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Abstract

Attribute-Based Signcryption (ABSC) is a natural extension of Attribute-Based Encryption (ABE)
and Attribute-Based Signature (ABS), where one can have the message confidentiality and au-
thenticity together. Since the signer privacy is captured in security of ABS, it is quite natural to
expect that the signer privacy will also be preserved in ABSC. In this paper, first we propose an
ABSC scheme which is weak existential unforgeable and IND-CCA secure in adaptive-predicates
models and, achieves signer privacy. Then, by applying strongly unforgeable one-time signature
(OTS), the above scheme is lifted to an ABSC scheme to attain strong existential unforgeability
in adaptive-predicates model. Both the ABSC schemes are constructed on common setup, i.e
the public parameters and key are same for both the encryption and signature modules. Our
first construction is in the flavor of C tE &S paradigm, except one extra component that will be
computed using both signature components and ciphertext components. The second proposed
construction follows a new paradigm (extension of C tE &S ), we call it “Commit then Encrypt and
Sign then Sign” (C tE &S tS ). The last signature is generated using a strong OTS scheme. Since,
the non-repudiation is achieved by C tE &S paradigm, our systems also achieve the same.

Keywords: Attribute-based encryption, Attribute-based signature, Attribute-based signcryp-
tion

1 Introduction

In the last couple of years, attribute-based encryption (ABE) has become a privilege way for encrypting
a message for many users. In this encryption, a message is encoded with a policy and a key is labeled
with a set of attributes. This form of ABE is known as ciphertext-policy attribute-based encryption (CP-
ABE) and in its dual form, key-policy attribute-based encryption (KP-ABE), the role of policy and the
set of attributes are interchanged. Since its introduction (Fuzzy Identity-Based Encryption) [43], many
schemes have been studied, some of them are CP-ABE [5, 25, 35, 48, 24], some of them are KP-ABE
[18, 38, 25, 35, 2], most of them are selectively secure under chosen plaintext attack (CPA) [18, 48, 38, 2],
few of them are adaptively secure under CPA [35, 25, 37] and very few of them are secure under chosen
ciphertext attack (CCA) [35] for general policies. But, there are techniques [11, 9, 49, 34] to convert a
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CPA secure scheme to CCA secure one. However, the schemes that are adaptively secure under CCA in
the standard model seem to be more powerful.

Side by side with ABE, attribute-based signature (ABS) also draws much attention due to its ver-
satility. Unlike the traditional signature scheme, it captures unforgeability for a policy (group of users)
and signer privacy. Similar to ABE, in attribute-based signature a message is signed under a policy
and a key is associated with a set of attributes. We call this form of ABS as signature-policy(SP)-
ABS [36, 29, 26, 30] and its dual form, where the role of the policy and the set of attributes are
reversed, is called KP-ABS [44]. Similar to the traditional signature, ABS can be weak existential
unforgeable[36, 29, 30, 26] or strong existential unforgeable under chosen message attack (CMA). Most
of the ABS [44] proposed so far are weak existential unforgeable. But, by a simple technique [22] one
can obtain strongly unforgeable signature scheme from weak unforgeable scheme. Since here the mes-
sage is signed under a policy, similar to ABE there are two types of unforgeability, selective-predicate
[44, 26] and adaptive-predicate [36, 29, 30].

Zheng [50] introduced the concept of signcryption that provides an efficient way of achieving mes-
sage confidentiality and authenticity together. However, the author did not provide any formal secu-
rity proof of the proposed signcryption as no security model was available. Later, Baek, Steinfeld and
Zheng [3] formalized a security model and gave a formal security proof of the signcryption scheme
[50] in this model. Then An, Dodis and Rabin [1] proposed generic constructions of signcryption
from the primitives, encryption, signature and commitment schemes. Their constructions follow three
paradigms, “Sign then Encrypt” (S tE ), “Encrypt then Sign” (E tS ) and “Commit then Encrypt and
Sign” (C tE &S ). As compared to S tE and E tS paradigms, C tE &S has an advantage that in
Signcrypt (resp. Unsigncrypt) both the routines, Encrypt and Sign (resp. Decrypt and Ver) can
be executed in parallel, i.e., in C tE &S paradigm both Signcrypt and Unsigncrypt run faster as com-
pared to other two paradigms. The authors also discussed a natural paradigm of signcryption, called
“Encrypt and Sign” (E &S ). In this paradigm, a signcryption consists of a ciphertext and a signature
obtained by applying E and S on the message respectively. One major drawback of this paradigm is
that it never provides IND-CPA security. For all these paradigms, KeyGen algorithms of the underlying
encryption and signature schemes are run independently to generate receiver’s key pair and sender’s key
pair respectively. The generic constructions in [1] were proven in two users model in PKI setting, but
using some minor modification one can have the same security in multi user setting. Subsequently, sev-
eral signcryption schemes [33, 32, 27, 28, 15, 13, 10] have been studied either in PKI setting or in IBE
setting.
COMBINED-SETUP. It is a common practice to use the independent key distributions for different cryp-
tographic primitives, e.g., encryption and signature schemes used in combination. To prove the security
of one primitive, other primitives are assumed to be independent. One possible reason of such practice
may be reducing the security threat because if the keys for the primitives are not independent, then their
joint information may jeopardize the security goal of the target primitive. Haber and Pinkas [19] formally
investigated that there are schemes, viz., encryption and signature schemes which can be used in com-
bination. The security of each primitive in combination is same as their individual security even if keys
for the primitives are dependent, in particular identical. The authors called the schemes in combination
as combined public-key scheme. In this combined scheme, the Encrypt and Decrypt (resp. Sign and
Ver) algorithms of the encryption (resp. signature) scheme are kept unchanged. This scheme is nothing
but the E &S paradigm with keys for encryption and signature schemes being identical. The security
model is called joint security of the combined public-key scheme. The joint security model is defined
similarly as the individual security model of encryption and signature schemes, except the adversary gets
access to both the oracles, sign oracle and decrypt oracle. However, in joint security model, ciphertext
indistinguishability is not possible if a signature of the challenge message is additionally given with the
challenge ciphertext.
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Later, Vasco, Hess and Steinwandt [45] studied the combined public-key scheme in ID-based setting,
where the combined scheme has a single setup algorithm and key-gen algorithm. In other words, primi-
tive IBS and IBE scheme have identical setup and key-gen algorithms. They combined IBE [7] and IBS
[21] in the joint security model, but they assumed random oracles. Then Paterson et al. [40] showed a
construction of combined public-key scheme in the standard model using the primitives, an IBE, a short
signature and a data encapsulation mechanism. Recently, Chen et al. [12] extended the concept of com-
bined public-key scheme from ID-based setting to attribute-based setting. More specifically, the authors
combined an ABE scheme and ABS scheme in the joint security model. Similar to [45], the primitives,
ABS and ABE used in [12] have identical setup and key-gen algorithms. This setup algorithm is run only
once to generate PP which will work for both, ABS and ABE. For each user, this key-gen algorithm
is run only once to generate a key which will work for both, ABS and ABE. We call the above keys and
PP generation process as combined-setup. On the contrary, the setup and key-gen algorithms for ABS
and ABE in independent-setup are not necessarily identical and they are run independently to generate
the keys and PP for the individual primitives, ABS and ABE. We note that the same keys and PP
are used for both the primitives, ABS and ABE in combined-setup as opposed to independent-setup.
Therefore, the schemes in combined-setup have a benefit of sizes of key and PP than the schemes in
independent-setup.

Signcryption in attribute-based setting is called attribute-based signcryption (ABSC) which captures
the functionalities of both the primitives, ABS and ABE. Similar to ABS and ABE, there are two forms1

of ABSC, signcryption-policy attribute-based signcryption (SCP-ABSC) and key-policy attribute-based
signcryption (KP-ABSC). In SCP-ABSC, a signcryption is associated with two policies (for receiver and
sender) and a key is labeled with two sets of attributes (for receiver and sender). In KP-ABSC, the role
of policies and sets of attributes are interchanged. It was Gagné, Narayan and Safavi-Naini [17] who
first proposed an ABSC scheme for threshold policies. Since then, many attribute-based signcryption
schemes [46, 16, 12, 42] have been proposed in the literature. None of these schemes follows C tE &S
paradigm. Among them the only scheme that supports signer-privacy, non-repudiation and combined-
setup is [12]. However, none of these schemes is secure in adaptive-predicates models. This leads us to
ask the following question:

Can an attribute-based signcryption scheme be constructed which is secure in adaptive-predicates
models and at the same time, it supports the aforementioned features?
Our Result. Affirmatively, we answer the above question. We propose two constructions of ABSC in
signcryption-policy which are shown to be secure in adaptive-predicates models. Further, the schemes
attain the above features, i.e., signer-privacy, non-repudiation, combined-setup and run in C tE &S
paradigm. Our first construction (given in Section 5) achieves weak existential unforgeability and IND-
CCA security in adaptive-predicates models, and signer-privacy. The second construction (given in
Section 7) is obtained by applying OTS to the first construction to guarantee strong unforgeability in
adaptive-predicates model.

A detailed comparison of performance and security features between our second ABSC scheme and
others is given in Table 1 and Table 2. The following are the specifications for Table 1. Let CS denote
combined-setup. The schemes supporting combined-setup have a single key-extraction algorithm and
in this case, we use A to indicate user’s set of attributes. Otherwise two set of attributes, As and Ae are
used respectively for signcrypt and unsigncrypt. In later case, the individual key sizes are separated by
comma. Let `s and `e respectively denote the sizes of sender’s policy Γs and receiver’s policy Γe. The
symbol ϕ stands for the maximum number of repetitions of an attribute in an access policy. Let ωs,
ωe and t respectively represent sender’s set of attributes, receiver’s set of attributes and threshold value
used in [17]. Ue and |vk| respectively denote the attribute universe involved in encryption and length of

1Other forms of ABSC may be possible, but we are not interested on them.
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verification key for OTS. Let θe = 2|Ae|+2|vk|+1. The total size of commitment and OTS is denoted by
℘. Let |IB| (resp. |IA|) be the number of rows in the policy Γe (resp. Γs) labeled by the attribute set B
(resp. A). Let d be the length of digest of the hash function H2 involved in the scheme [42]. The symbol
O stands for asymptotic Big-O notation. The key size and signcryption size are measured by the number
of group elements involved in the key and signcryption respectively. The time of signcrypt is measured
by the number of exponentiations to construct a signcryption, whereas the time for unsigncrypt is both
number of exponentiations and number of pairings.

The abbreviations, SAS, RAS, Unforge., Conf., NR, SP, APMs, NK, MAT, MSP, AGW, KP and SCP
found in Table 2 stand for sender’s access structure, receiver’s access structure, unforgeability, confiden-
tiality of message, non-repudiation, signer-privacy, adaptive-predicates models, not known, monotone
access tree, monotone span program, AND-gate with wildcard respectively, key-policy and signcryption-
policy.

ABSC CS Key size Signcryption size Signcrypt time Unsigncrypt time
[17] No 2|As|,3|Ae| O(|ωs|+ |ωe|) O(|ωs|+ |ωe|) O(|ωs|+ t)
[16] No 2|As|,θe O(`s + |Ue|+ |vk|) O(`s + |Ue|+ |vk|) O(`s + |Ue|+ |vk|)
[12] Yes ϕ|A|+2 2`s + `e +4 O(`s)+O(`e) O(`s)+O(|IB|)
[42] No |Us|`s, |Ue|`e 6 O(IA)+O(d) O(IB)+O(d)
Our Yes ϕ|A|+2 2`s +2`e +5+℘ Max{O(`s),O(`e)} Max{O(`s),O(|IB|)}

Table 1: Performance of our second ABSC scheme

ABSC Type SAS RAS Unforge. Conf. NR SP APMs
[17] KP Threshold Threshold wUF-CMA IND-CCA No NK No
[16] SCP MAT AGW sUF-CMA IND-CCA Yes No No
[12] SCP MSP MSP sUF-CMA IND-CCA Yes Yes No
[42] KP MSP MSP sUF-CMA IND-CCA Yes Yes No
Our SCP MSP MSP sUF-CMA IND-CCA Yes Yes Yes

Table 2: Security features of our second ABSC scheme

Our Approach. The basic paradigm, we follow in the constructions is C tE &S . In this paradigm,
a message m is first committed to (com,decom), then the commitment part com and decommitment
part decom are respectively signed to δ and encrypted to CT in parallel to produce the signcryption
U = (com,δ ,CT). Similarly, the algorithms, Ver (to verify δ ) and Decrypt (to get the decom) run in
parallel in Unsigncrypt to extract the underlying message as m←−Open(com,decom).

For both the constructions, we use the CP-ABE scheme of [25] as a primitive encryption scheme. The
scheme was constructed using composite order bilinear groups. Since, one of our focus is to construct
SCP-ABSC scheme in combined-setup, we need an SP-ABS scheme which has the same PP and
key distribution as that of CP-ABE [25]. So, we first construct an SP-ABS scheme (refer to Section 3)
which is suitable with the CP-ABE scheme to support combined-setup. The ABS scheme is shown (see
Section 4) to be weakly unforgeable in adaptive-predicate model and attains signer-privacy. For proving
unforgeability, we utilize the dual system methodology of Waters [47]. We do not use the dual system
proof technique [47] directly as described in the context of ABE [25], but we utilize its signature variant
[36]. In signature variant of dual system methodology, a signature is verified under a set of components,
called verification text (in short vText). In brief, by applying hybrid arguments over a sequence of games,
we reach to a final game. In final game, a particular component of vText for the forgery is changed to
a uniformly and independently random element over some integer modulo group. This implies that the
forgery will be invalid with respect to the changed vText.
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The Signcrypt algorithm of the first scheme (given in Section 5) works in the following way. Sup-
pose Alice wants to signcrypt a message m under a policy, Γs and Γe. She first runs (com,decom)←−
Commit(m). Then generates a signature δ for the message com||Γe under the sender’s policy Γs using
the proposed SP-ABS scheme. She also encrypts decom under a receiver’s policy Γe using the primitive
CP-ABE scheme and let C be the corresponding ciphertext. Actually, the signature δ and ciphertext C
are generated in parallel. Now Alice binds com, C and δ through a collision resistant hash function H
to h̄ := H(com,C,δ ). Then she encodes h̄ to an additional component Cadd using a secret s involved
in the encrypt algorithm of the primitive CP-ABE and Boneh-Boyen hash technique [6]. Finally, Alice
outputs a signcryption U := (com,δ ,CT := (C,Cadd)). The component Cadd prevents an adversary A
from changing a given signcryption to another signcryption. Therefore, the component Cadd is very cru-
cial for achieving IND-CCA security in adaptive-predicates model. The Unsigncrypt algorithm works
in similar fashion, where the algorithms, Ver of ABS and Decrypt of ABE run in parallel. Also a spe-
cial checking for the component Cadd is involved in Unsigncrypt algorithm. The proposed scheme is
shown (see Section 6) to be weakly unforgeable and IND-CCA secure in adaptive-predicates models and
perfectly-private. For showing weak unforgeability and IND-CCA security, we need relaxed-binding and
hiding properties of the underlying commitment scheme respectively.

