
Comparative Analysis of Mobile App Reverse Engineering
Methods on Dalvik and ART

Geonbae Na, Jongsu Lim, Kyoungmin Kim, and Jeong Hyun Yi∗

Soongsil University, Seoul, 06978, Korea
{nagb, jongsu253, mseckkm, jhyi}@ssu.ac.kr

Abstract

The runtime system for the Android platform has changed to ART. ART differs from previously
used Dalvik in that it is to be a runtime environment for the application’s machine code. As a re-
sult, ART does not execute Dalvik bytecode through an interpreter but executes the machine code
itself, leading to high performance and many other benefits. This change in runtime system also
has many implications for mobile security. While we can anticipate with certainty the resurgence of
modified malicious activity or malicious applications previously used with Dalvik or the emergence
of completely new structures of malicious techniques, we can no longer ascertain the feasibility of
the analysis techniques and analysis tools used against these malicious applications that operated in
Dalvik. To combat future potential malicious techniques for ART, we must first have a clear under-
standing of ART and, with this foundation, to effectively and accurately utilize the correct analysis
technique. Thus, this paper serves to introduce an analysis on the operating method and architecture
of ART and, based on this information, address the executable feasibility of the analysis techniques
in ART. Furthermore, we present the test results of running these analysis tools and techniques in
ART.

Keywords: Android runtime, reverse engineering, dynamic analysis

1 Introduction

The Android platform has been using Dalvik Virtual Machine (Dalvik) as the runtime environment but,
due to limitations in performance from of its structural characteristic of using a virtual machine and other
complex factors such as hardware resource performance improvement, has begun to use a new runtime
environment called ART (Android runtime) instead of Dalvik starting from Version 5.0. The architecture
of Dalvik uses the interpreter method to run the application based on Dalvik bytecode while ART uses the
compiler method to run the application using machine code obtained through ahead-of-time complication
of the Dalvik bytecode.

We are at a point where, following this change in runtime environment, a preliminary examination
of the new needs and limitations of the existing android application analysis techniques and tools is
needed. As of now, because versions 4.1-4.3 (Jellybean) and 4.4 (Kitkat), which use Dalvik, take up
over 50% of the Android platform, the existing dynamic analysis tools used in Dalvik can be used
for reverse engineering. However, in the soon to be upgraded versions 5.x (Lollipop) and version 6.0
(Marshmallow), most of the applications are run in ART.

As a result, there may be cases in the future where vulnerabilities or the structural characteristics
in ART can be manipulated so that a code runs as normal code in Dalvik but as malicious code in
ART. In this case, it will prove difficult to use as is the dynamic analysis tools based on QEMU (Quick
Emulator)[7] which heavily relies on Dalvik for code analysis.

Journal of Internet Services and Information Security (JISIS), volume: 6, number: 3 (August 2016), pp. 27-39
∗Corresponding author: School of Software, Soongsil University, Seoul, 06978, Korea, Tel: +82-2-828-7360

27



Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

Since its advent, Android has been the main target of continuous malicious behavior such as privilege
escalation attack[13], information leakage[16], rootkit[11], etc. Furthemore, the number of malicious
code targeting Androids will not soon diminish, and with the runtime system currently changing, there
is the possibility of a resurgence of mobile malicious applications that had been previously weeded
out in addition to the emergence of malicious applications with new techniques. It is most likely that
developers of malicious applications will discover and abuse vulnerabilities in the new runtime system
and bypass the existing application analysis tools that are suited for Dalvik to induce false positives and
false negatives.

In response, to address ahead of time mobile malicious code that is soon to appear, this paper sets out
to examine the operational method and architecture of ART through source code analysis. We analyze
and confirm through running experiments whether the various static and dynamic analysis schemes used
in Dalvik can effectively run in the ART environment. Furthermore, we introduce the latest ART based
malicious code analysis techniques and tools.

This paper is organized as follows. In Section 2, we analyze the architecture of the ART system
and, in Sections 3 and 4, we explain each of the existing static analysis techniques and dynamic analysis
techniques and the feasibility of using these technique in ART. Section 5 presents the experiment results
of running static and dynamic analysis in the ART environment. Lastly, we make our conclusion in
Section 6.

2 Android Runtime

In this section, we examine the ART based operating structure that has been applied since Android
version 4.4 (KitKat) and compare it to Dalvik to analyze the differences in-between. While ART was
experimentally applied to Android version 4.4 (KitKat), under that version the default runtime system
was still Dalvik, and ART could be selected as the runtime system as an option for the developer. After-
wards, starting from Android version 5.0 (Lollipop), Dalvik was completely gone, and ART began to be
used as the default runtime system.

