0] then LR oracle stops. Let Coll, ;
be the event that there exists a pair (i, j) (i # j) such that ;[0] = I;[0]. Then, if for every i,j (i # j),
Coll,; ; does not occur then the probability that D outputs 1 in Game 3 and in Game 4 are the same.

Let us estimate the amount of Pr[Co11; ;. Depending on the length of the tag 7, we consider two
cases A —1<7tandA—1>T7.

15

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

Case A — 1 < 7in Game 4: Since M[0][0] is 1 byte which can be controlled by the adversary, and A — 1 <
7, the input to Fx is

A = IV M[0J[0][[[0][0]]| - - - [[¢[0][A — 2],

where 1 = 7 (ci||M;[0] [0]] [M:[0][0]).

Further, since ¢; is a counter, the input ¢;|||£;[0][0]|||£;[0][0] to .7 is not duplicate. Hence, A[0][1..]
is random since .7 is a random function. Therefore, for every i, j (i # j), Pr[Coll; ;] < 1/28%8. Taking
the union bound, we have

|Pr[D = 1| Game 3] —Pr[D =1 | Game 4]| < €4

where €g4 = q;g;? , and g is the number of queries to LR oracle.

Case A — 1 > 7in Game 4: By the similar discussion as above, we can estimate the difference as

|Pr[D = 1| Game 3] —Pr[D = 1 | Game 4]| < €ga,

q(g—1)
281—1 .

where €4 =

Game 5: This game is the same as Game 4 except for b = 1. We prove that the difference of probability
D outputting 1 in Game 5 and in Game 4 is

2
|Pr[D=1|Game 4] —Pr[D =1 |Game5]|§§ﬁ. (2)

If the input to the random function .#k is not duplicate, then a bit b is information theoretically
hidden. Therefore, we estimate the probability that the input to . % duplicates. Let Bad be the event that
input to the random function duplicates. Then, the left-hand side of inequality (2) is bounded by Pr[Bad].

The oracle LR encrypts My or M. From the previous game we know that the first query [;[0] to g
is not duplicated. Hence, we can estimate the probability of Bad happens as

g+1 gq+2 qd _4q°
Pr[Bad] < W—FW—F"'—FW < 8%
Game 6: This game is the same as Game 5 except for the followings. Firstly we replace the random
function .7 in .# </ with the PRF, and then replace the random function .#x with the PRP. Since this

modification implies going the reverse direction in the sequence of games, we have

|Pr[D = 1| Game 5] —Pr[D = 1 | Game 6]|

q(q —1)

< &pgr + Eppp + 28AT1

Since Game 0 is b = 0 in the game IND-CPA and Game 6 is b = 1 in the game IND-CPA, we have

1
| Pr[K & Hsp1TL81.0,D & {0,1},b' & ALRes() |b="b"]—=|
(L) 2

q\q q
SzSPRF+28PRP+(28)L+£G4+28;L7

where if A — 1 < 7 then, g4 = qég;? , and else €g4 = qz(gq; Y. This concludes the proof.

16

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

6 Conclusion

We have given proofs that the patched CBC mode which is currently recommended by major browser
vendors satisfies indistinguishability. As presented by Moller, security flaws of the CBC mode were
previously found by several experts. The patched CBC mode has arisen because the countermeasure
to prepend an empty plaintext record fragment that is compliant with the TLS1.0 specification did not
satisfy interoperability between some devices. The security is guaranteed if the length of the tag is longer
than the block length of the underlying block cipher. We have also shown that if the tag length is shorter
than the block length then the security bound may not be tight enough for the real use. In spite of our
securiy proof, we generally recommend using the latest version of TLS.

References

[1] N.J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N. Schuldt. On the Security of RC4
in TLS. In Proc. of the 22th USENIX Security Symposium, Washington, DC, USA, pages 305-320, August
2013.

[2] N.J. AlFardan and K. G. Paterson. Lucky Thirteen: Breaking the TLS and DTLS Record Protocols. In Proc.
of the 2013 IEEE Symposium on Security and Privacy (SP’13), Berkeley, California, USA, pages 526-540.
IEEE, May 2013.

[3] R. Barnes. The POODLE Attack and the End of SSL 3.0, October 2014. [Online;
Accessed on February 20, 2016] https://blog.mozilla.org/security/2014/10/14/
the-poodle-attack-and-the-end-of-ss1-3-0/.

[4] R. Barnes, M. Thomson, , A. Pironti, and A. Langley. Deprecating Secure Sockets Layer Version 3.0. IETF
RFC 7568, June 2015. http://www.ietf.org/rfc/rfc7568. txtl

[5] A. Barth. HTTP State Management Mechanism. IETF RFC 6265, April 2011. http://www.ietf.org/
rfc/rfc6265. txtl

[6] A. Barth. The Web Origin Concept. IETF RFC 6454, December 2011. http://www.ietf.org/rfc/
rfc6454.txtl

[7] M. Bellare and P. Rogaway. The Security of Triple Encryption and a Framework for Code-Based Game-
Playing Proofs. In Advances in Cryptology - EUROCRYPT 2006, Proc. of the 25th Annual International
Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’06), St. Petersburg,
Russia, volume 4004 of Lecture Notes in Computer Science, pages 409—426. Springer Berlin Heidelberg,
May-June 2006.