We note that in the first scheme, the adversary could modify a replied signcryption for a message
(m,Γs,Γe) as follows. Since A has access to key S K A with Γe(A) = True, it can recover decom
from CT and then re-encrypts it to get modified (new) signcryption for the same message (m,Γs,Γe).
Therefore, the first scheme does not provide strong unforgeability. Our second scheme (see Section 7)
is constructed by combining the first scheme and a strong OTS scheme to ensure strong unforgeability.
Essentially, the components, h̄, Cadd, Γe and Γs are signed together using a strong OTS scheme to guar-
antee that a signcryption for a message can not be altered even if the adversary knows the unsigncrypt
key. The scheme has (see Section 8) strong unforgeability and IND-CCA security in adaptive-predicates
models and signer-privacy. The strong unforgeability of this SCP-ABSC scheme no more relies on
relaxed-binding property of the underlying commitment scheme. But, for showing non-repudiation, we
require the relaxed-binding property of the commitment scheme. There are many commitment schemes
[14, 20, 41] suitable for our systems, but we use them as black box in our constructions.

Unforgeability of the proposed schemes is proven assuming the primitive ABS as black-box in the
constructions. In this proof, signcrypt oracle queries are answered using the resource, sign oracle of
ABS. But, the adversary is not allowed to ask the unsigncrypt oracle query as the simulator is incapable
to answer. On the other hand, IND-CCA security of the constructions is proven using decisional subgroup
assumptions, where neither ABS nor ABE is used as black-box. The adversary is free to query to the
key oracle, signcrypt oracle and unsigncrypt oracle of its own choice. Again, we use the dual system
methodology of Waters [47] in a novel way using composite order bilinear groups.

As we mentioned that the unforgeability of the proposed schemes (appeared in [39]) are proven (see
Sections 6 and 8) without giving unsigncrypt oracle access to the adversary A . However, in Section 9
we provide the proof of unforgeability of the second scheme (in Section 7), where A is given access to
unsigncrypt oracle.

Related Works. Gagné, Narayan and Safavi-Naini [17] initiated a formal study of attribute-based sign-
cryption. The receiver’s policies and sender’s policies they considered are the threshold policies. In
their construction, Fuzzy IBE[43] and a new efficient threshold ABS were used as primitive encryption
scheme and signature scheme respectively. Later, Emura, Miyaji, and Rahman [16] proposed a dynamic
attribute-based signcryption, where access structures of the encryptor can be changed without re-issuing
the secret keys of the users. The sender’s access policy and receiver’s policy in the above scheme are
represented respectively by monotone access tree and AND-gate with wildcard. Both the schemes were
shown to be secure in the selective-predicate models (Definitions 2.11 and 2.15). However, the signer-
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privacy was not discussed in former scheme, whereas later ABSC scheme lacks this property.
Wang and Huang [46] proposed an ABSC scheme in signcryption-policy form. The receiver’s poli-

cies and sender’s policies, that their ABSC scheme supports, are monotone access trees. The confi-
dentiality and unforgeability of the scheme were proven in the adaptive-predicates models. However,
confidentiality of the scheme was proven in generic group model without giving access of unsigncrypt
oracle to the adversary. The unforgeability of the scheme was proven in the random oracle model.

Chen et al. [12] proposed a combined public-key scheme in attribute-based setting. In this combined
scheme, the underlying ABE and ABS schemes have identical public parameters and key distribution.
Their scheme is based on the construction of Waters [48]. The scheme was shown to be selectively
secure in the joint security model. Finally, the authors showed a generic extension from this combined
scheme to attribute-based signcryption in S tE paradigm. Both the policies considered in their scheme
are monotone span programs. This proposed signcryption scheme entertains the signer-privacy. The
confidentiality and unforgeability of the proposed ABSC were proven in the selective-predicate models.

Recently, Rao and Dutta [42] proposed a KP-ABSC scheme with the constant size signcryption. The
number of pairings involved in unsigncrypt is 6, but the key size is comparatively large. The receiver’s
policy and sender’s polices represented in their scheme are monotone span programs. Both the confiden-
tiality and unforgeability of their proposed scheme were proven in the selective-predicate models. The
signer privacy is maintained in the proposed signcryption.

Discussion 1.1. We note that our proposed solution is not generic. One may think that using the generic
construction of An, Dodis and Rabin [1] such constructions are possible, but this is not the case for the
following reasons. First, we emphasize that C tE &S paradigm preserves only weak unforgeability and
IND-gCCA (see footnote 2). In contrast, our proposed scheme attains both strong unforgeability and
IND-CCA security in adaptive-predicates models. Secondly, our solution supports the combined-setup,
where the primitive ABS and ABE have the identical public parameters and keys distribution. The origi-
nal construction [1] of signcryption in C tE &S paradigm assumes the primitive encryption and signature
schemes to be black-boxes, i.e., independent-setup. So, the security proof of [1] for C tE &S paradigm
can not carry through in combined-setup. Our first construction follows the C tE &S paradigm, but in
addition to C tE &S , an extra component is computed using signature and ciphertext components of
signcryption. Our second construction follows a new paradigm what we call “Commit then Encrypt and
Sign then Sign” (C tE &S tS ) paradigm, where the last sign is obtained using a strong OTS.

2 Preliminaries

Basic notations, composite order bilinear groups, hardness assumptions, definitions of access structure
and linear secret sharing scheme, syntaxes and security definitions of commitment scheme, OTS, ABS
and ABSC are provided in this section.

2.1 Notations

For a set X , x R←− X denotes that x is randomly picked from X according to the distribution R. Likewise,
x U←− X indicates x is uniformly selected from X . For an algorithm A and variables x,y, the notation
x←− A(y) (resp. A(y) −→ x) carries the meaning that when A is run on the input y, it outputs x. The
symbol, PPT stand for polynomial and probabilistic polynomial-time respectively. For a,b ∈ N, de-
fine [a,b] := {i ∈ N : a ≤ i ≤ b} and [b] := [1,b]. Let str1|| . . . ||strn denote the concatenation of the
strings, str1, . . . ,strn ∈ {0,1}∗. For algorithms A1, . . . ,An and variables x1, . . . ,xn, y1, . . . ,yn, the notation

2IND-gCCA is a weaker security notion than IND-CCA. For details, reader may consult [1].
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x1←− A1(y1) ‖ . . . ‖ xn←− An(yn) stands for the parallel execution of x1←− A1(y1), . . . ,xn←− An(yn).
Throughout this paper, bold character denotes vector objects. For a vector x, the ith component is de-
noted by xi. For x,y ∈ Zn

N , we define < x,y >:= ∑
n
i=1 xi · yi. For S ⊂ Zn

N and α ∈ Zn
N , we define

α + S := {α +β | β ∈ S}. For a matrix Me (resp. Ms), the symbol M(i)
e (resp. M(i)

s ) represents the ith

row of the matrix Me (resp. Ms). The subscripts i and superscript (i) will be used for indexing. The
notations 1 and 0 stand for (1,0, . . . ,0) and (0, . . . ,0) respectively. For better understanding the schemes,
we use two subscripts, s and e respectively for encryption and signature.

2.2 Composite Order Bilinear Groups

Composite order bilinear groups [8, 23] are defined to be a tuple J := (N := p1 p2 p3,G, GT ,e), where
p1, p2, p3 are three distinct primes and G and GT are cyclic groups of order N and e : G×G→GT is a
map with the following properties:

1. (Bilinear). For all g1 ∈G1, g2 ∈G2 and ∀s, t ∈ Zp,e(gs
1,g

t
2) = e(g1,g2)

st .

2. (Non-degenerate). e(g1,g2) has order p in GT .

3. (Computable). There is an efficient algorithm for computing e(g1,g2) for all g1 ∈G1 and g2 ∈G2.

Let Gcbg denote an algorithm which takes 1κ as a security parameter and returns a description of compos-
ite order bilinear groups J =(N = p1 p2 p3,G,GT ,e). Composite order bilinear groups enjoy orthogonal
property defined below.

Definition 2.1 (Orthogonal Property). Let Gp1 ,Gp2 and Gp3 denote subgroups of G of order p1, p2 and
p3 respectively. The subgroups Gp1 ,Gp2 and Gp3 are said to have orthogonal property if for all hi ∈Gpi

and h j ∈Gp j with i, j ∈ {1,2,3} and i 6= j, it holds that e(hi,h j) = 1.

Additional Notations. Let 1G and 1 denote the identity elements of G and GT respectively. For three
distinct primes, p1, p2 and p3, a cyclic group G of order N = p1 p2 p3, can be written as G=Gp1Gp2Gp3 ,
where Gpi’s are subgroups of G of order pi. So, each element X ∈ G can be expressed as X = X1X2X3,
where Xi ∈Gpi . For X ∈G, the notation X

∣∣
Gpi

means the projection of X over Gpi , i.e., Xi = X
∣∣
Gpi

. Let

gT stand for the element e(g,g), where g ∈Gp1 .

2.3 Hardness Assumptions in Composite Order Bilinear Groups

We describe here three Decisional SubGroup (DSG) assumptions [25] for 3 primes, DSG1, DSG2 and
DSS3 in composite order bilinear groups. Let J := (N = p1 p2 p3,G,GT ,e)

U←− Gcbg(1κ) be the com-
mon parameters for each assumptions. In the following, we define instance for each assumption.

• DSG1. Let g U←−Gp1 ;Z3
U←−Gp3 ;T0

U←−Gp1 ; T1
U←−Gp1 p2 . Define D := (J ,g,Z3).

• DSG2. Let g,Z1
U←−Gp1 ; Z2,W2

U←−Gp2 ; W3,Z3
U←−Gp3 ; T0

U←−Gp1 p3 ; T1
U←−G. Then define

D := (J ,g,Z1Z2,W2W3,Z3).

• DSG3. Let α,s U←− ZN ; g U←− Gp1 ; W2,Y2,g2
U←− Gp2 ; Z3

U←− Gp3 ; T0 := e(g,g)αs; T1
U←− GT .

Define D := (J ,g,gαY2,gsW2,g2,Z3).

The advantage of an algorithm A in breaking DSGi, for i = 1,2,3 is defined by

AdvDSGi
A (κ) =

∣∣Pr [A (D ,T0) = 1]−Pr [A (D ,T1) = 1]
∣∣.
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We say that the DSGi assumption holds in J if for every PPT algorithm A , the advantage AdvDSGi
A (κ)

is negligible in security parameter κ .
Below we define a factorization problem for the composite numbers of the form, N = p1 p2 p3 and

p1, p2 and p3 are three distinct primes. Let CNG be an algorithm for generating the composite number
of the above form. The algorithm CNG takes as input 1κ and returns a composite number of length
polynomial to κ .

Definition 2.2 (Factorization Problem). A factorization problem for product of three primes is said to be
hard if for all PPT algorithms A , the advantage

AdvFactor
A (κ) := Pr

[
(q|N)∧ (q 6= 1)∧ (q 6= N)

∣∣∣ N := p1 p2 p3←− CNG(1κ);
q←−A (1κ ,N)

]
is negligible function in κ .

Proposition 2.1. The hardness of DSG2 assumption implies the hardness of factorization problem.

Proof. We establish a PPT algorithm B for breaking the DSG2 assumption using an adversary A for
breaking the factorization problem. B is given an instance of DSG2, (J ,g,Z1Z2,W2W3,Z3,Tβ ), where

J = (N = p1 p2 p3,G,GT ,e) with β
U←− {0,1}. Then N is given to A . Let F be the non-trivial factor

returned by A . Then F = p1 or p2 or p3 or p1 p2 or p1 p3 or p2 p3, i.e., F is either a prime or the product
of two distinct primes. Using the parameters of the given instance of DSG2, B recognizes the exact form
of F as follows. If gF = 1G, then F = p1 or p1 p2 or p1 p3 else F = p2 or p3 or p2 p3.

– (Case: gF = 1G). If (Y1Y2)
F = 1G, then F = p1 p2 else if (Z3)

F = 1G then F = p1 p3 else F = p1.

– (Case: gF 6= 1G). If (W2W3)
F = 1G, then F = p2 p3, else if (Z3)

F = 1G, then F = p3 else F = p2.

How B breaks the instance of DSG2 is shown only for three forms of F , viz., p1, p3 and p1 p3 as the rest
of the cases are handled by assigning F := N

F .

– F = p1. It checks e((Y1Y2)
F ,Tβ )

?
= 1. If equality holds, it returns 0 else 1.

– F = p3. It checks e((W2W3)
F ,Tβ )

?
= 1. If equality holds, it returns 0 else 1.

– F = p1 p3. It checks (Tβ )
F ?
= 1G. If equality holds, it returns 0 else 1.

Proposition 2.2. Suppose the DSG2 assumption holds in J = (N = p1 p2 p3, G, GT ,e). Let a,b ∈ ZN .
Then for X1,X2 ∈ ZN with X1 6= X2, aX1 + b and aX2 + b are uniformly and independently distributed
over Zp2 .

Proof. Using the fact of [23], we have aX1 +b and aX2 +b are uniformly and independently distributed
over Zp2 if X1 6≡ X2 mod p2. Therefore, it is sufficient to show that X1 6≡ X2 mod p2. Indeed, if X1−
X2 ≡ 0 mod p2, we can find a non-trivial factor F := gcd(X1−X2,N) of N with p2|F . Then, using
Proposition 2.1, we can break the hardness of DSG2 assumption, which is a contradiction.
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2.4 Commitment scheme

A non-interactive commitment scheme consists of three PPT algorithms - Setup, Commit and Open.

• Setup: It takes a security parameter κ and outputs a public commitment key C K .

• Commit: It takes as input a message m, the public commitment key C K and returns a pair
(com,decom), where com is a commitment of the message m and decom is the decommitment.

• Open: takes a pair (com,decom), the public commitment key C K as input and outputs m or ⊥.

For correctness, it is required that3 Open(Commit(m)) = m for all message m ∈M , where M is the
message space.

2.5 Security of Commitment

A commitment scheme is said to have hiding, binding and relaxed-binding properties if it satisfies the
following respectively:
Hiding: For all PPT A the following is negligible:∣∣∣∣∣Pr

[
C K ←− CSetup(1κ), (m0,m1,st)←−A (C K ),

b U←− {0,1},(comb,decomb)←− Commit(C K ,mb),
: A (C K ,st,comb) = b

]
− 1

2

∣∣∣∣∣ .
Binding: For all PPT A the following is negligible:

Pr
[
C K ←− CSetup(1κ), (com,decom,decom′)←−A (C K ),

m←−Open(com,decom), m′←−Open(com,decom′),
: (m 6= m′)∧ (m,m′ 6=⊥)

]
.

Relaxed-Binding: For all PPT A the following is negligible:

Pr


C K ←− CSetup(1κ), (m,st)←−A (C K ),

(com,decom)←− Commit(m),
decom′←−A (C K ,st,com,decom),

m′←−Open(com,decom′),

: (m 6= m′)∧ (m′ 6=⊥)

 .
Remark 2.1. It is immediate that the relaxed-binding property is weaker than the binding property.

There are many commitment schemes [14, 20, 41] available in the literature. However, in this paper,
we use the commitment scheme as a black-box in the proposed constructions.

2.6 Signature Scheme

A signature scheme consists of three PPT algorithms - Gen, Sign and Ver.

• Gen: It takes a security parameter κ as input and outputs a verification key vk and a signing key
signk.

• Sign: It takes a message m and a signing key signk as input and returns a signature σ .

• Ver: It receives a message m, a signature σ and a verification key vk as input and returns a boolean
value 1 for acceptance or 0 for rejection.

3For brevity, we just omit C K in Open and Commit algorithm throughout this paper
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2.7 Strongly Unforgeable One-Time Signature

Strongly unforgeable one-time signature (OTS) model is defined as a game between a challenger B and
an adversary A , where A has to forge a signature for a message. It consists of the following phases:
Gen: The challenger B runs Gen(1κ)−→ (vk,signk). Then vk is given to the adversary A .
Query: The adversary A is given access to the oracle Sign(.,signk) at most once. Let (m,σ) be the
corresponding query message and relied signature.
Forgery: The adversary outputs a signature (m∗,σ∗).