Figure 1: Comparison on installation and run methods of Android applications

With the change in runtime system, the biggest changes in application installation and execution

28



Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

times are shown in Figure 1. In the case of Dalvik, the DEX file in the distributed APK was optimized
using the dexopt tool and the ODEX file generated, while for ART, the DEX file is compiled using the
dex2oat tool and the OAT file is generated. The ODEX file is the actual executable file with Dalvik and,
while almost identical to the original DEX file, is partially optimized so that opcode is partly changed.
On the other hand, the OAT file in ART is a file in ELF format, completely different from the original
DEX file, and includes the machine code generated through the compilation process.

2.1 Dex File Format

Because the format of the input file for both Dalvik and ART is DEX, in this section we provide a brief
overview of the DEX file structure. The DEX file is composed of many various sections, as shown in
Figure 2.

Figure 2: DEX File Format

The header section contains the overall information of the DEX file while the strings ids section
contains all the file’s strings. All the information regarding type is included in the type ids section,
and all the information regarding prototype is in the proto ids section. Information regarding the field,
method, and class is in the field ids, method ids, class defs sections respectively. Lastly, the data
section, the constant pool of the java class file compiled by javac, contains information such as the string
or method name.

2.2 OAT File Format

The OAT file, a file compiled through AOT (Ahead-of-Time) compilation, is an execution file that re-
places the ODEX file for Dalvik.

In the case of ART, while an application is being installed, it goes through the AOT compilation pro-
cess where the DEX file is converted into the OAT file using dex2oat within the device. More precisely,
the file generated using dex2oat is not the OAT file itself but the ELF formatted file that includes the

29



Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

Figure 3: OAT File Format

compiled OAT file[9]. This file, shown in the left side of Figure 3, is comprised of ELF Header, and the
oatdata and oatexec sections[14][15], while the three symbols oatdata, oatexec, oatlastword exist in
the dynamic symbol table while each points to the beginning of the oatdata section, the beginning of
the oatexec section, and the end of the oatexec section respectively (See Figure 4).

Figure 4: Dynamic Symbol Table

OatHeader: The OAT file, made of the oatdata section and oatexec section, has its own header. OatHeader
contains the magic value, file version information, OatHeader’s alder-32 checksum, DEX file
count, instruction set, and the offset information of the oatexec section. The oatexec section
includes the machine code compiled based on the Dalvik bytecode.
The OAT file version for Android 6.0 (Marshmallow) is Version 064 and for Android 5.1 (Lol-
lipop MR1) is Version 045. With no more portable mode from Android 6.0 onward, there have
also been changes in OatHeader. As can be seen in Figure 5, there are fields relating to portable
mode in the current Version 045 such as portable imt conflict trampoline offset and
portable resolution trampoline offset, while in Version 064 the corresponding field is
completely gone.

In addition, we can identify the command used to generate the corresponding OAT file using
key value store, the last field of OatHeader. Figure 6 shows the content of key value store

from extracting the OAT file of the test application installed in Android 5.1. --zip-location

represents APK file’s path while --oat-location represents the location of where the OAT file

30



Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

Figure 5: OatHeader Structure Comparison

generated through the compilation process will be placed. Next, --instruction-set is an option
that indicates to compile instructions as a specific instruction set. The basic value is arm, but
arm64, mips, mips64, x86, and x86 64 are also supported. However, depending on the Android
version, sometimes only part of the enumerated instruction set is supported.

Figure 6: Example of dex2oat command line

OatDexFile: Right after OatHeader is one or more OatDexFiles – as many as the number of DEX
files there are in oatdata. The number of DEX files in the OAT file can be known using the
dex file count field in the aforementioned OatHeader.
OatDexFile is comprised of brief information regarding the DEX file and includes the path,
CRC32 checksum, and offset of the DEX file as well as the OatClass offset for the DEX file
in array form (See Figure 7).

Figure 7: OatDexFile Structure

DEX File: One or more DEX file may exist between OatDexFile and OatClass, as in Figure 8. If
an application is installed, the classes.dex file is included in the oatdata section of the OAT file
in the APK file. While generally only one DEX file exists, for boot.oat files including Android
frameworks such as core-libart.jar, framework.jar, etc., many DEX files exist and, as explained

31



Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

before, there are as many OatDexFiles containing information regarding DEX files as there are
DEX files.