[8] B. Canvel, A. P. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password Interception in a SSL/TLS Channel.
In Advances in Cryptology - CRYPTO 2003, Proc. of the 23rd Annual International Cryptology Conference
(CRYPTO’03), Santa Barbara, California, USA, volume 2729 of Lecture Notes in Computer Science, pages
583-599. Springer Berlin Heidelberg, August 2003.

[9] T. Dierks and C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, January 1999. http://www.ietf.
org/rfc/rfc2246.txt.

[10] T. Dierks and E. Rescorla. The TLS Protocol Version 1.1. IETF RFC 4346, April 2006. http://www.ietf.
org/rfc/rfc4346.txt.

[11] T. Dierks and E. Rescorla. The TLS Protocol Version 1.2. IETF RFC 5246, August 2008. http://www.
ietf.org/rfc/rfcb246.txt.

[12] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory,
22(6):644-654, 1976.

[13] T. Duong and J. Rizzo. Here Come The & Ninjas, May 2011. [Online; Accessed on February 20, 2016]
http://netifera.com/research/beast/beast_DRAFT_0621.pdf.

[14] M. Dworkin. Recommendation for Block Cipher Modes of Operation, Methods and Techniques. NIST
Special Publication 800-38A, December 2001. [Online; Accessed on February 20, 2016] http://csrc.
nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

17

https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
http://www.ietf.org/rfc/rfc7568.txt
http://www.ietf.org/rfc/rfc6265.txt
http://www.ietf.org/rfc/rfc6265.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://netifera.com/research/beast/beast_DRAFT_0621.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

D. Eastlake. Transport Layer Security (TLS) Extensions: Extension Definitions. IETF RFC 6066, January
2011. http://www.ietf.org/rfc/rfc6066.txt.

A. O. Freier, P. Karlton, and P. C. Kocher. The Secure Sockets Layer (SSL) Protocol Version 3.0. IETF RFC
6101, August 2011. http://www.ietf.org/rfc/rfc6101.txt,

P. Gutmann. Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS). IETF RFC 7366, September 2014. http://www.ietf.org/rfc/rfc7366.txt.

T. Isobe, T. Ohigashi, Y. Watanabe, and M. Morii. Full Plaintext Recovery Attack on Broadcast RC4. In Fast
Software Encryption - Revised Selected Papers of the 20th International Workshop (FSE’13), Singapore,
volume Lecture Notes in Computer Science of 8424, pages 179-202. Springer Berlin Heidelberg, March
2013.

T. Isobe, T. Ohigashi, Y. Watanabe, and M. Morii. Comprehensive Analysis of Initial Keystream Biases of
RC4. IEICE Transactions, 97-A(1):139-151, 2014.

T. Kurokawa, R. Nojima, and S. Moriai. Can We Securely Use CBC Mode in TLS1.0? In Information and
Communication Technology, Proc. of the 3rdThird IFIP TC 5/8 International Conference, ICT-EurAsia 2015,
and 9th IFIP WG 8.9 Working Conference, CONFENIS 2015, Held as Part of WCC 2015, Daejeon, Korea,
volume 9357 of Lecture Notes in Computer Science, pages 151-160, October 2015.

A. Langley. An update on SSLv3 in Chrome, October 2014. [Online; Accessed on February 20, 2016]
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/Vnhy9akM_14.

A. Langley. The POODLE bites again (08 Dec 2014), December 2014. [Online; Accessed on February 20,
2016] https://www.imperialviolet.org/2014/12/08/poodleagain.html,

I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. In Fast Software Encryption, Revised Papers
of the 8th Fast Software Encryption (FSE’01) Yokohama, Japan, volume 2355 of Lecture Notes in Computer
Science, pages 152-164. Springer Berlin Heidelberg, April 2001.

Microsoft Security Response Center (MSRC). Security Advisory 3009008 updated, October 2014. [On-
line; Accessed on February 20, 2016] http://blogs.technet.com/b/msrc/archive/2014/10/29/
security-advisory-3009008-released. aspx.

B. Moller. Security of CBC Ciphersuites in SSL/TLS: Problems and Countermeasures, May 2004. [Online;
Accessed on February 20, 2016] http://www.openssl.org/~bodo/tls-cbc.txtl

B. Moller, T. Duong, and K. Kotowicz. This POODLE Bites: Exploiting The SSL 3.0 Fallback, September
2014. [Online; Accessed on February 20, 2016] https://www.openssl.org/~bodo/ssl-poodle.pdf.
National Institute of Standards and Technology. Specification for the ADVANCED ENCRYPTION STAN-
DARD (AES). Federal Information Processing Standards Publication (FIPS) 197, November 2001. [Online;
Accessed on February 20, 2016] http://csrc.nist.gov/publications/fips/fips197/fips-197.
pdf.