We say the adversary succeeds in this game if Ver(m∗,σ∗,vk) = 1 and (m,σ) 6= (m∗,σ∗).
Let AdvsUF−CMA

A ,OTS (κ) denote the success probability for any adversary A in the above experiment.
A signature scheme is said to be strongly unforgeable one-time signature or simply strong OTS if
AdvsUF−CMA

A ,OTS (κ) is at most negligible function in κ .

2.8 Access Structure and Linear Secret Sharing Scheme

Definition 2.3 (Access Structure). Let P = {P1, . . . ,Pn} be a set of parties. A collection Γ ⊂ 2P is
said to be monotone if Γ is closed under superset, i.e, if ∀ B,C: if B ∈ Γ and B ⊂ C, then C ∈ Γ. An
access structure (resp. monotone access structure) is a collection (respectively, monotone collection) Γ

of non-empty subsets of P , i.e., Γ ⊂ 2P \ { /0}. The members of Γ are called authorized sets, and the
sets not in Γ are called unauthorized sets.

The monotone access structures are represented by access trees and linear secret sharing schemes.
We define linear secret sharing scheme (LSSS) of [48, 4] as follows.

Definition 2.4 (Linear Secret Sharing Scheme). A secret sharing scheme Π over a set of parties P is
called linear (over Zp) if

1. The shares for each party form a vector over Zp

2. There exists a matrix M of order `× r, called share generating matrix. For all i = 1,2, .., `, the ith

row of M is labeled by a party ρ(i) (ρ is a function from {1, . . . , `} to P). For v = (s, t2, . . . , tr),
where s ∈ Zp is the secret to be shared and t2, . . . , tr

U←− Zp, Mv is the vector of ` shares of the
secret s according to Π. The share si := (Mv)i belongs to party ρ(i).

Property of LSSS. Every LSSS according to the above definition enjoys linear reconstruction property
defined as follows. Suppose Π is an LSSS for an access structure Γ. Let A ∈ Γ be an authorized set and
I := {i ∈ [`] | ρ(i) ∈ A}. Then there exist constants {αi ∈ Zp}i∈I such that

∑
i∈I

αiMi = (1,0, . . . ,0) (1)

where Mi is the ith row of M. Hence, if {si} are valid shares of any secret s according to Π, then by
taking inner product of the equation 1 with v, we have ∑i∈I αisi = s. These constants {αi} are computed
in time polynomial in the size of share-generating matrix M.

Span program. Given any monotone access structure over a set of parties P , one can obtain the cor-
responding LSSS representation (denoted by (M,ρ)) by applying the technique of [4]. The function
ρ : [`]→P is called the row labeling function. For a monotone access structure Γ, the corresponding
LSSS representation, (M,ρ) is called monotone span program (MSP).
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2.9 Signature-Policy Attribute-Based Signature

A signature-policy attribute-based signature (SP-ABS) scheme consists of four PPT algorithms - Setup,
KeyGen, Sign and Ver.

• Setup: It takes a security parameter κ and a universe of attributes U as input, outputs public
parameters PP and master secret key MS K .

• KeyGen: It takes as input PP , MS K and a set of attributes A and outputs a secret key S K A

corresponding to A.

• Sign: It takes PP , a message m ∈M , a secret key S K A and an associated policy Γ over U
with Γ(A) = True and returns a signature δ .

• Ver: It receives PP , a message m∈M , a signature δ and a claimed associated policy Γ as input.
It returns a boolean value 1 for acceptance or 0 for rejection.

Correctness. For all (PP,MS K ) ←− Setup(1κ ,U ), all m ∈ M , all sets of attributes A,
S K A←− KeyGen(PP,MS K ,A) and all policies Γ with Γ(A) = True, it is required that

Ver(PP,m,Sign(PP,m,S K A,Γ),Γ) = 1.

Remark 2.2. As in ABS of [31], we assume that signer sends both signature and policy Γ to receiver.

2.10 Security of SP-ABS

Definition 2.5 (Signer Privacy). An SP-ABS scheme is said to be perfectly private if for all
(PP,MS K ) ←− Setup(1κ ,U ), all A1,A2 ⊂ U , S K A1 ←− KeyGen(PP,MS K ,A1),
S K A2 ←− KeyGen(PP,MS K ,A2), all m ∈ M , and all policies Γ with Γ(A1) = True and
Γ(A2) = True, the distributions of Sign(PP,m,S K A1 ,Γ) and Sign(PP,m,S K A2 ,Γ) are iden-
tical, where the random coins of the distributions are only the random coins involved in the Sign algo-
rithm.

Note that the signer-privacy defined above is also called perfect-privacy. A predicate signature
scheme with signer-privacy is called perfectly private.

Definition 2.6 (Adaptive-Predicate Unforgeability). An SP-ABS scheme is said to be existential un-
forgeable in adaptive-predicate model (or AP-UF-CMA) if for all PPT algorithms A , the advantage

AdvAP−UF−CMA
A ,ABS (κ) := Pr [Ver(PP,m∗,δ ∗,Γ∗) = 1∧NRn]

in ExpAP−UF−CMA
A ,ABS (κ) defined in Figure 1 is negligible function in κ , where A is provided access to key-

gen oracle OK and sign oracle OSg (described below) and NRn is a natural restriction that (m∗,A,Γ∗)
with Γ∗(A) = True was never queried to OSg oracle and for each set of attributes A queried to OK , it
holds that Γ∗(A) = False.

• KeyGen oracle (OK): Given a set of attributes A, oracle returns S K A ←− KeyGen(PP ,
MS K ,A).

• Sign oracle (OSg): Given (m,A,Γ), oracle returns δ ←− Sign(PP,m,S K A,Γ).

We may refer the above security model as AP-UF-CMA security model in this paper.
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ExpAP−UF−CMA
A ,ABS (κ):

• (PP,MS K )←− Setup(1κ ,U )

• (δ ∗,m∗,Γ∗)←−A {OK , OSg}(PP)

Figure 1: Experiments for unforgeability

Definition 2.7 (Selective-Predicate Unforgeability). There is another variant of unforgeability, called
selective-predicate existential unforgeability (SP-UF-CMA), where A submits a challenge policy Γ∗

(later on which A will forge) before obtaining the PP of ABS.

Definition 2.8 (Strong Unforgeability). The unforgeability defined in Definition 2.6 and 2.7 are called
weak unforgeability because A is not allowed to forge on queried messages. In strong unforgeability,
A is allowed to forge δ ∗ even on the queried message (m∗,Γ∗) but then δ ∗ 6= δ must hold, where δ is a
signature obtained from sign oracle on the query message (m∗,Γ∗).

We use the notations, AP-sUF-CMA and SP-sUF-CMA respectively for strong unforgeability in
adaptive-predicate and selective-predicate models.

2.11 Signcryption-Policy Attribute-Based Signcryption

A signcryption-policy attribute-based signcryption (SCP-ABSC) scheme consists of four PPT algorithms
- Setup, KeyGen, Signcrypt and Unsigncrypt.

• Setup: It takes a security parameter κ and a universe of attributes U as input, outputs public
parameters PP and master secret key MS K .

• KeyGen: It takes as input PP , MS K and a set of attributes A and outputs a secret key S K A

corresponding to A.

• Signcrypt: It takes PP , a message m ∈M , a signing key S K A, an associated policy Γs

for sender with Γs(A) = True and an associated policy Γe for receiver as input and returns a
signcryption U for (Γs,Γe) (we assume that U implicitly contains Γe).

• Unsigncrypt: It takes as input PP , a signcryption U, a secret key S K A and an associated
policy Γs for sender. It returns a value from M ∪{⊥}.

Correctness. For all (PP,MS K ) ←− Setup(1κ ,U ), all m ∈ M , all sets of attributes A,
S K A ←− KeyGen(PP,MS K ,A), all sender’s associated policies Γs with Γs(A) = True,
all receiver’s associated policies Γe, all signcryptions U ←− Signcrypt(PP,m,S K A,Γs,Γe)
and all sets of attributes Ã, S K Ã ←− KeyGen(PP,MS K , Ã), it is required that
Unsigncrypt(PP,U,S K Ã,Γs) = m (resp. ⊥) if Γe(Ã) = True (resp. Γe(Ã) = False).

Remark 2.3. Similar to predicate signature, we assume that signer sends both signcryption and sender’s
policy Γs to receiver in predicate signcryption.
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2.12 Security of SCP-ABSC

Definition 2.9 (Signer Privacy). An SCP-ABSC scheme is said to be perfectly private if for
all (PP,MS K ) ←− Setup(1κ ,U ), all sets of attributes A1,A2 ⊂ U , all keys S K A1 ←−
KeyGen(PP,MS K ,A1), S K A2 ←− KeyGen(PP,MS K ,A2), all messages m ∈ M ,
all sender’s associated policies Γs such that Γs(A1) = True and Γs(A2) = True, and all re-
ceiver’s associated policies Γe, the distributions of Signcrypt(PP , m,S K A1 ,Γs,Γe) and
Signcrypt(PP,m,S K A2 ,Γs,Γe) are identical, where the random coins of the distributions are only
the random coins involved in Signcrypt algorithm.

The signer-privacy defined above is also called perfect-privacy. An SCP-ABSC scheme with signer-
privacy is called perfectly private.

Definition 2.10 (Adaptive-Predicates IND-CCA Security). An SCP-ABSC is said to be IND-CCA se-
cure in adaptive-predicates model (or APs-IND-CCA secure) if for all PPT algorithms A := (A1,A2),
the advantage

AdvAPs−IND−CCA
A ,ABSC (κ) :=

∣∣∣∣Pr
[
b = b′∧NRn

]
− 1

2

∣∣∣∣
in ExpAPs−IND−CCA

A ,ABSC (κ) defined in Figure 2 is negligible function in security parameter κ , where A is
provided access to key-gen oracle OK , signcrypt oracle OS and unsigncrypt oracle OU (described below),
and NRn is a natural restriction that (U∗,A,Γ∗s ) with Γ∗e(A) = True was never queried to OU and for each
set of attributes A queried to OK , it holds that Γ∗e(A) = False.

• KeyGen oracle (OK): Given a set of attributes A, oracle returns S K A ←− KeyGen(PP ,
MS K ,A).

• Signcrypt oracle (OS): Given (m,A,Γs,Γe), oracle returns U ←− Signcrypt(PP ,
m,S K A,Γs,Γe).

• Unsigncrypt oracle (OU ): Given (U,A,Γs), oracle returns Unsigncrypt(PP,U, S K A,Γs).

ExpAPs−IND−CCA
A ,ABSC (κ):

• (PP,MS K )←− Setup(1κ ,U )

• (m0,m1,A,Γ∗s ,Γ
∗
e ,st)←−A

{OK , OS , OU }
1 (PP) with |m0|= |m1|

• b U←− {0,1}

• U∗←− Signcrypt(PP,mb,S K A,Γ
∗
s ,Γ
∗
e)

• b′←−A
{OK , OS , OU }

2 (PP,U∗,st)

Figure 2: Experiment for confidentiality (adaptive-predicates IND-CCA security)

We may refer the above security model as APs-IND-CCA security model in this paper.

Definition 2.11 (Selective-Predicate IND-CCA Security). Similarly to Definition 2.10, except in this
model, A has to submit the challenge receiver’s policy Γ∗e before receiving PP of SCP-ABSC and the
challenge sender’s policy Γ∗s in the challenge phase.
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Remark 2.4. The selective-predicate IND-CCA (SP-IND-CCA) security model (Definition 2.11) is
weaker than APs-IND-CCA security model (Definition 2.10).

Definition 2.12 (Selective-Predicates IND-CCA Security). Similarly to Definition 2.10, except in this
model, A has to submit the challenge receiver’s policy Γ∗e and challenge sender’s policy Γ∗s before
receiving PP of SCP-ABSC.

Remark 2.5. Selective-predicates IND-CCA (SPs-IND-CCA) security model (Definition 2.12) is
weaker than SP-IND-CCA security model (Definition 2.11).

Definition 2.13 (Adaptive-Predicates Unforgeability). An SCP-ABSC scheme is said to be existential
unforgeable in adaptive-predicates model (or APs-UF-CMA secure) if for all PPT A , the advantage

AdvAPs−UF−CMA
A ,ABSC (κ) := Pr [m∗ 6=⊥ ∧ NRn]

in ExpAPs−UF−CMA
A ,ABSC (κ) defined in Figure 3 is negligible function in κ , where A is provided access to

key-gen oracle OK , signcrypt oracle OS and unsigncrypt oracle OU (described below), and NRn is a
natural restriction that for each tuple (m,A,Γs,Γe) queried to OS oracle, (m,Γs,Γe) 6= (m∗,Γ∗s ,Γ

∗
e) and

for each set of attributes A queried to OK oracle, it holds that Γ∗s (A) = False.

• KeyGen oracle (OK): Given a set of attributes A, oracle returns S K A ←− KeyGen(PP ,
MS K ,A).

• Signcrypt oracle (OS): Given (m,A,Γs,Γe), oracle returns U ←− Signcrypt(PP ,
m,S K A,Γs,Γe).

• Unsigncrypt oracle (OU ): Given (U,A,Γs), oracle returns Unsigncrypt(PP,U, S K A,Γs).

ExpAPs−UF−CMA
A ,ABSC (κ):

• (PP,MS K )←− Setup(1κ ,U )

• (U∗,Γ∗s ,Γ∗e)←−A {OK , OS , OU }(PP)

• m∗←− Unsigncrypt(PP,U∗,S K A,Γ
∗
s ,Γ
∗
e) where Γ∗e(A) = True

Figure 3: Experiment for unforgeability (adaptive-predicates UF-CMA security)

We may refer the above security model as APs-UF-CMA security model in this paper.

Definition 2.14 (Adaptive-Predicates Strong Unforgeability). The above unforgeability (Definition
2.13) is also called weak unforgeability in the sense that in forgery A is not allowed to forge for
the queried messages. In strong unforgeability (we use notation, APs-sUF-CMA), the restriction
(m,Γs,Γe) 6= (m∗,Γ∗s ,Γ

∗
e) is replaced by (U,m,Γs,Γe) 6= (U∗,m∗,Γ∗s ,Γ∗e), where U is the reply for the

query (m,A,Γs,Γe) to OS oracle.

Definition 2.15 (Selective-Predicate Strong Unforgeability). Similarly to Definition 2.14, except in this
model, A has to submit the challenge sender’s polycy Γ∗s before receiving PP of SCP-ABSC and the
challenge receiver’s policy Γ∗e at the time of forgery.

Remark 2.6. The selective-predicate sUF-CMA (SP-sUF-CMA) security model (Definition 2.15) is
weaker than APs-sUF-CMA security model (Definition 2.14).
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Definition 2.16 (Selective-Predicates Strong Unforgeability). Similarly to Definition 2.14, except in this
model, A has to submit the challenge sender’s policy Γ∗s and challenge receiver’s policy Γ∗e before
receiving PP of PSC.

Remark 2.7. Selective-predicates sUF-CMA (SPs-sUF-CMA) security model (Definition 2.16) is
weaker than SP-sUF-CMA security model (Definition 2.15).