Figure 8: DEX File in oatdata section

OatClass: After the DEX file, there is one or more OatClass, the total number being however as
many DEX file classes there are. In the DEX file header, there is a class defs size field that
represents the number of classes contained in the DEX file, which also indicates the number of
OatClass.
OatClass contains general information regarding the class and method of the application. Along
with information on whether the class and method were both compiled error free during the com-
pilation process or whether only a part of the method was compiled, there is also information on
the type and member method of the class. The member method information is managed in array
form using methods pointer field. Each element of the array, in OatMethod form, is made of
information directly related to the machine code such as the actually AOT compiled machine code
of the method and the method header.

2.3 Compilation Methods

With Dalvik, JIT (Just-in-time) compilation was used. JIT compilation is a method of improving the
application’s execution performance by dynamically compiling the Dalvik bytecode into machine code
every time the application is run. JIT with Androids, to minimize the resulting overhead from the ma-
chine code compilation process, does not compile the application’s entire Dalvik bytecode but compiles
into machine code a uniform number of parts that are repeatedly executed.

On the other hand, ART uses AOT (Ahead-of-time) compilation to compile the Dalvik bytecode into
machine code in advance when the application is installed. While JIT compilation compiles only parts
of the application into machine code, AOT compilation targets the entire application for compilation.

As the abovementioned process occurs during installation of an application, there are drawbacks in
having a longer installation time than the current time as well as in needing a greater amount of storage
space. However, compared to the early mobile devices with limited internal storage capacity, most of
today’s mobile devices support sufficient storage capacity, so the issue of storage space is no longer

32



Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

counted as a drawback. Rather, because the machine code is compiled in advance, the machine code no
longer needs to be dynamically generated every time the application runs, resulting in greater memory
efficiency and longer battery life as well as better run performance.

2.4 File Analysis Tools

The DEX file, compared to the OAT file, relatively has more information on file structure. Even for-
mally, the DEX file structure is disclosed, and a number of analysis and research materials have been
collected over the years. As a result, the various existing tools explained in Section 3 (eg., apktool[1],
baksmali[2], etc.) can be used to analyze the DEX file. Even if a tool does not exist, it is possible to
run an analysis up to a certain point by solely using information on the structure of DEX file.

On the other hand, the OAT file, carrying limited information compared to DEX file, can be analyzed
using Android’s basic system utility oatdump. The main function of oatdump is to process the content
in OAT file format and to provide it in a format that is discernable to the user. oatdump largely provides
information on OatHeader and OatClasses. Because the OatHeader, as explained before, includes
information regarding the OAT file version, instruction set, machine code start position, checksum, com-
mands and options used when generating the OAT file, etc., we can determine general information re-
garding the OAT file by dumping OatHeader information. Containing important information such as
bytecode and machine code, mapping table, etc. through the compiled information of each class and the
methods within each class, OatClasses can be considered the focus of core analysis. However, because
oatdump simply dumps all of the OAT file’s content, if the file size gets bigger, the dumped content
becomes so large that analysis becomes somewhat difficult. Furthermore, with information regarding
the entire DEX file structure, excluding Dalvik bytecode, not separately provided, analysis from various
angles can become complicated.

oatdump++[6], modified and enhanced from oatdump, provides a greater variety of functions than
does the current oatdump such as class list extraction, method list extraction, filtered classes dump,
filtered methods dump, DEX file extraction, etc. While oatdump++ is based on oatdump but offered
separately, because the main functions of oatdump++ are currently merged in AOSP (Android Open
Source Project), the various functions provided by oatdump++ can be used starting from Android 6.0.
Comparison of Dalvik and ART can be summerized as Table 1.

Dalvik ART
File Format DEX OAT + DEX
Compilation Method JIT AOT
File Analysis Tool apktool, baksmali, etc oatdump(oatdump++)

Table 1: Comparison of Dalvik and ART

3 Static Analysis

Static analysis refers to analysis of the application without running the application using the application’s
source code or object code. This section investigates whether the static analysis methods used in Dalvik
can also be applied in the ART environment.

3.1 Analysis Tools

Android static analysis tools can be grouped into diassemblers and decompilers and, depending on
whether they support analysis of Dalvik bytecode and machine code, can be organized as Table 2.