National Institute of Standards and Technology. The Keyed-Hash Message Authentication Code (HMAC).
Federal Information Processing Standards Publication (FIPS) 198-1, July 2008. [Online; Accessed on Febru-
ary 20, 2016] http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf.
A. Popov. Prohibiting RC4 Cipher Suites. IETF RFC 7465, February 2015. http://www.ietf.org/rfc/
rfc7465.txtl

J. Rizzo and T. Duong. The CRIME attack, September 2012. [Online; Accessed on February 20,
2016] Ekoparty 2012, https://docs.google.com/presentation/d/11eBmGiHbYcHROgL5nDyZChu_
-1Ca2Gizeu0faLU2HOU/.

P. Rogaway. Problems with Proposed IP Cryptography, April 1995. [Online; Accessed on February 20, 2016]
http://www.cs.ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txtl

RSA Laboratory. PKCS #1 v2.2: RSA Cryptography Standard. RSA Laboratories’ Public-Key Cryptogra-
phy Standards (PKCS), October 2012. [Online; Accessed on February 20, 2016] https://www.emc.com/
collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf,

P. G. Sarkar and S. Fitzgerald. ATTACKS ON SSL - A Comprehensive Study of BEAST, CRIME,
TIME, BREACH, LUCKY 13 & RC4 BIASES, August 2013. [Online; Accessed on Febru-
ary 20, 2016] https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/ssl_
attacks_survey.pdfl

18

http://www.ietf.org/rfc/rfc6066.txt
http://www.ietf.org/rfc/rfc6101.txt
http://www.ietf.org/rfc/rfc7366.txt
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/Vnhy9aKM_l4
https://www.imperialviolet.org/2014/12/08/poodleagain.html
http://blogs.technet.com/b/msrc/archive/2014/10/29/security-advisory-3009008-released.aspx
http://blogs.technet.com/b/msrc/archive/2014/10/29/security-advisory-3009008-released.aspx
http://www.openssl.org/~bodo/tls-cbc.txt
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://www.ietf.org/rfc/rfc7465.txt
http://www.ietf.org/rfc/rfc7465.txt
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
http://www.cs.ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txt
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/ssl_attacks_survey.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/ssl_attacks_survey.pdf

The CBC Mode in SSL3.0/TLS1.0 Kurokawa, Nojima, and Moriai

[34]

[35]

[36]

[37]

B. Schneier. Applied Cryptography - Protocols, Algorithms, and Source Code in C (2nd. edition). Wiley,
1996.

X. Su. Bugzilla Bug 665814 Comment 59, July 2011. [Online; Accessed on February 20, 2016] https:
//bugzilla.mozilla.org/show_bug.cgi?id=665814#c59.

Trustworthy Internet Movement. SSL Pulse - Survey of the SSL Implementation of the Most Popu-
lar Web Sites. [Online; Accessed on February 20, 2016] https://www.trustworthyinternet.org/
ssl-pulse/.

S. Vaudenay. Security Flaws Induced by CBC Padding - Applications to SSL, IPSEC, WTLS ... In Ad-
vances in Cryptology - EUROCRYPT 2002, Proc. of the 2002 International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT’02), Amsterdam, The Netherlands, volume 2332
of Lecture Notes in Computer Science, pages 534-546. Springer Berlin Heidelberg, April-May 2002.

Author Biography

Takashi Kurokawa received the B.S. degree in mathematics from Waseda Univer-
sity, Tokyo, Japan, in 1988 and the M.S. in mathematics from the University of Tokyo
in 1991. He works for NICT as a guest researcher and a technical expert since 2004.
He is taking a doctor’s course at Graduate School of Engineering and Resource Sci-
ence, Akita University. His research interests include information security, especially
security evaluations of cryptographic technologies.

Ryo Nojima is a senior researcher at the National Institute of Information and Com-
munication Technology. His main research interests include cryptography and infor-
mation security, especially McEliece cryptosystems and SSL/TLS.

Shiho Moriai received the B.E. degree from Kyoto University in 1993, and Ph.D.
from the University of Tokyo in 2003. She is Director of Security Fundamentals Lab-
oratory, Network Security Research Institute, NICT. She serves on several commit-
tees for information security of Japan e-government systems and critical infrastructure
systems.

19

https://bugzilla.mozilla.org/show_bug.cgi?id=665814#c59
https://bugzilla.mozilla.org/show_bug.cgi?id=665814#c59
https://www.trustworthyinternet.org/ssl-pulse/
https://www.trustworthyinternet.org/ssl-pulse/

	Introduction
	SSL3.0 and TLS1.0
	Overview of the Record Layer
	The CBC Mode in SSL3.0 and TLS1.0
	Attacks against SSL3.0 and TLS1.0
	The BEAST Attack
	The POODLE Attack
	RC4 biases Attacks

	Preliminaries
	Definition
	The Format in the SSL/TLS

	The Effect of the Patch to the CBC mode
	Weak CBC Mode in TLS1.0
	Unpatched CBC
	Patched CBC

	Security Proof of Theorem 4.1
	Conclusion