3 Signature-Policy Attribute-Based Signature

We propose a basic signature-policy attribute-based signature (SP-ABS) scheme for monotone span pro-
grams. The construction is based on composite order bilinear pairing groups (N := p1 p2 p3, G, GT , e)
for 3 distinct primes p1, p2 and p3. The subgroup Gp2 has no role in this scheme but it will be used to
prove the security. The proposed SP-ABS scheme has the similar structure to that of [12] except for some
modifications, viz., the encoding function from hash of messages to group elements and pairing groups.
To guarantee unforgeability of the ABS scheme in adaptive-predicate model, we allow such modifica-
tions. In this basic SP-ABS construction, the policies, i.e., MSPs are restricted to have each entry of row
labeling function ρs to be distinct. In other words, the row labeling functions ρs of the monotone span
programs Γs := (Ms,ρs) are injective. From this basic ABS scheme, a complete ABS scheme can be
constructed using the mechanism of Section 10, where ρs is no more assumed to be injective.

Setup(1κ ,U ): It executes J := (N := p1 p2 p3,G,GT ,e)←− Gcbg(1κ). It chooses g U←− Gp1 ,Z3
U←−

Gp3 ,a,as,bs,α
U←− ZN and ti

U←− ZN for each attribute i ∈ U . It then sets us := gas ,vs := gbs ,Ti := gti

for i ∈U . Let Hs : {0,1}∗ −→ ZN be a hash function. The public parameters and master secret are given
by

PP := (J ,g,ga,us,vs,gα
T ,{Ti}i∈U ,Z3,Hs),

MS K := (α).

KeyGen(PP,MS K ,A): It picks t U←− ZN ,R,R′0
U←− Gp3 . For each attribute i ∈ A, the algorithm

chooses Ri
U←−Gp3 and outputs the secret key

S K A := [A, K := gα+atR, L := gtR′0, Ki := Ti
tRi ∀i ∈ A].

Sign(PP,m,S K A,Γs := (Ms,ρs)): Let Ms be an `s×ns matrix. If Γs(A) = False, returns ⊥. Oth-
erwise computes the sets IA ⊂ [`s] and {α(i)

s }i∈IA such that ∑i∈IA
α
(i)
s M(i)

s = 1. It selects β
U←− {β =

(β1, . . . ,β`s) ∈ Z`s
N | ∑i∈[`s] βiM

(i)
s = 0}. Suppose S K A := [A, K := gα+atR, L := gtR′0, Ki := Ti

tRi ∀i ∈
A], then it re-randomizes the Gp1 part of the key S K A as follows.

˜S K A := [A, K̃ := Kgat̂ , L̃ := Lgt̂ , K̃i := KiTi
t̂ ∀i ∈ A], where t̂ U←− ZN

:= [A, K̃ := gα+at̃R, L̃ := gt̃R′0, K̃i := Ti
t̃Ri ∀i ∈ A], where t̃ := t + t̂.

It picks rs,τ
U←− ZN , R̄, R̄0

U←− Gp3 and for each i ∈ [`s], it chooses R̄i
U←− Gp3 . Then it computes

h̄s := Hs(m,Γs). The components of signature are given by
S0 :=

(
K̃(uh̄s

s vs)
rsR̄, grsR̄0

)
,

Si :=
(

L̃α
(i)
s (gτ)βiR̄i, (K̃ρs(i))

α
(i)
s (Tρs(i))

τβiR̄′i
)

for i ∈ [`s].

In the above expression, it sets α
(i)
s := 0 for i 6∈IA.

After simplification, it gives
S0 :=

(
gα+at̃(uh̄s

s vs)
rsR̃, grsR̃0

)
, where R̃ := RR̄, R̃0 := R̄0,

Si :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
for i ∈ [`s].
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In the above expression, it sets R̃i := (R′0)
α
(i)
s R̄i, R̃′i := Rα

(i)
s +τβi

ρs(i)
R̄′i.

It returns the signature δ := (S0,{Si}i∈[`s]).

Ver(PP,m,δ ,Γs): It first computes a verification text, then using this verification text it will verify the
signature. The following is the construction of verification text. It picks us := (s,u2, . . . ,uns)

U←−Zns
N and

r(i)s
U←− ZN for i ∈ [`s]. It computes h̄s := Hs(m,Γs). Let M(i)

s denote the ith row of the matrix, Ms and let
λ
(i)
s :=< M(i)

s ,us >. The components of verification text are given by
V0 :=

(
gs,(uh̄s

s vs)
s,gαs

T

)
,

Vi :=
(

gaλ
(i)
s T−r(i)s

ρs(i)
, gr(i)s

)
for i ∈ [`s].

The final verification text is V := (V0,{Vi}i∈[`s]).

Now, it computes ∆s := e(S01,V01)

e(S02,V02)·∏`s
i=1(e(Si1,Vi1)·e(Si2,Vi2))

and checks ∆s
?
= V03. It returns 1 if ∆s = V03,

else returns 0.

Correctness.

∆s =
e(S01,V01)

e(S02,V02) ·∏`s
i=1(e(Si1,Vi1) · e(Si2,Vi2))

=
gαs+at̃s

T · e(uh̄s
s vs,g)srs

e(uh̄s
s vs,g)srs ·∏`s

i=1(e(gt̃α(i)
s +τβi ,gaλ

(i)
s −r(i)s tρs(i)) · e(gt̃αitρs(i)+τβitρs(i) ,gr(i)s ))

=
gαs+at̃s

T

∏
`s
i=1 gat̃λ (i)

s α
(i)
s +aτλ

(i)
s βi

T

=
gαs+at̃s

T

gat̃ ∑
`s
i=1 λ

(i)
s α

(i)
s +aτ ∑

`s
i=1 λ

(i)
s βi

T

= gαs
T

4 Security Proof of SP-ABS

Theorem 4.1. The proposed attribute-based signature scheme in Section 3 is perfectly private (Definition
2.5).

Proof. Let A1 and A2 be two sets of attributes and Γs := (Ms,ρs) be an access policy such that
Γs(A1) = Γs(A2) = True. Then, there exist sets IA1 ⊂ [`s], IA2 ⊂ [`s] and {α(i)

s1 }i∈[`s], {α
(i)
s2 }i∈[`s] such

that ∑i∈IA1
α
(i)
s1 M(i)

s = 1 and ∑i∈IA2
α
(i)
s2 M(i)

s = 1. In other words, there exist vectors αs1 and αs2 such

that ∑
`s
i=1 α

(i)
s1 M(i)

s = ∑
`s
i=1 α

(i)
s2 M(i)

s = 1, where α
(i)
s1 = 0 if i 6∈IA1 and α

(i)
s2 = 0 if i 6∈IA2. We will show

that the signatures δ1 and δ2 generated respectively by the keys S K A1 and S K A2 on behalf of access
policy Γs are identical. First of all note that the Gp3 components in the signature do not carry any in-
formation about the attributes used to sign a message. An unbounded adversary can compute the values
rs, t̃ using the public parameters and S0, but since those values are chosen uniformly and independently
random from ZN , those values also do not carry any information regarding the attribute set used to sign
the message. So, S0 of any two signatures are identical. The only parts of the signature carrying the
information of attributes are Si for i ∈ [`s]. Now consider two system of equations, homogeneous and
non-homogeneous given below:

`s

∑
i=1

βiM
(i)
s = 0 (2)

`s

∑
i=1

α
(i)
s M(i)

s = 1 (3)
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Let Y0 := {β
∣∣∣∑`s

i=1 βiM
(i)
s = 0} and Y1 := {αs

∣∣∣∑`s
i=1 α

(i)
s M(i)

s = 1} respectively denote the solution
set of equation 2 and 3. Let αs1 and αs2 be any two solutions of system 3, then we can write Y1 =

αs1 +Y0 = αs2 +Y0. So, the distributions of αs1 +β and αs2 +β are identical for β
U←− Y0. Therefore,

the distribution of (t̃1α
(i)
s1 + τ1βi)i∈[`s] and (t̃2α

(i)
s2 + τ2βi)i∈[`s] are identical. Since the distribution of Si is

(gt̃α(i)
s +τβi , g(t̃α

(i)
s +τβi)tρs(i)), the distributions of the signatures δ1 and δ2 are identical.

4.1 Adaptive-Predicate Existential Unforgeability of SP-ABS

We prove the adaptive-predicate unforgeability of our basic ABS scheme by the proof technique of
Okamoto and Takashima [36] and the dual system methodology of Brent Waters [47]. This methodology
requires to define the semi-functional verification texts, signatures and keys. Here, we define two types
of semi-functional verification texts, viz., type 1 and type 2. Two forms of semi-functional keys are
considered here – type 1 and type 2. Our semi-functional signatures consist of two forms, viz., type 1
and type 2. In the sequence of games, the verification text is first changed from normal to semi-functional
type 1. Then, each queried key is changed from normal to semi-functional type 1, then semi-functional
type 1 to type 2. Consecutively, each queried signature is changed from normal to semi-functional type
2 through semi-functional type 1 signature. In the final game, the semi-functional type 1 verification text
is changed to semi-functional type 2 verification text.

In the following material, the part framed by a box indicates that either it will be changed in next
description or it has been changed from previous description. We use the abbreviation ‘sf’ and ‘vText’
for ‘semi-functional’ and ‘verification text’ respectively.

Semi-functional type 1 verification text. Pick c, ι U←− ZN , vs
U←− Zns

N . For each i ∈ [`s], pick γ
(i)
s

U←−
ZN . For each i ∈ U , choose zi

U←− ZN . The sf-type 1 vText is obtained by modifying normal vText
V = (V0,{Vi}i∈[`s]) as given below:

V0 :=
(

gs gc
2 ,(uh̄s

s vs)
s gι

2 , gαs
T

)
,

Vi :=
(

gaλ
(i)
s T−r(i)s

ρs(i)
g
<M(i)

s ,vs>+γ
(i)
s zρs(i)

2 , gr(i)s g−γ
(i)
s

2

)
, for i ∈ [`s].

Semi-functional type 2 verification text. This is same as sf-type 1 vText except the following:
V0 :=

(
gsgc

2,(u
h̄s
s vs)

sgι
2, ĝt

)
, where ĝt

U←−GT .

Semi-functional type 1 key. Choose b,d U←− ZN . First create a normal key
S K A := [A, K := gα+atR, L := gtR′0, Ki := Ti

tRi ∀i ∈ A]
and then modify it to sf-type 1 key as shown below:

S K A := [A, K := gα+atR gd
2 , L := gtR′0 gb

2 , Ki := Ti
tRi gbzi

2 ∀i ∈ A].

Semi-functional type 2 key. This is same as sf-type 1 key except b = 0, i.e.,
S K A := [A, K := gα+atRgd

2 , L := gtR′0, Ki := Ti
tRi ∀i ∈ A].

Semi-functional type 1 signature. Choose b̃, d̃ U←− ZN . First, a normal signature is created, then this
is changed to sf-type 1 signature by adding Gp2 part as given below:
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S0 :=
(

gα+at̃(uh̄s
s vs)

rsR̃ gd̃
2 , grsR̃0 gb̃

2
)
,

Si :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
.

Semi-functional type 2 signature. This is same as sf-type 1 signature except b̃ = 0, i.e.,
S0 :=

(
gα+at̃(uh̄s

s vs)
rsR̃gd̃

2 , grsR̃0
)
,

Si :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
.

A normal signature can be verified by a normal vText as well as an sf-type 1 vText. But, if a valid
sf-type 1 (resp. sf-type 2) signature is verified by an sf-type 1 vText, we will have an additional term
e(g2,g2)

d̃c−b̃ι (resp. e(g2,g2)
d̃c) in ∆s, i.e., the verification process fails. In sf-type 2 vText, the V03 part

are made completely random by setting V03 := ĝt , where ĝt
U←−GT . Therefore, any form of signatures

even including normal will be invalid with respect to sf-type 2 vText.

Theorem 4.2. The proposed basic SP-ABS scheme in Section 3 is existential unforgeable in adaptive-
predicate model (Definition 2.6) if DSG1, DSG2 and DSG3 assumptions hold in J and Hs is a collision
resistant hash function.

Proof. Suppose there are at most ν1 (resp. ν2) key (resp. signature) queries made by an adversary A .
Then the security proof consists of hybrid argument over a sequence of 2(ν1 +ν2)+3 games which are
defined below:

– GameReal := Original AP-UF-CMA game of ABS scheme.

– Game0 (:= Game1−0−2) is just like GameReal except that the vText is of sf-type 1.

– Game1−k−1 (for 1≤ k ≤ ν1) ia same as Game1−(k−1)−2 except the kth key is of sf-type 1.

– Game1−k−2 (for 1≤ k ≤ ν1) is same as Game1−k−1 except the kth key is sf-type 2.

– Game2−k−1 (for 1≤ k≤ ν2) is same as Game2−(k−1)−2 except the kth signature is sf-type 1. So, in this
sequel, we define Game2−0−2 := Game1−ν1−2.

– Game2−k−2 (for 1≤ k ≤ ν2) is same as Game2−k−1 except the kth signature is of sf-type 2.

– GameFinal is similar to Game2−ν2−2 except that the vText is of sf-type 2.

In GameFinal , the part V03 in V0 is chosen independently and uniformly random from GT . This
implies that the forgery will be invalid with respect to the vText. Therefore, the adversary A has no
advantage in GameFinal . The outline of the hybrid arguments over the games is given below, where Lem
stands for Lemma.

Real

Lem 4.3
|

DSG1
|

=⇒ 0

Lem 4.4
|

DSG2
|

=⇒ 1−1−1 . . . 1− (k−1)−2

Lem 4.4
|

DSG2
|

=⇒ 1− k−1

1− k−1

Lem 4.6
|

DSG2
|

=⇒ 1− k−2 . . . 1−ν1−2

Lem 4.7
|

DSG2,CRHs
|

=⇒ 2−1−1 . . . 2− (k−1)−2

2− (k−1)−2

Lem 4.7
|

DSG2,CRH
|

=⇒ 2− k−1

Lem 4.8
|

DSG2
|

=⇒ 2− k−2 . . . 2−ν2−2

Lem 4.9
|

DSG3
|

=⇒ Final

78



Attribute-Based Signcryption Pandit, Pandey and Barua

Using the lemmas referred in the above box (for details of the lemmas, refer to Section 4.2), we have the
following reduction:

AdvAP−UF−CMA
A ,ABS (κ)≤ AdvDSG1

B1
(κ)+(2ν1 +2ν2)Adv

DSG2
B2

(κ)+

ν2Adv
CRHs
B3

(κ)+AdvDSG3
B4

(κ)

where AdvCRHs
B3

(κ) is the advantage of B4 in breaking collision resistant property of Hs and
B1,B2,B3,B4 are PPT algorithms whose running times are same as that of A . This completes the
proof.

4.2 Lemmas Used in the Proof of Theorem 4.2

Lemma 4.3. GameReal and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |AdvReal

A ,ABS(κ)−Adv0
A ,ABS(κ)| ≤ AdvDSG1

B (κ).

Proof. We establish a PPT simulator B who receives an instance of DSG1, (J , g, Z3, Tβ ) with β
U←−

{0,1} and depending on the distribution of β , it simulates either GameReal or Game0.

Setup: B chooses α,a,as,bs
U←− ZN and ti

U←− ZN for i ∈ U . Then, it sets us := gas ,vs := gbs

and Ti := gti for i ∈ U . B selects a hash function Hs : {0,1}∗ −→ ZN . It provides PP :=
(J ,g,ga,us,vs,gα

T ,{Ti}i∈U ,Z3,Hs) to A and keeps MS K := (α) to itself.

Query Phase: It consists of the following queries in adaptive manner.

– KeyGen: It is normal key. B can handle the key queries of A , since the MS K is known to him.