33



Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

Disassemblers Description Bytecode Machine code
Apktool Disassembles Dalvik bytecode into Smali code Yes No

Dedexer[3] ” Yes No
Oatdump OAT file dump Yes Yes

Oatdump++ Provides additional functions than Oatdump Yes Yes
IDA Disassembles Dalvik bytecode and machine code Yes Yes

Decompilers Description Bytecode Machine code
Dex2jar & jad Reconstruct Dalvik bytecode into Java source code Yes No

JEB Provicdes automated decompilation function Yes No

Table 2: Static Analysis Tools for Android

Using analysis tools that targeted the DEX file, the analysis methods can be applied on the DEX file
included in the OAT file or the DEX file in the distributed APK. To analyze the new OAT file structure
and machine code, oatdump or GDB can be used.

As analysis tools for OAT files, as explained in Section 2.4, there is oatdump and oatdump++. Fun-
damentally they provide the disassemble function for Dalvik bytecode and machine code and additionally
provide information of the OAT file format, thus supporting analysis of OAT file.

Another static analysis tool besides those two is commercial software IDA. In the case of IDA, it
provides the disassemble function for both machine code and Dalvik bytecode. When the input is an
OAT file, IDA provides a disassemble function for machine code regardless of the Dalvik bytecode
located in the oatdata section within the OAT file while if the input is an APK file, IDA disassembles
the DEX file within the APK file. Thus, while IDA provides disassemble functions for both machine
code and Dalvik bytecode, with one input, it cannot identify the two code formats simultaneously. To
analyze both machine code and Dalvik bytecode, it needs both the APK (or DEX) file and OAT file.

3.2 Applicability on ART

For Android applications, the smali code obtained using apktool or baksmali or the java code restored
using dex2jar becomes the target of static analysis. In the Dalvik environment, the main static analysis
method was to, after either extracting the APK file from the application or downloading it, to disassem-
ble the DEX file (classes.dex) in the APK file using the apktool, while simultaneously decoding the
resources to analyze not only the application’s code[12] but the various elements of the application’s ar-
chitecture. This kind of method is also still effective in the current ART environment due to the following
reason.

Figure 9 has taken Figure 1, which showed the change during the installation and execution of the
application, and has focused on the differences during the time of nd the run stage, there are no differ-
ences in distribution. In ART as well, the application that the developer finally distributesdistribution.
While Dalvik and ART have quite stark differences during the installation stage of the application onto
the device a is still distributed in the APK file format, and users install them onto their devices from a
variety of markets and websites. Because application developers and users, regardless of the type of run-
time system, are utilizing the familiar, existing mechanism, due to the nature of static analysis where the
actual execution of the application is unnecessary, existing methods and tools can be applied for analysis
in the ART environment as well.

34



Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

Figure 9: Difference between Dalvik and ART in application distribution

4 Dynamic Analysis

Dynamic analysis is the analysis of the application’s operational behavior by running the application.
In this section, we examine whether the existing Dalvik-based dynamic analysis methods for Android
applications are applicable in the ART environment.

4.1 Analysis Tools

The main dynamic analysis tools that have been used are shown in Table 3.

Name Description Bytecode Machine code
NetBeans Provides Dalvik bytecode debugging function Yes No

GDB Provides machine code debugging function No Yes
IDA Provides Dalvik bytecode & machine code debugging function Yes Yes

DroidScope[5] Provides real-time Dalvik bytecode extraction function Yes No

Table 3: Dynamic Analysis Tools for Android

4.2 Applicability on ART

One of the reasons for continuing to leave the entire Dalvik bytecode into the OAT file despite having
generated the machine code based on the Dalvik bytecode during application installation in the ART
environment can be understood by relating it to dynamic debugging.

When an ART-based Android application is generally run, it is made to run using the compiled
machine code, while in the case of methods with events such as break point or watch configured in
an environment in the process of debugging, it is made to reset the method’s entry point so that the
application is run using Dalvik bytecode. This structure would run in Dalvik-based dynamic debugging
environments for Androids using JDWP (Java Debug Wire Protocol) which, we surmise, was to maintain
the system structure as is. Consequently, dynamic analysis of an application in ART or the usage of
existing JDWP-based debugging tools should be possible.

35



Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

5 Experiments

5.1 Static Analysis

Static analysis experiments show that the new runtime system and the previous existing system run with
the same exact mechanism with no mentionable difference. The steps for static analysis are delineated
below[10].

First, the application’s APK file is extracted (or downloaded). While there are slight differences in
the APK file pathway according to the Android version, they are similar overall.

Second, obtain the smali code or Java code using the prepared in advance diassembler and decom-
piler. Excluding cases where a separate protection mechanism is applied to the application, the majority
of the tools will allow the analyzer to obtain the code in any form he or she wants. Using the obtained
code as the basis, the analysis can now begin in earnest as shown in Figure 10.