– Sign: Let (m,A,Γs) be a signature query made by A . If Γs(A) = False, it returns ⊥. It is normal
signature. B can answer the queries of A , since he can construct S K A using the MS K known
to him.

Forgery: A outputs a signature δ ∗ for (m∗,Γ∗s := (M∗s ,ρ∗s )), where M∗s is a matrix of order `∗s ×n∗s .
Then, B prepares a vText for (m∗,Γ∗s ) as follows. It computes h̄∗s := Hs(m∗,Γ∗s ). It selects v′s :=
(1,v′2, . . . ,v

′
n∗s
), where v′2, . . . ,v

′
n∗s

U←− ZN . For i ∈ [`∗s ], it sets λ
∗(i)
s :=< M∗(i)s ,v′s >. It chooses r′i

U←− ZN

for i ∈ [`∗s ]. B implicitly sets gs := Tβ

∣∣
Gp1

. Then it computes the following components:

V0 :=
(

Tβ ,T
h̄∗s as+bs

β
,e(gα ,Tβ )

)
,

Vi :=
(

T aλ
∗(i)
s

β
T
−r′itρ∗s (i)

β
, T r′i

β

)
for i ∈ [`∗s ].

The final vText is V := (V0,{Vi}i∈[`∗s ]). B verifies the signature δ ∗ using the vText V and returns 1
if it passes verification else returns 0.

Analysis: B implicitly sets us := sv′s = (s,sv′2, . . . ,sv′n∗s ) and r(i)s := sr′i for i ∈ [`∗s ]. Since, v′2, . . . ,v
′
n∗s

are chosen uniformly and independently from ZN , so the vector us is a random vector over Zp1 . Sim-
ilarly, r(1)s , . . . ,r(`

∗
s )

s are uniformly and independently distributed over Zp1 as r′1, . . . ,r
′
`∗s

are so over ZN .
Therefore, V is a properly distributed normal verification text if β = 0 (i.e., Tβ = gs).

Suppose β = 1, i.e., Tβ = gsgc
2 for some c ∈ ZN . It implicitly sets vs := cav′s = (ca,cav′2, . . . ,cav′n∗s ),

ι := c(h̄∗s as+bs), γ
(i)
s :=−cr′i and zρ∗s (i) := tρ∗s (i) for i ∈ [`∗s ]. By Chinese Remainder Theorem (CRT), the

values v′2, . . . ,v
′
n∗s

and r′i, tρ∗s (i) for i∈ [`∗s ] over Zp1 are uncorrelated from those values over Zp2 . Therefore,
V is a properly distributed sf-type 1 verification text if β = 1.
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Lemma 4.4. Game1−(k−1)−2 and Game1−k−1 are indistinguishable under DSG2 assumption. That is,

for every adversary A , there exists a PPT algorithm B such that |Adv1−(k−1)−2
A ,ABS (κ)−Adv1−k−1

A ,ABS(κ)| ≤
AdvDSG2

B (κ) for 1≤ k ≤ ν1.

Proof. B is given an instance of DSG2, (J ,g,Z1Z2,W2W3,Z3,Tβ ) with β
U←− {0,1} and depending on

the distribution of β , B simulates either Game1−(k−1)−2 or Game1−k−1.

Setup: Similar to Lemma 4.3.

Query Phase: It consists of the following queries in adaptive manner.

– KeyGen: The first (k−1) keys are of sf-type 2 and the last (ν1− k) are normal keys. The kth key is
normal in Game1−(k−1)−2 and sf-type 1 in Game1−k−1. Let A j be the jth query set of attributes. B
answers the key S K A j as follows.

• If j > k, then B runs the KeyGen algorithm and gives the normal key to A .

• If j < k, then it is sf-type 2 key. It picks t U←− ZN , R′0,Ri
U←−Gp3 for i ∈ A j and returns the

following key to A :
S K A j := [A j, K := gα+at(W2W3)

t , L := gtR′0, Ki := Ti
tRi, ∀i ∈ A j].

Since, t mod p2 and t mod p3 are uncorrelated, so the key S K A j is properly distributed
sf-type 2 key.

• If j = k then it is either normal or sf-type 1 key. B generates S K Ak using Tβ of the instance

of DSG2. B implicitly sets gt := Tβ

∣∣
Gp1

. It chooses R,R′0,Ri
U←−Gp3 for i ∈ Ak and returns

the following key to A :
S K Ak := [Ak, K := gαT a

β
R, L := Tβ R′0, Ki := T ti

β
Ri, ∀i ∈ Ak].

– Sign: Let (m,A,Γs) be a signature query made by A . If Γs(A) = False, it returns ⊥. It is normal
signature. B can answer the queries of A , since he can construct S K A using the MS K known
to him.

Forgery: A outputs a signature δ ∗ for (m∗,Γ∗s := (M∗s ,ρ∗s )), where M∗s is a matrix of order `∗s ×n∗s .
Then, B prepares a vText for (m∗,Γ∗s ) as follows. It computes h̄∗s := Hs(m∗,Γ∗s ). It selects v′s :=
(1,v′2, . . . ,v

′
n∗s
), where v′2, . . . ,v

′
n∗s

U←− ZN . For i ∈ [`∗s ], it sets λ
∗(i)
s :=< M∗(i)s ,v′s >. It chooses r′i

U←− ZN

for i ∈ [`∗s ] and computes the following components:
V0 :=

(
Z1Z2, (Z1Z2)

h̄∗s as+bs , e(gα ,Z1Z2)
)
,

Vi :=
(
(Z1Z2)

aλ
∗(i)
s (Z1Z2)

−r′itρ∗s (i) , (Z1Z2)
r′i
)
, for i ∈ [`∗s ].

The final vText is V := (V0,{Vi}i∈[`∗s ]). B verifies the signature δ ∗ using the vText V and returns 1
if it is valid else 0.

Analysis: Let Z1Z2 = gsgc
2. B implicitly sets us := sv′s = (s,sv′2, . . . ,sv′n∗s ) and r(i)s := sr′i for i ∈ [`∗s ].

Since, v′2, . . . ,v
′
n∗s

are chosen uniformly and independently from ZN , so the vector us is a random vector

over Zp1 . Similarly, r′1, . . . ,r
′
`∗s

are uniformly and independently distributed over Zp1 as r(1)s , . . . ,r(`
∗
s )

s

are so over ZN . It implicitly sets vs := cav′s = (ca,cav′2, . . . ,cav′n∗s ), ι := c(h̄∗s as + bs), γ
(i)
s := −cr′i and

zρ∗s (i) := tρ∗s (i) for i ∈ [`∗s ]. By CRT, the values v′2, . . . ,v
′
n∗s

and r′i, tρ∗s (i) for i ∈ [`∗s ] over Zp1 are uncorrelated
from those values over Zp2 . Hence, V is a properly distributed sf-type 1 verification text. Therefore,
the joint distribution of keys, signatures and vText is identical to that of Game1−(k−1)−2 if β = 0 (i.e.,
Tβ = gtgς

3). Now, suppose β = 1, i.e., Tβ = gtgb
2gς

3 . B implicitly sets d := ba, zi := ti for i ∈ Ak. Since, a
mod p1 and ti mod p1 are uncorrelated respectively from a mod p2 and ti mod p2, S K Ak is almost
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properly distributed sf-type 1 key except, the correlation between b and d = ba (the exponents of g2 in
L and K resp.) also appears between c (the exponent of g2 in V01) and ac (first component of vs). If we
show either d = ba or ac is independent from the adversary’s point of view, then we are done.

Claim 4.5. The shared value ac is information-theoretically hidden from the adversary A .

Proof of the claim requires the injective restriction on row labeling function ρ∗s and the restriction
on key queries S K A such that Γ∗s (A) = False. Proof of the claim is found in proof of the Lemma 8 in
[25].

Therefore, the joint distribution of keys, signatures and vText is identical to that of Game1−k−1 if
β = 1 (i.e., Tβ = gtgb

2gς

3).

Lemma 4.6. Game1−k−1 and Game1−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A , there exists a PPT algorithm B such that |Adv1−k−1

A ,ABS(κ)−Adv1−k−2
A ,ABS(κ)| ≤

AdvDSG2
B (κ) for 1≤ k ≤ ν1.

Proof. It is similar to that of Lemma 4.4 except, the kth key query answering. An instance of DSG2,
(J ,g,Z1Z2,W2W3,Z3,Tβ ) with β

U←− {0,1} is given to the simulator B and depending on the distribu-
tion of β , it simulates either Game1−k−1 or Game1−k−2. Below, we only describe the construction of kth

key.

• It is either sf-type 1 or sf-type 2 key. B generates S K Ak using Tβ of the instance of DSG2.

B implicitly sets gt := Tβ

∣∣
Gp1

. It chooses ζ
U←− ZN , R′0,Ri

U←− Gp3 for i ∈ Ak and returns the
following key to A :

S K Ak := [Ak, K := gαT a
β
(W2W3)

ζ , L := Tβ R′0, Ki := T ti
β

Ri, ∀i ∈ Ak].

In kth key construction an additional term, (W2W3)
ζ is added to K which says that perfectness of the

simulation does not require Claim 4.5.
It is easy to check that if β = 0 (i.e., Tβ = gtgς

3), then the joint distribution of keys, signatures and
vText is identical to that of Game1−k−1. Now, suppose β = 1, i.e., Tβ = gtgb

2gς

3 . B implicitly sets
d := ba+ yζ , where W2 = gw

2 zi := ti for i ∈ Ak. Due to the distribution of d = ba+wζ , the above
correlation (found in Lemma 4.4) between key and ciphertext is not possible.

Therefore, the joint distribution of keys, signatures and vText is identical to that of Game1−k−2 if
β = 1, i.e., Tβ = gtgb

2gς

3 .

Lemma 4.7. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under DSG2 assumption and colli-
sion resistant property of Hs. That is, for every adversary A , there exists PPT algorithm B such that
|Adv2−(k−1)−2

A ,ABS (κ)−Adv2−k−1
A ,ABS(κ)| ≤ AdvDSG2

B (κ)+AdvCRHs
B (κ) for 1≤ k ≤ ν2.

Proof. Similar to previous lemma, B receives an instance of DSG2, (J , g, Z1Z2, W2W3, Z3, Tβ ) with

β
U←− {0,1} and depending on the distribution of β , B simulates either Game2−(k−1)−2 or Game2−k−1.

Setup: Similar to Lemma 4.3.

Query Phase: It consists of the following queries in adaptive manner.

– KeyGen: Let A be a key query. The answer will be the sf-type 2 key. It picks t U←−ZN , R′0,Ri
U←−Gp3

for i ∈ A and returns the following key to A :

S K A := [A, K := gα+at(W2W3)
t , L := gtR′0, Ki := Ti

tRi, ∀i ∈ A].

Since, t mod p2 and t mod p3 are uncorrelated, so the key S K A is properly distributed sf-type
2 key.
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– Sign: Let (m( j),A j,Γ
( j)
s :=(Ms,ρs)) be the jth query tuple, where Ms is an `s×ns matrix. If Γ

( j)
s (A j)=

False, returns ⊥. The first (k− 1) signatures are of sf-type 2 and the last (ν2− k) are normal
signatures. The kth signature is normal in Game2−(k−1)−2 and sf-type 1 in Game2−k−1. It chooses

rs, t̃,τ
U←− ZN , R̃0, R̃i, R̃′i

U←− Gp3 for i ∈ [`s]. It then, chooses sets IA j ⊂ [`s] and {α(i)
s }i∈IA j

such that ∑i∈IA j
α
(i)
s M(i)

s = 1. B sets α
(i)
s := 0 for i 6∈IA j . It selects β

U←− {β = (β1, . . . ,β`s) ∈

Z`s
N | ∑i∈[`s] βiM

(i)
s = 0}. It sets h̄( j)

s := Hs(m( j),Γ
( j)
s ). Then, B answers the signature δ j for

(m( j),A j,Γ
( j)
s ) as given below:

• If j > k, it is normal. B can handle it using MS K .

• If j < k, it is sf-type 2. B computes the components of δ j as follows:

S0 :=
(

gα+at̃(uh̄( j)
s

s vs)
rs(W2W3)

t̃ , grsR̃0
)
,

Si :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
for i ∈ [`s].

Since, t̃ mod p2 and t̃ mod p3 are uncorrelated, so δ j is properly distributed sf-type 2 sig-
nature.

• If j = k then it is either normal or sf-type 1 signature. B generates δk using Tβ of the instance
of DSG2, where it implicitly sets grs := Tβ

∣∣
Gp1

. The components of δ j are given as follows:

S0 :=
(

gα+at̃(Tβ )
h̄(k)s as+bs , Tβ

)
,

Si :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
for i ∈ [`s].

Forgery: A outputs a signature δ ∗ for (m∗,Γ∗s := (M∗s ,ρ∗s )), where M∗s is a matrix of order `∗s ×n∗s .
Then, B prepares a vText V for (m∗,Γ∗s ) as follows. It computes h̄∗s := Hs(m∗,Γ∗s ). It selects v′s :=
(1,v′2, . . . ,v

′
n∗s
), where v′2, . . . ,v

′
n∗s

U←− ZN . For i ∈ [`∗s ], it sets λ
∗(i)
s :=< M∗(i)s ,v′s >. It chooses r′i

U←− ZN

for i ∈ [`∗s ] and computes the following components:
V0 :=

(
Z1Z2, (Z1Z2)

h̄∗s as+bs , e(gα ,Z1Z2)
)
,

Vi :=
(
(Z1Z2)

aλ
∗(i)
s (Z1Z2)

−r′itρ∗(i) , (Z1Z2)
r′i
)
, for i ∈ [`∗s ].

The final vText is V := (V0,{Vi}i∈[`∗s ]). B verifies the signature δ ∗ using the vText V and returns 1
if it is valid else 0.

Analysis: It is easily verified that if β = 0, i.e., Tβ = grsgς

3 , then the joint distribution of keys, signatures
and vText is identical to that of Game2−(k−1)−2. Now, suppose β = 1, i.e., Tβ = grsgb

2gς

3 . Let Z1Z2 = gsgc
2.

B implicitly sets d̃ := b(h̄(k)s as+bs), b̃ := b and ι := c(h̄∗s as+bs) in kth signature and vText respectively.
Since, in the security definition 2.6, the adversary must not forge δ ∗ for a pair (m∗,Γ∗s ) for which A has
made a signature query. This implies that (m∗,Γ∗s ) 6= (m(k),Γ

(k)
s ). Since, Hs is a collision resistant hash

function, we have h̄∗s 6= h̄(k)s . By the Proposition 2.2, we have h̄∗s as + bs and h̄(k)s as + bs are uniformly
and independently distributed over Zp2 . Therefore, the joint distribution of keys, signatures and vText is
identical to that of Game2−k−1 if β = 1, i.e., Tβ = grsgb

2gς

3 .

Lemma 4.8. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A , there exists a PPT algorithm B such that |Adv2−k−1

A ,ABS(κ)−Adv2−k−2
A ,ABS(κ)| ≤

AdvDSG2
B (κ) for 1≤ k ≤ ν2.

Proof. It is similar to the proof of Lemma 4.7, except, answering the kth signature query. B is given an
instance of DSG2, (J ,g,Z1Z2,W2W3,Z3,Tβ ) with β

U←− {0,1} and depending on the distribution of β ,
B simulates either Game2−k−1 or Game2−k−2. Described here only is the construction of kth signature

82



Attribute-Based Signcryption Pandit, Pandey and Barua

• The kth signature is either sf-type 1 or sf-type 2. B generates δk using Tβ of the instance of DSG2,
where it implicitly sets grs := Tβ

∣∣
Gp1

. The components of δk are given as follows:

S0 :=
(

gα+at̃(Tβ )
h(k)s as+bs(W2W3)

t̃ , Tβ

)
,

Si :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
for i ∈ [`s].

Note that an extra term, (W2W3)
t̃ is added to the first component of S0. Unlike to Lemma 4.7, we do

not require the restriction argument between the replied signatures and vText. It is straightforward that if
β = 0 (resp. β = 1), the joint distribution of keys, signatures and vText is identical to that of Game2−k−1
(resp. Game2−k−2).

Lemma 4.9. Game2−ν2−2 and GameFinal are indistinguishable under the DSG3 assumption. That is,
for every adversary A , there exists a PPT algorithm B such that |AdvFinal

A ,ABS(κ)−Adv2−ν2−2
A ,ABS (κ)| ≤

AdvDSG3
B (κ)

Proof. The simulator B receives an instance of DSG3, (J ,g,gαX2,gsY2,Z2,Z3,Tβ ) with β
U←− {0,1}

and depending on the distribution of β , it simulates either Game2−ν2−2 or GameFinal .

Setup: B chooses a,as,bs
U←− ZN and ti

U←− ZN for i ∈U . Then, it sets us := gas ,v := gbs and Ti := gti

for i ∈ U . B picks a hash function Hs : {0,1}∗ −→ ZN . It provides PP := (J ,g,ga,us,vs,gα
T :=

e(g,gαX2),{Ti}i∈U ,Z3,Hs) to A . In this case, B does not know the master secret MS K .

Query Phase: It consists of the following queries in adaptive manner.

– KeyGen: Let A be a key query. The answer will be the sf-type 2 key. It picks t U←− ZN , R0,R′0,Ri
U←−

Gp3 for i ∈ A and returns the following key to A :

S K A := [A, K := (gαX2)(gaZ2)
tR0, L := gtR′0, Ki := Ti

tRi, ∀i ∈ A].

Since, t mod p1 and t mod p2 are uncorrelated, so the key S K A is properly distributed sf-type
2 key.

– Sign: Let (m,A,Γs) be a signature query made by A . If Γs(A) = False, returns ⊥. It is sf-type 2. Let
Γs := (Ms,ρs), where Ms is an `s× ns matrix. It chooses rs, t̃,τ

U←− ZN , R̃, R̃0, R̃i, R̃′i
U←− Gp3

for i ∈ [`s]. It then, chooses sets IA ⊂ [`s] and {α(i)
s }i∈IA such that ∑i∈IA

α
(i)
s M(s)

s = 1. B

sets α
(i)
s := 0 for i 6∈ IA. It selects β

U←− {β = (β1, . . . ,β`s) ∈ Z`s
N | ∑i∈[`s] βiM

(i)
s = 0}. It sets

h̄s := Hs(m,Γs). Then, B answers the signature δ for (m,A,Γs) as follows:

S0 :=
(
(gαX2)(gaZ2)

t̃(uh̄s
s vs)

rsR̃, grsR̃0
)
,

Si :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
for i ∈ [`s].

It is easy to check that δ j is properly distributed sf-type 2 signature.

Forgery: A outputs a signature δ ∗ for (m∗,Γ∗s := (M∗s ,ρ∗s )), where M∗s is a matrix of order `∗s ×n∗s .
Then B prepares a vText V for (m∗,Γ∗s ) as follows. It computes h̄∗s := Hs(m∗,Γ∗s ). It selects v′s :=
(1,v′2, . . . ,v

′
n∗s
), where v′2, . . . ,v

′
n∗s

U←− ZN . For i ∈ [`∗s ], it sets λ
∗(i)
s :=< M∗(i)s ,v′s >. It chooses r′i

U←− ZN

for i ∈ [`∗s ] and computes the vText V as given below:
V0 :=

(
gsY2, (gsY2)

h̄∗s as+bs , Tβ

)
,

Vi :=
(
(gsY2)

aλ
∗(i)
s (gsY2)

−r′itρ∗s (i) , (gsY2)
r′i
)
, for i ∈ [`∗s ].

B verifies the signature δ ∗ using the vText V and returns 1 if it is valid else returns 0.

Analysis. It is easy to check that if β = 0, i.e., Tβ = gαs
T (resp. β = 1, i.e., Tβ is uniformly and indepen-

dently distributed over GT ), then the joint distribution of keys, signatures and vText is identical to that of
Game2−ν2−2 (resp. GameFinal).
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5 Proposed ABSC: Construction 1

In this section, we present our basic signcryption-policy attribute-based signcryption (SCP-ABSC) for
monotone span programs. The scheme is based on composite order bilinear pairing groups. Here we con-
sider two policies, sender’s policy Γs := (Ms,ρs) and receiver’s policy Γe := (Me,ρe). Similar to Section
3, the row labeling functions ρs and ρe are assumed to be injective in our basic SCP-ABSC scheme.
From this basic ABSC scheme, a complete ABSC scheme can be constructed using the mechanism of
Section 10, where ρs and ρe are no more assumed to be injective.

This construction works in the flavor of C tE &S paradigm. To construct our scheme, we use a
commitment scheme with hiding and relaxed-binding properties, CP-ABE scheme [25] and the ABS
scheme described in Section 3. Let ABS := (ABS.Setup,ABS.KeyGen,ABS.Sign,ABS.Ver) and
C := (CSetup,Commit,Open) be respectively the ABS scheme described in Section 3 and commit-
ment scheme.

– Setup(1κ ,U ): It runs CSetup(1κ) −→ C K and ABS.Setup(1κ ,U ) −→ (A BS .PP ,
A BS .MS K ). It chooses ae,be

U←− ZN and sets ue := gae ,ve := gbe . Let He : {0,1}∗ −→ ZN

be a hash functions. The public parameters (combining A BS .PP,C K and ue,ve,He) and
master secret are given by

PP := (I ,g,ga,us,ue,vs,ve,gα
T ,{Ti}i∈U ,Z3,Hs,He,C K ),

MS K := A BS .MS K = (α).

– KeyGen(PP,MS K ,A): It runs S K A←− ABS.KeyGen(A BS .PP,MS K ,A).

– Signcrypt(PP,m,S K A,Γs := (Ms,ρs),Γe := (Me,ρe)): Let Ms (resp. Me) be an `s× ns (resp.
`e× ne) matrix. It runs (com,decom)←− Commit(m). The Signcrypt algorithm has two part,
Sign and Encrypt, both run in parallel and then it is followed by the computation of an extra
component C`e+1.

Sign: δ :=(S0,{Si}i∈[`s])←−ABS.Sign(A BS .PP,com||Γe,S K A, Γs :=(Ms, ρs)), where
the components are given by

S0 :=
(

gα+at̃(uh̄s
s vs)

rsR̃, grsR̃0
)
, where h̄s := Hs(com||Γe,Γs),

Si :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
.

Encrypt: It picks ue := (se,u2, . . . ,une)
U←− Zne

N and r(i)e
U←− ZN for i ∈ [`e]. Let M(i)

e denote the
ith row of the matrix, Me and let λ

(i)
e :=< M(i)

e ,ue >. The ciphertext components of the
signcryption are given by

C0 :=
(

gse , decom ·gαse
T

)
,

Ci :=
(

gaλ
(i)
e T−r(i)e

ρe(i)
, gr(i)e

)
for i ∈ [`e].

Now, it sets C := (C0,{Ci}i∈[`e]) and computes h̄e := He(com,C,δ ). Then, it computes the
last component

C`e+1 := (uh̄e
e ve)

se .
So, the ciphertext part of the signcryption is CT := (C,C`e+1).

It outputs the signcryption U := (com,δ ,CT).

– Unsigncrypt(PP,U,S K B,Γs := (Ms,ρs)): Let Γe := (Me,ρe) be the policy for receiver
implicitly contained in U. Ms (resp. Me) be an `s× ns (resp. `e× ne) matrix. This algorithm
consists of two algorithms, Ver and Decrypt, both run in parallel.
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Ver: flag←− ABS.Ver(PP,com||Γe,δ ,Γs). If flag = 0, it returns ⊥.

Decrypt: It computes h̄e := He(com,C,δ ) and picks R′ ∈ Gp3 . Then it checks e(gR′,C`e+1)
?
=

e(uh̄e
e ve,C01) and if the equality does not hold, it returns ⊥. If Γe(B) = False, it returns ⊥,

else computes the sets IB ⊂ [`e] and {α(i)
e }i∈IB such that ∑i∈IB α

(i)
e M(i)

e = 1. Then, it picks

r U←− ZN , R0
U←−Gp3 and computes the following:

∆e :=
e(K(uh̄e

e ve)
r,C01)

e(grR0,C`e+1) ·∏i∈IB(e(L,Ci1) · e(Kρe(i),Ci2))α
(i)
e

and m := Open(com,C02/∆e).

Finally, it returns the message m.

Correctness. It follows from the correctness of Ver and Decrypt algorithms. Since, the correctness of
Ver is immediate from that of ABS in Section 3, we illustrate here only the correctness of Decrypt.

∆e =
e(K(uh̄e

e ve)
r,C01)

e(grR0,C`e+1) ·∏i∈IB(e(L,Ci1) · e(Kρe(i),Ci2))α
(i)
e

=
gαse+atse

T · e(uh̄e
e ve,g)rse

e(uh̄e
e ve,g)rse ·∏i∈IB(g

atλ (i)
e −tρe(i)r

(i)
e

T ·gtρe(i)r
(i)
e

T )α
(i)
e

=
gαse+atse

T

∏i∈IB gatα(i)
e λ

(i)
e

T

=
gαse+atse

T

g
at ∑i∈IB α(i)eλ

(i)
e

T

= gαse
T

Open(com,C02/∆e) = Open(com,decom) = m.

A high level description. In the construction above, we apparently use an IND-CCA version of the
CP-ABE scheme of [25] which has the same public parameters and keys as the primitive attribute-based
signature scheme ABS. Let ABE := (ABE.Setup, ABE.KeyGen, ABE.Encrypt, ABE.Decrypt) be the
CP-ABE scheme involved in above construction. The descriptions of Signcrypt and Unsigncrypt are
given below.

– Signcrypt(PP,m,S K A,Γs,Γe): It runs (com,decom)←− Commit(m). Then, executes in par-
allel C←− ABE.Encrypt(PP,decom,Γe) and δ ←− ABS.Sign(PP , com||Γe, Γs). Then,
it computes h̄e := He(com,C,δ ) and C`e+1 ←− fun(PP , h̄e, se), for some function fun (see
footnote 4). It sets CT := (C,C`e+1) and outputs U := (com,δ ,CT).

– Unsigncrypt(PP,U,S K B,Γs,Γe): It runs flag ←− ABS.Ver(PP , com||Γe, δ , Γs)
and decom ←− ABE.Decrypt(PP,CT,S K B,Γe) in parallel. If flag = 1, it returns
Open(com,decom) else ⊥.

Remark 5.1. We note that the computation of C`e+1 is a part of the algorithm ABE.Encrypt. Since, it
depends upon δw, its computation is delayed. To avoid the conflict between the output of ABE.Encrypt
and input of ABE.Decrypt, we assume the understanding that CT := (C,C`e+1) is produced by
ABE.Encrypt.

4fun(PP, h̄e,se) = (uh̄e
e ve)

se , where se is the secret involved in ABE.Encrypt.
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Non-repudiation. Let U := (com,δ ,CT) be a signcryption generated for a message (m,Γs,Γe) by
a sender whose set of attributes satisfies a policy Γs. Let Bob be a receiver for the above signcryp-
tion. Bob extracts out decom from the ciphertext component CT and gives (com,δ ,decom,m,Γs) to a
third party. Since, the primitive commitment scheme C has relaxed-binding property, given a valid pair
(com,decom) for m, Bob can not fool the third party by giving decom′ such that (com,decom′) is
also a valid pair for m′ with m′ 6= m. The objective of Bob is to convince the third party that the received
message (m,Γs) was sent by a user whose set of attributes satisfies Γs. Now, the third party can verify
the signature part δ of U against com by the verification algorithm of ABS. If it fails, it means that Bob
fails to convince the third party. Otherwise, the third part checks m ?

= Open(com,decom). If equality
holds, then the third is convinced that m was actually sent by the claimed sender (whose set of attributes
satisfies Γs) else Bob fails.

6 Security of Construction 1

6.1 Perfect Privacy

Theorem 6.1. The proposed attribute-based signcryption scheme in Section 5 is perfectly private (Defi-
nition 2.9).

Proof. It is immediate from Theorem 4.1.

6.2 Adaptive-Predicates IND-CCA Security

We prove the adaptive-predicates IND-CCA security of our basic ABSC scheme using dual system
methodology of Brent Waters [47]. To utilize this methodology we define a new form of key called
unsigncrypt query key. This key will be used to answer the unsigncrypt query in the security proof. In
this methodology, we also define the semi-functional signcryptions, semi-functional unsigncrypt-query
keys and semi-functional keys. Considered here are six types of semi-functional signcryptions, viz., type
I, type II, type 1, type 2, type 3 and type 4. Two forms of keys are defined here – type 1 and type 2. Our
semi-functional unsigncrypt-query keys consist of two forms, viz., type 1 and type 2. In the sequence
of games, the challenge signcryption is first changed from normal to semi-functional type 1. Then, each
queried key is changed from normal to semi-functional type 1, then semi-functional type 1 to type 2.
Then, each replied signcryption is changed from normal to semi-functional type II via semi-functional
type I. Similarly, each unsigncrypt-query key is changed from normal to semi-functional type 1, then
from type 1 to type 2. Again, the challenge signcryption is changed from semi-functional type 1 to
type 2 and then from type 2 to type 3. In the final game, the semi-functional type 3 challenge sign-
cryption is changed to semi-functional type 4, where the decommitment part decomb is masked with a
random element from GT to compute the C02 part of the challenge signcryption. Therefore, in the final
game, the challenge message mb is completely hidden unless the commitment part comb of mb leaks any
information.

In the following material, the part framed by a box indicates that either it will be changed in next
description or it has been changed from previous description. We use the abbreviation ‘sf’ and ‘uq’ for
‘semi-functional’ and ‘unsigncrypt-query’ respectively.

Semi-functional type I signcryption. This is same as normal signcryption except the signature com-
ponent S0 described below:

S0 :=
(

gα+at̃(uh̄s
s vs)

rsR̃ gd̃
2 , grsR̃0 gb̃

2
)
, where b̃, d̃ U←− ZN .
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Semi-functional type II signcryption. This is same as sf-type I signcryption except b̃ = 0, i.e.,
S0 :=

(
gα+at̃(uh̄s

s vs)
rsR̃gd̃

2 , grsR̃0
)
.

Semi-functional type 1 signcryption. Pick c, ι U←− ZN , ve
U←− Zns

N . For each i ∈ [`e], pick γ
(i)
e

U←−
ZN . For each i ∈ U , choose zi

U←− ZN . The sf-type 1 signcryption is obtained by modifying normal
signcryption, viz., the ciphertext part but the signature part will be same as in normal signcryption.
Let U = (com,δ ,CT) be a normal signcryption, where the ciphertext part is CT = (C,C`e+1) and C =
(C0,{Ci}i∈[`e]). So, the sf-type 1 signcryption is obtained by modifying the ciphertext part of the normal
signcryption and which is given below:

C0 :=
(

gse gc
2 ,decom.gαse

T

)
,

Ci :=
(

gaλ
(i)
e T−r(i)e

ρe(i)
g
<M(i)

e ,ve>+γ
(i)
e zρe(i)

2 , gr(i)e g−γ
(i)
e

2

)
, for i ∈ [`e],

C`e+1 := (uh̄e
e ve)

se gι
2 .