The two steps mentioned above are applicable in both Dalvik and ART, the reason being that, during
distribution time, the executable file format is the same DEX file within the APK file for both.

Figure 10: Disassembled output using IDA: machine code (Left) and Dalvik bytecode (Right)

5.2 Dynamic Analysis

NetBeans provides dynamic debugging for Dalvik bytecode, while GDB provides dynamic debugging
for machine code. Operating through JDWP, Netbeans was usable in Dalvik, which allows JDWP. Be-
cause, fundamentally, the method is executed based on machine code in ART and ART also allows
JDWP, we tested for whether, when debugging, the method would be once again executed using Dalvik
bytecode. We modified the OAT file so that the Dalvik bytecode and machine code of a method that
outputs the log would each output a different string, as seen in Figure 11.

Figure 11: Modified bytecode and machine code example

While the string “Say Good-Bye” is output until the method’s events are triggered using dynamic
debugging tools such as Netbeans or IDA, we were able to confirm that the string “Say Hello” was
output when a debugging event is configured. Judging from the code shown in the tool as well as the

36



Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

string “Say Hello” as seen in Figure 12, we could see that it was Dalvik bytecode rather than method’s
machine code that functioned as the basis of dynamic debugging.

Figure 12: Dalvik bytecode dynamic debugging using Netbeans in ART environment

Thus, in the case of dynamic debugging methods using JDWP, the debugging function is provided
by forcibly changing the entry point of the method in ART, while with using GDB on the other hand, the
actually executed machine code of the method is able to be debugged as shown in Figure 13.

Figure 13: Dynamic debugging of machine code using GDB

Because this experiment forcibly constructed Dalvik bytecode and machine code, it showed the dif-
ferences in results when debugging while, generally, the Dalvik bytecode and machine code of OAT files
are only different in form and will generate the same results. In addition, QEMU based dynamic analysis
tools such as DroidScope, Andrubis, DroidBox[4], Taintdroid[8] provide functions such as extracting
Dalvik instruction as well, they all having a strong dependency on Dalvik.

6 Conclusion

In this paper, to smoothly deal with the new malicious applications soon to appear due to the Android
platform’s new change in runtime system, we analyze the main changes in the runtime system and in-
troduce related static analysis methods and dynamic analysis methods. We were able to confirm that,
with the exception of dynamic analysis tools that use the QEMU emulator, which heavily depends on
Dalvik, most of the existing analysis tools and methods were still effective with the change in runtime
system. The fact that the existing analysis tools are effective also means that the current various analysis

37



Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

prevention methods are also effective. However, in the future, we predict that malicious applications that
abuse the vulnerabilities in ART or take advantage of its structural characteristic and such will gradu-
ally emerge. Thus, with the appearance of new malicious code in the future, the ART system structure
analysis results presented in this paper will help contribute toward effective analysis of the malicious
code.

Acknowledgments
This research was supported by the Global Research Laboratory (GRL) program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning
(NRF-2014K1A1A2043029).

References
[1] Apktool. http://ibotpeaches.github.io/Apktool [Online; Accessed on August 5, 2016].
[2] Baksmali. https://github.com/JesusFreke/smali [Online; Accessed on August 5, 2016].
[3] Dedexer. http://dedexer.sourceforge.net/ [Online; Accessed on August 5, 2016].
[4] Droidbox. https://github.com/pjlantz/droidbox/ [Online; Accessed on August 5, 2016].
[5] Droidscope. https://github.com/sycurelab/DECAF/ [Online; Accessed on August 5, 2016].
[6] Oatdump++. https://github.com/anestisb/oatdump_plus/ [Online; Accessed on August 5, 2016].
[7] Qemu. http://wiki.qemu.org/ [Online; Accessed on August 5, 2016].
[8] Taintdroid. http://www.appanalysis.org/ [Online; Accessed on August 5, 2016].
[9] M. Backes, O. Schranz, and P. von Styp-Rekowsky. Poster: Towards compiler-assisted taint tracking on the

android runtime (art). In Proc. of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS’15), Denver, Colorado, US, pages 1629–1631. ACM, October 2015.

[10] J.-H. Jung, J. Y. Kim, H.-C. Lee, and J. H. Yi. Repackaging attack on android banking applications and its
countermeasures. Wireless Personal Communications (WPC), 73(4):1421–1437, December 2013.

[11] S. Kim, J. Park, K. Lee, I. You, and K. Yim. A brief survey on rootkit techniques in malicious codes. Journal
of Internet Services and Information Security (JISIS), 2(3/4):134–147, November 2012.