Semi-functional type 2 signcryption. This is same as sf-type 1 signcryption except the signature part,
i.e., δ = (S0,{Si}i∈[`s]) gets changed from normal to the following form:

S0 :=
(

gα+at̃(uh̄s
s vs)

rsR̃ gd̃
2 , grsR̃0 gb̃

2
)
, where b̃, d̃ U←− ZN ,

Si :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
.

Semi-functional type 3 signcryption. This is same as sf-type 2 signcryption except b̃ = 0, i.e.,
S0 :=

(
gα+at̃(uh̄s

s vs)
rsR̃gd̃

2 , grsR̃0
)
,

Si :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
.

Semi-functional type 4 signcryption. This is same as sf-type 3 signcryption except the following:
C0 :=

(
gsegc

2, decom.ĝt
)
, where ĝt

U←−GT .

Semi-functional type 1 key. Choose b,d U←− ZN . First create a normal key
S K A := [A, K := gα+atR, L := gtR′0, Ki := Ti

tRi ∀i ∈ A]
and then modify it to sf-type 1 key as shown below:

S K A := [A, K := gα+atR gd
2 , L := gtR′0 gb

2 , Ki := Ti
tRi gbzi

2 ∀i ∈ A].

Semi-functional type 2 key. This is same as sf-type 1 key except b = 0, i.e.,
S K A := [A, K := gα+atRgd

2 , L := gtR′0, Ki := Ti
tRi ∀i ∈ A].

Note that the sf-type II signcryption can be computed using the original Signcrypt algorithm, where the
input key is considered to be of sf-type 2.

Normal unsigncrypt query key. Let (U,A,Γs) be an unsigncrypt query made by A , where U =

(com,δ ,CT) and CT = (C,C`e+1). Let h̄e = He(com,C,δ ). Choose r U←− ZN , R0
U←− Gp3 . First

create a normal key
S K A := [A, K := gα+atR, L := gtR′0, Ki := Ti

tRi ∀i ∈ A]
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and then modify it to normal unsigncrypt query key as shown below:

U S K A := [A,K′ := gα+atR (uh̄e
e ve)

r , K0 := grR0 ,L := gtR′0,Ki := Ti
tRi ∀i ∈ A].

This U S K A will be used to unsigncrypt the queried signcryption.

Semi-functional type 1 unsigncrypt query key. Choose b,d U←− ZN . First create a normal unsign-
crypt query key as below

U S K A := [A,K′ := gα+atR(uh̄e
e ve)

r,K0 := grR0,L := gtR′0,Ki := Ti
tRi ∀i ∈ A]

and then modify it to sf-type 1 unsigncrypt query key as shown below:

U S K A := [A,K′ := gα+atR(uh̄e
e ve)

rgd
2 ,K0 := grR0,L := gtR′0,Ki := Ti

tRi ∀i ∈ A].

Semi-functional type 2 unsigncrypt query key. This is same as sf-type 1 unsigncrypt query key
except b = 0, i.e.,

U S K A := [A,K′ := gα+atR(uh̄e
e ve)

rgd
2 ,K0 := grR0,L := gtR′0,Ki := Ti

tRi ∀i ∈ A].

Answering Unsigncrypt Query Using uq-key. Let (U,A,Γs) be an unsigncrypt query. First, create
a uq-key U S K A := [A, K′, K0, L, Ki ∀i ∈ A] of desired type. Then, the query will be handled in a
similar manner as in Unsigncrypt algorithm, except the Decrypt algorithms, viz., the computation ∆e.
Described below is the required computation for ∆e to answer unsigncrypt query.

∆e :=
e(K′,C01)

e(K0,C`e+1) ·∏i∈IA
(e(L,Ci1) · e(Kρe(i),Ci2))α

(i)
e

Note that this modified Unsigncrypt is same as the original Unsigncrypt algorithm. The only difference
is that in the original version, K0 and K′ are computed during unsigncrypt, whereas in the modified
Unsigncrypt, K0 and K′ are supplied. Therefore, the unsigncrypt using normal uq-key gives the same
result as the unsigncrypt using actual normal key.

A normal key can extract the message from a legitimate normal signcryption as well as sf-type 1
signcryption. But, if an sf-type 1 (resp. sf-type 2) key unsigncrypts a legitimate sf-type 1 signcryption,
we have an additional factor e(g2,g2)

cd−bv1 (resp. e(g2,g2)
cd) in ∆e, where v1 is the first component of

ve. An sf-type 1 key is said to be nominally semi-functional if cd− bv1 = 0. In this case, an sf-type 1
key can extract the message from a legitimate sf-type 1 signcryption.

Theorem 6.2. If DSG1, DSG2 and DSG3 assumptions hold in J , He is a collision resistant hash
function and C has hiding property, then our proposed basic SCP-ABSC scheme in Section 5 is IND-
CCA secure in adaptive-predicates model (Definition 2.10).

Proof. Suppose there are at most ν1 key queries, ν2 unsigncrypt queries and ν3 signcrypt queries made
by an adversary A . Then the security proof consists of hybrid argument over a sequence of 2(ν1 +ν2 +
ν3)+5 games which are defined below:

– GameReal := Original APs-IND-CCA game of ABSC scheme.

– Game0 (:= Game1−0−2) is same as GameReal except the challenge signcryption is of sf-type 1.
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– Game1−k−1 (for 1≤ k ≤ ν1) is same as Game1−(k−1)−2 except the kth key is of sf-type 1.

– Game1−k−2 (for 1≤ k ≤ ν1) is same as Game1−k−1 except the kth key is sf-type 2.

– Game2−k−1 (for 1 ≤ k ≤ ν2) is same as Game2−(k−1)−2 except the kth unsigncrypt query is answered
by sf-type 1 uq-key. So, in this sequel, we define Game2−0−2 := Game1−ν1−2.

– Game2−k−2 (for 1 ≤ k ≤ ν2) is same as Game2−k−1 except the kth unsigncrypt query is answered by
sf-type 2 uq-key.

– Game3−k−1 (for 1≤ k≤ ν3) is same as Game3−(k−1)−2 except the kth replied signcryption is of sf-type
I. So, in this sequel we define Game3−0−2 := Game2−ν2−2.

– Game3−k−2 (for 1≤ k ≤ ν3) is same as Game3−k−1 except the kth replied signcryption is of sf-type II.

– Game4 is similar to Game3−ν3−2 except that now the challenge signcryption is of sf-type 2.

– Game5 is similar to Game4 except that now the challenge signcryption is of sf-type 3.

– GameFinal is similar to Game5 except that now the challenge signcryption is of sf-type 4.

In GameFinal , the decommitment decomb of the challenge message mb is masked with an independently
and uniformly chosen element from GT . This implies that the component C02 does not leak any infor-
mation about decomb. Since, the primitive commitment scheme C has hiding property, comb does not
reveal any information about b from adversary point of view. Therefore, the adversary A has no advan-
tage in GameFinal . The outline of the hybrid arguments over the games is given below, where Lem stands
for Lemma.

Real

Lem 6.3
|

DSG1
|

=⇒ 0

Lem 6.4
|

DSG2
|

=⇒ 1−1−1 . . . 1− (k−1)−2

Lem 6.4
|

DSG2
|

=⇒ 1− k−1

Lem 6.5
|

DSG2
|

=⇒ 1− k−2

1− k−2 . . . 1−ν1−2

Lem 6.6
|

DSG2,CRHe
|

=⇒ 2−1−1 . . . 2− (k−1)−2

Lem 6.6
|

DSG2,CRHe
|

=⇒ 2− k−1

2− k−1

Lem 6.8
|

DSG2
|

=⇒ 2− k−2 . . . 2−ν2−2

Lem 6.9
|

DSG2
|

=⇒ 3−1−1 . . . 3− (k−1)−2

Lem 6.9
|

DSG2
|

=⇒

3− k−1

Lem 6.10
|

DSG2
|

=⇒ 3− k−2 . . . 3−ν3−2

Lem 6.11
|

DSG2
|

=⇒ 4

Lem 6.12
|

DSG2
|

=⇒ 5

Lem 6.13
|

DSG3
|

=⇒ Final

Using the lemmas referred in the above box (for details of the lemmas, refer to Section 6.3) and Lemma
6.14, we have the following reduction:

AdvAPs−IND−CCA
A ,ABSC (κ)≤ AdvDSG1

B1
(κ)+2(ν1 +ν2 +ν3)Adv

DSG2
B2

(κ)+ν2Adv
CRHe
B3

(κ)+

+AdvDSG3
B4

(κ)+AdvHiding
B5,Commit(κ).
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6.3 Lemmas Used in the Proof of Theorem 6.2

Lemma 6.3. GameReal and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A there exists a PPT algorithm B such that |AdvReal

A ,ABSC(κ)−Adv0
A ,ABSC(κ)| ≤AdvDSG1

B (κ).

Proof. We construct a PPT algorithm B (called simulator) who receives an instance of DSG1,
(J ,g,Z3,Tβ ) with β

U←− {0,1} and depending on the distribution of β , it simulates either GameReal
or Game0.

Setup: B runs CSetup(1κ) to obtain the public commitment key C K . B chooses α,a,as,ae,bs,be
U←−

ZN and ti
U←− ZN for i ∈U . Then, it sets us := gas ,ue := gae ,vs := gbs ,ve := gbe and Ti := gti for i ∈U .

B selects hash functions Hs,He : {0,1}∗ −→ ZN . It provides PP := (J , g, ga, us, ue, vs, ve, gα
T ,

{Ti}i∈U , Z3, Hs, He, C K ) to A and keeps MS K := (α) to itself.

Query Phase-1: It consists of the following queries in adaptive manner.

– KeyGen: Let A be any key query made by A . Since, B knows MS K , it replies S K A to A .

– Signcrypt: It replies the normal signcryption. Let A makes a signcrypt query for the message
(m,A,Γs,Γe). B first computes S K A using MS K , then the normal signcryption is gener-
ated using S K A.

– Unsigncrypt: Let (U,B,Γs) be any unsigncrypt query made by A , where U = (com,δ ,CT). Since,
the MS K is known to B, it can construct the normal uq-key U S K B and then unsigncrypts it
by the normal uq-key U S K B as described in Section 6.2.

Challenge: A provides two equal length messages m0,m1, a set of attributes A and the challenge access
policies Γ∗s := (M∗s ,ρ∗s ),Γ∗e := (M∗e ,ρ∗e ), where M∗s (resp. M∗e) is an `∗s × n∗s (resp. `∗e × n∗e) matrix.
B picks b U←− {0,1}. Then, it runs (comb,decomb)←− Commit(mb). It computes a normal key
S K A and executes ABS.Sign(A BS .PP,comb||Γ∗e ,S K A,Γ

∗
s ) for the message comb||Γ∗e to have

δ ∗ := (S∗0,{S∗i }i∈[`∗s ]), where the components are given by

S∗0 :=
(

gα+at̃(uh̄∗s
s vs)

rsR̃, grsR̃0
)
, where h̄∗s := Hs(comb||Γ∗e ,Γ∗s ),

S∗i :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
.

It selects v′e := (1,v′2, . . . ,v
′
n∗e
), where v′2, . . . ,v

′
n∗e

U←− ZN . For i ∈ [`∗e ], it sets λ
∗(i)
e :=< M∗(i)e ,v′e >.

It chooses r′i
U←− ZN for i ∈ [`∗e ]. B implicitly set gse to be the Gp1 component of Tβ . The ciphertext

components of the signcryption are given by
C∗0 :=

(
Tβ , decomb · e(gα ,Tβ )

)
,

C∗i :=
(

T aλ
∗(i)
e

β
T
−r′itρ∗e (i)

β
, T r′i

β

)
for i ∈ [`∗e ].

Now, it sets C∗ := (C∗0, . . . ,C∗`∗e ) and computes h̄∗e := He(comb,C∗,δ ∗). Then it computes another ci-
phertext component as

C`∗e+1 := (Tβ )
aeh̄∗e+be .

So, the ciphertext part of the signcryption is CT∗ := (C∗,C∗`∗e+1). B returns the challenge signcryp-
tion U∗ := (comb,δ

∗,CT∗) to A .

Query Phase-2: Similar to phase-1.

Guess: A sends a guess b′ to B. If b = b′ then B returns 1 else 0.

Analysis: First of all, note that the signature part δ ∗ of the challenge signcryption U∗ is identical to that
of the normal signcryption as well as sf-type 1 signcryption. Let us concentrate on the distribution of
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ciphertext part CT∗ of U∗. B implicitly sets ue := sev′e = (se,sev′2, . . . ,sev′n∗e ) and r(i)e := ser′i for i ∈ [`∗e ].
Since, v′2, . . . ,v

′
n∗e

are chosen uniformly and independently from ZN , so the vector ue is a random vector

over Zp1 . Similarly, r′1, . . . ,r
′
`∗e

are uniformly and independently distributed over Zp1 as r(1)e , . . . ,r(`
∗
e)

e are
so over ZN . Therefore, U∗ is a properly distributed normal signcryption if β = 0 (i.e., Tβ = gse).

Suppose β = 1, i.e., Tβ = gsegc
2 for some c ∈ ZN . It implicitly sets ve := cav′e = (ca,cav′2, . . . ,cav′n∗e ),

ι := c(h̄∗eae +be), γ
(i)
e :=−cr′i and zρ∗e (i) := tρ∗e (i) for i ∈ [`∗e ]. By CRT, the values v′2, . . . ,v

′
n∗e

and r′i, tρ∗e (i)
for i ∈ [`∗e ] over Zp1 are uncorrelated from those values over Zp2 . Therefore, U∗ is a properly distributed
sf-type 1 signcryption if β = 1.

Lemma 6.4. Game1−(k−1)−2 and Game1−k−1 are indistinguishable under DSG2 assumption. That is,

for every adversary A there exists a PPT algorithm B such that |Adv1−(k−1)−2
A ,ABSC (κ)−Adv1−k−1

A ,ABSC(κ)| ≤
AdvDSG2

B (κ) for 1≤ k ≤ ν1.

Proof. B is given an instance of DSG2, (J ,g,Z1Z2,W2W3,Z3,Tβ ) with β
U←− {0,1} and depending on

the distribution of β , B simulates either Game1−(k−1)−2 or Game1−k−1.

Setup: Similar to Lemma 6.3.

Query Phase-1: It consists of the following queries in adaptive manner.

– KeyGen: The first (k−1) keys are of sf-type 2 and the last (ν1− k) are normal keys. The kth key is
normal in Game1−(k−1)−2 and sf-type 1 in Game1−k−1. Let A j be the jth query set of attributes. B
answers the key S K A j for A j as follows.

• If j > k, then B runs the KeyGen algorithm and gives the normal key to A .

• If j < k, then it is sf-type 2 key. It picks t U←− ZN , R′0,Ri
U←−Gp3 for i ∈ A j and returns the

following key to A :
S K A j := [A j, K := gα+at(W2W3)

t , L := gtR′0, Ki := Ti
tRi, ∀i ∈ A j].

Since, t mod p2 and t mod p3 are uncorrelated, so the key S K A j is properly distributed
sf-type 2 key.

• If j = k then it is either normal or sf-type 1 key. B generates S K Ak using Tβ of the instance

of DSG2. B implicitly sets gt to be the Gp1 component of Tβ . It chooses R,R′0,Ri
U←− Gp3

for i ∈ Ak and returns the following key to A :
S K Ak := [Ak, K := gαT a

β
R, L := Tβ R′0, Ki := T ti

β
Ri, ∀i ∈ Ak].