[12] S. W. Park and J. H. Yi. Multiple device login attacks and countermeasures of mobile voip apps on android.
Journal of Internet Services and Information Security (JISIS), 4(4):115–126, November 2014.

[13] Y. Park, C. Lee, J. Kim, S.-J. Cho, and J. Choi. An android security extension to protect personal information
against illegal accesses and privilege escalation attacks. Journal of Internet Services and Information Security
(JISIS), 2(3/4):29–42, November 2012.

[14] P. Sabanal. State of the art exploring the new android kitkat runtime. Hack In The
Box Security Conference, 2014. https://www.corelan.be/index.php/2014/05/29/

hitb2014ams-day-1-state-of-the-art-exploring-the-new-android-kitkat-runtime/

?output=pdf [Online; Accessed on August 5, 2016].
[15] P. Sabanal. Hiding behind art. Black Hat, 2015. https://www.blackhat.com/docs/asia-15/

materials/asia-15-Sabanal-Hiding-Behind-ART-wp.pdf [Online; Accessed on August 5, 2016].
[16] S. Sakamoto, K. Okuda, R. Nakatsuka, and T. Yamauchi. Droidtrack: Tracking and visualizing informa-

tion diffusion for preventing information leakage on android. Journal of Internet Services and Information
Security (JISIS), 4(2):55–69, May 2014.

——————————————————————————

38

http://ibotpeaches.github.io/Apktool
https://github.com/JesusFreke/smali
http://dedexer.sourceforge.net/
https://github.com/pjlantz/droidbox/
https://github.com/sycurelab/DECAF/
https://github.com/anestisb/oatdump_plus/
http://wiki.qemu.org/
http://www.appanalysis.org/
https://www.corelan.be/index.php/2014/05/29/hitb2014ams-day-1-state-of-the-art-exploring-the-new-android-kitkat-runtime/?output=pdf
https://www.corelan.be/index.php/2014/05/29/hitb2014ams-day-1-state-of-the-art-exploring-the-new-android-kitkat-runtime/?output=pdf
https://www.corelan.be/index.php/2014/05/29/hitb2014ams-day-1-state-of-the-art-exploring-the-new-android-kitkat-runtime/?output=pdf
https://www.blackhat.com/docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-ART-wp.pdf
https://www.blackhat.com/docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-ART-wp.pdf


Analysis of Mobile App Reverse Enginnering Methods Na, Lim, Kim, and Yi

Author Biography

Geonbae Na received the B.S. degree in Computer Science and Engineering and the
M.S. degree in Software Convergence from Soongsil University, Seoul, Korea, in
2014 and 2016, respectively. His research interests include mobile application secu-
rity, mobile platform security and Reverse Engineering.

Jongsu Lim received the B.S. degree in Computer Science and Engineering from
Soongsil University, Seoul, Korea, in 2016. Currently he is taking a master’s course
in Software Convergence from Graduate School of Soongsil University. His research
interests include mobile application security, mobile platform security and Reverse
Engineering.

Kyoungmin Kim received the B.S. degree in Computer Science and Engineering
from Soongsil University, Seoul, Korea, in 2016. Currently he is taking a master’s
course in Software Convergence from Graduate School of Soongsil University. His
research interests include mobile application security, mobile platform security and
Reverse Engineering.

Jeong Hyun Yi is an Associate Professor in the School of Software and a Director of
Mobile Security Research Center at Soongsil University, Seoul, Korea. He received
the B.S. and M.S. degrees in computer science from Soongsil University, Seoul, Ko-
rea, in 1993 and 1995, respectively, and the Ph.D. degree in information and com-
puter science from the University of California, Irvine, in 2005. He was a Principal
Researcher at Samsung Advanced Institute of Technology, Korea, from 2005 to 2008,
and a member of research staff at Electronics and Telecommunications Research In-

stitute (ETRI), Korea, from 1995 to 2001. Between 2000 and 2001, he was a guest researcher at National
Institute of Standards and Technology (NIST), Maryland, U.S. His research interests include mobile
security and privacy, IoT security, and applied cryptography.

39


	Introduction
	Android Runtime
	Dex File Format
	OAT File Format
	Compilation Methods
	File Analysis Tools

	Static Analysis
	Analysis Tools
	Applicability on ART

	Dynamic Analysis
	Analysis Tools
	Applicability on ART

	Experiments
	Static Analysis
	Dynamic Analysis

	Conclusion