– Signcrypt: Similar to Lemma 6.3.

– Unsigncrypt: Similar to Lemma 6.3.

Challenge: The signature part δ ∗ of U∗ is generated in similar manner as in Lemma 6.3. The ciphertext
part CT∗ of the challenge signcryption U∗ is constructed as follows. It selects v′e := (1,v′2, . . . ,v

′
n∗e
),

where v′2, . . . ,v
′
n∗e

U←− ZN . For i ∈ [`∗e ], it sets λ
∗(i)
e :=< M∗(i)e ,v′e >. It chooses r′i

U←− ZN for i ∈ [`∗e ]. The
ciphertext components of the signcryption are given by:

C∗0 :=
(

Z1Z2, decomb · e(gα ,Z1Z2)
)
,

C∗i :=
(
(Z1Z2)

aλ
∗(i)
e (Z1Z2)

−r′itρ∗e (i) , (Z1Z2)
r′i
)

for i ∈ [`∗e ].
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Now, it sets C∗ := (C∗0, . . . ,C∗`∗e ) and then computes h̄∗e := He(comb,C∗,δ ∗). Then it computes an-
other ciphertext component as C∗`∗e+1 := (Z1Z2)

aeh̄∗e+be . So, the ciphertext part of the challenge signcryp-
tion is CT∗ := (C∗,C∗`∗e+1).

Query Phase-2: Similar to phase-1.

Guess: A sends a guess b′ to B. If b = b′ then B returns 1 else 0.

Analysis: Let Z1Z2 = gsegc
2. B implicitly sets ue := sev′e = (se,sev′2, . . . ,sev′n∗e ) and r(i)e := ser′i for i∈ [`∗e ].

Since, v′2, . . . ,v
′
n∗e

are chosen uniformly and independently from ZN , the vector ue is a random vector

over Zp1 . Similarly, r′1, . . . ,r
′
`∗e

are uniformly and independently distributed over Zp1 as r(1)e , . . . ,r(`
∗
e)

e

are so over ZN . It implicitly sets ve := cav′e = (ca,cav′2, . . . ,cav′n∗e ), ι := c(h̄∗eae + be), γ
(i)
e := −cr′i and

zρ∗e (i) := tρ∗e (i) for i ∈ [`∗e ]. By CRT, the values v′2, . . . ,v
′
n∗e

and r′i, tρ∗e (i) for i ∈ [`∗e ] over Zp1 are uncorrelated
from those values Zp2 . Hence, U∗ is a properly distributed sf-type 1 signcryption. Therefore, the joint dis-
tribution of keys, signcryptions, uq-keys and challenge signcryption is identical to that of Game1−(k−1)−2

if β = 0 (i.e., Tβ = gtgς

3). Now, suppose β = 1, i.e., Tβ = gtgb
2gς

3 . B implicitly sets d := ba, zi := ti for
i ∈ Ak. Since, a mod p1 and ti mod p1 are uncorrelated respectively from a mod p2 and ti mod p2,
S K Ak is almost properly distributed sf-type 1 key except, the correlation between b and d = ba (the
exponents of g2 in L and K resp.) also appears between c (the exponent of g2 in C∗01) and ac (first com-
ponent of ve). Since, the adversary A is forbidden to ask for a key S K A such that Γ∗e(A) = True and
ρ∗e is injective, by Claim 4.5 the above correlation can be shown to be hidden to A .

Therefore, the joint distribution of keys, signcryptions, uq-keys and challenge signcryption is identi-
cal to that of Game1−k−1 if β = 1 (i.e., Tβ = gtgb

2gς

3).

Lemma 6.5. Game1−k−1 and Game1−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A there exists a PPT algorithm B such that |Adv1−k−1

A ,ABSC(κ)−Adv1−k−2
A ,ABSC(κ)| ≤

AdvDSG2
B (κ) for 1≤ k ≤ ν1.

Proof. It is similar to that of Lemma 6.4, except the kth key query answering. An instance of DSG2,
(J ,g,Z1Z2,W2W3,Z3,Tβ ) with β

U←− {0,1} is given to the simulator B and depending on the distribu-
tion of β , it simulates either Game1−k−1 or Game1−k−2. Described below is only the construction of kth

key.

• It is either sf-type 1 or sf-type 2 key. B generates S K Ak using Tβ of the instance of DSG2. B

implicitly sets gt to be the Gp1 component of Tβ . It chooses ζ
U←− ZN , R′0,Ri

U←− Gp3 for i ∈ Ak
and returns the following key to A :

S K Ak := [Ak, K := gαT a
β
(W2W3)

ζ , L := Tβ R′0, Ki := T ti
β

Ri, ∀i ∈ Ak].

In the above computation, an extra term (W2W3)
ζ is added to the component, K. Due to this additional

part, Gp2 part of K becomes independent and uniform over Gp2 . Hence, we do not require Claim 4.5.
Rest of the proof is very straightforward.

Lemma 6.6. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under DSG2 assumption and colli-
sion resistant property of He. That is, for every adversary A there exists PPT algorithm B such that

|Adv2−(k−1)−2
A ,ABSC (κ)−Adv2−k−1

A ,ABSC(κ)| ≤ AdvDSG2
B (κ)+AdvCRHe

B (κ) for 1≤ k ≤ ν2.

Proof. Similar to previous lemma, B receives an instance of DSG2, (J , g, Z1Z2, W2W3, Z3, Tβ ) with

β
U←− {0,1} and depending on the distribution of β , B simulates either Game2−(k−1)−2 or Game2−k−1.

92



Attribute-Based Signcryption Pandit, Pandey and Barua

Setup: Similar to Lemma 6.3.

Query Phase-1: It consists of the following queries in adaptive manner.

– KeyGen: It is sf-type 2 key. Let A be a query set of attributes. It picks t U←− ZN , R′0,Ri
U←− Gp3 for

i ∈ A and returns the following key to A :

S K A := [A, K := gα+at(W2W3)
t , L := gtR′0, Ki := Ti

tRi, ∀i ∈ A].

Since, t mod p2 and t mod p3 are uncorrelated, so the key S K A is properly distributed sf-type
2 key.

– Signcrypt: Similar to Lemma 6.3.

– Unsigncrypt: The first (k− 1) unsigncrypt queries are answered by sf-type 2 uq-keys and the last
(ν2− k) are unsigncrypted by normal uq-keys. The kth unsigncrypt query is handled by normal
uq-key and sf-type 1 uq-key respectively in Game2−(k−1)−2 and Game2−k−1. Let (U j,B j,Γ

( j)
s ) be

the jth unsigncrypt query, where U j = (com j,δ j,CT j), δ j = (S0,{Si}i∈[`( j)
s ]
), CT j = (C j,C`

( j)
e +1

),

C j = (C0,{Ci}i∈[`( j)
e ]
) and Γ

( j)
e is the policy implicitly contained in U j. B computes h̄( j)

e :=

He(com j,C j,δ j). It picks r, t U←− ZN , R0,R′0,Ri
U←− Gp3 for i ∈ B j. Demonstrated below are

the different types of uq-keys to be used to answer the unsigncrypt queries (as described in Section
6.2).

• If j > k, it is answered by normal uq-key. B can handle it using MS K .

• If j < k, it is handled by sf-type 2 uq-key. B computes the sf-type 2 uq-key U S K B j as
below:

U S K B j := [B j, K′ := gα+at(uh̄( j)
e

e ve)
r(W2W3)

t , K0 := grR0,

L := gtR′0, Ki := Ti
tRi ∀i ∈ B j].

Since, t mod p2 and t over p3 are uncorrelated, so the key U S K B j is properly distributed
sf-type 2 uq-key.

• If j = k , it is unsigncrypted either by normal or sf-type 1 uq-key. B generates U S K Bk

using Tβ of the instance of DSG2, where it implicitly sets gr to be the Gp1 component of Tβ .
The components of uq-key are given below:

U S K Bk := [Bk, K′ := gα+at(Tβ )
h(k)e ae+be , K0 := Tβ ,

L := gtR′0, Ki := Ti
tRi ∀i ∈ Bk].

Challenge: Similar to Lemma 6.4, but still we illustrate here the ciphertext part CT∗ of the challenge
signcryption U∗. B selects v′e := (1,v′2, . . . ,v

′
n∗e
), where v′2, . . . ,v

′
n∗e

U←− ZN . For i ∈ [`∗e ], it sets λ
∗(i)
e :=<

M∗(i)e ,v′e >. It chooses r′i
U←− ZN for i ∈ [`∗e ] and computes the following ciphertext:

C∗0 :=
(

Z1Z2, decomb · e(gα ,Z1Z2)
)
,

C∗i :=
(
(Z1Z2)

aλ
∗(i)
e (Z1Z2)

−r′itρ∗e (i) , (Z1Z2)
r′i
)

for i ∈ [`∗e ].
Now, it sets C∗ := (C∗0, . . . ,C∗`∗e ) and then computes h̄∗e := He(comb,C∗,δ ∗). Then it computes the final
component as

C∗`∗e+1 := (Z1Z2)
aeh̄∗e+be .
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Query Phase-2: Similar to phase-1.

Guess: A sends a guess b′ to B. If b = b′ then B returns 1 else 0.

Analysis: Let Z1Z2 = gsegc
2. B implicitly sets ue := sev′e = (se,sev′2, . . . ,sev′n∗e ) and r(i)e := ser′i for i∈ [`∗e ].

Since, v′2, . . . ,v
′
n∗e

are chosen uniformly and independently from ZN , the vector ue is a random vector over

Zp1 . Similarly, r′1, . . . ,r
′
`∗e

are uniformly and independently distributed over Zp1 as r(1)e , . . . ,r(`
∗
e)

e are so

over ZN . It implicitly sets ve := cav′e = (ca,cav′2, . . . ,cav′n∗e ), ι := c(h̄∗eae +be), γ
(i)
e :=−cr′i and zρ∗e (i) :=

tρ∗e (i) for i ∈ [`∗e ]. By CRT, the values v′2, . . . ,v
′
n∗e

and r′i, tρ∗e (i) for i ∈ [`∗e ] over Zp1 are uncorrelated from
those values over Zp2 . It is easy to check that if β = 0, then the joint distribution of keys, signcryptions,
uq-keys and challenge signcryption is identical to that of Game2−(k−1)−2.

Suppose β = 1, i.e., Tβ := grgb
2gς

3 . Let us take a look on the distributions of the exponents of g2 in
C∗01 and C∗`∗e+1, i.e., c and ι = c(h̄∗eae +be). This type of correlation does not hamper our task unless the
similar type of correlation is found in other components. In kth uq-key almost the similar correlation is
found between the exponents of g2 in K0 and K′, i.e., b and d = b(h(k)e ae+be). Using the Proposition 2.2
and Claim 6.7, we have h̄∗eae +be and h(k)e ae +be are uniformly and independently distributed over Zp2 .
Therefore, the joint distribution of keys, signcryptions, uq-keys and challenge signcryption is identical
to that of Game2−k−1.

Claim 6.7. h̄∗e 6= h(k)e .

Proof of Claim 6.7. Let us assume that
h̄∗e = h(k)e (4)

By the natural restriction of the security game, we have

U∗ 6= Uk (5)

Since H is a collision resistant hash function, from the equation (4) and (5), we have

C∗`∗e+1 6=C
`
(k)
e +1

and C∗01 =C01 (6)

From the definition of Unsigncrypt, we have

C
`
(k)
e +1

∣∣
Gp3

= 1G and e(g,C
`
(k)
e +1

) = e(uh(k)e
e ve,C01) (7)

From the challenge signcryption, we have

C∗`∗e+1
∣∣
Gp3

= 1G and e(g,C`∗e+1) = e(uh̄∗e
e ve,C∗01) (8)

From the equation (4) and 2nd part of the equation (6), (7) and (8), we have

C∗`∗e+1
∣∣
Gp1

=C
`
(k)
e +1

∣∣
Gp1

(9)

Since, C∗`∗e+1

∣∣
Gp3

= 1G and C
`
(k)
e +1

∣∣
Gp3

= 1G, using equation (9), we have Y2 := (C∗`∗e+1)
−1.C

`
(k)
e +1
∈

Gp2 . Since C∗`∗e+1 6= C
`
(k)
e +1

(by 1st part of the equation (6)), we have Y2 6= 1G. Therefore, B breaks the
given instance of the DSG2 assumption.

94



Attribute-Based Signcryption Pandit, Pandey and Barua

Lemma 6.8. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A there exists a PPT algorithm B such that |Adv2−k−1

A ,ABSC(κ)−Adv2−k−2
A ,ABSC(κ)| ≤

AdvDSG2
B (κ) for 1≤ k ≤ ν2.

Proof. It is similar to the proof of Lemma 6.6, except answering the kth unsigncrypt query (i.e., kth uq-
key). B is given an instance of DSG2, (J , g, Z1Z2, W2W3, Z3, Tβ ) with β

U←− {0,1} and depending
on the distribution of β , B simulates either Game2−k−1 or Game2−k−2. Below, we only provide the
simulation of kth unsigncrypt query answering.

• The kth signcryption is unsigncrypted either by sf-type 1 uq-key or sf-type 2 uq-key. B generates
U S K Bk using Tβ of the instance of DSG2, where it implicitly sets gr to be the Gp1 component
of Tβ .

U S K Bk := [Bk, K′ := gα+at(Tβ )
h(k)e ae+be(W2W3)

t , K0 := Tβ ,

L := gtR′0, Ki := Ti
tRi ∀i ∈ Bk].

Note that an extra term, (W2W3)
t is added to K′. Due to this additional term, the exponent of g2 in

K′ can easily be shown to be independent without any condition. It is straightforward that if β = 0 (resp.
β = 1), the joint distribution of keys, signcryptions, uq-keys and challenge signcryption is identical to
that of Game2−k−1 (resp. Game2−k−2).

Lemma 6.9. Game3−(k−1)−2 and Game3−k−1 are indistinguishable under DSG2 assumption. That is,

for every adversary A there exists a PPT algorithm B such that |Adv3−(k−1)−2
A ,ABSC (κ)−Adv3−k−1

A ,ABSC(κ)| ≤
AdvDSG2

B (κ) for 1≤ k ≤ ν3.

Proof. An instance (J ,g,Z1Z2,W2W3,Z3,Tβ ) with β
U←− {0,1} of DSG2 is given to B and depending

on the distribution of β , B simulates either Game3−(k−1)−2 or Game3−k−1.

Setup: Similar to Lemma 6.3.

Query Phase-1: It consists of the following queries in adaptive manner.

– KeyGen: Similar to Lemma 6.6.

– Signcrypt: The first (k−1) replied signcryptions are of sf-type II and the last (ν3−k) are normal sign-
cryptions. The kth replied signcryption is normal in Game3−(k−1)−2 and sf-type I in Game3−k−1.

Let (m( j),A j,Γ
( j)
s ,Γ

( j)
e ) be the jth signcrypt query made by A . B answers the queries as follows.

• If j > k, then B first constructs a normal key S K A j by running KeyGen algorithm and
then it computes jth signcryption U j using the key S K A j (as in Signcrypt algorithm). The
simulator B replies the normal signcryption U j to A .

• If j < k, then it is sf-type II signcryption. It first computes the sf-type 2 key S K A j , then
using this key it produces sf-type II signcryption U j (similar to the above case 5).

• If j = k then it is either normal or sf-type I signcryption. B generates signature part δ j of the
signcryption U j using Tβ of the instance of DSG2 and which is given below:

S0 :=
(

gα+at̃(Tβ )
h̄( j)

s as+bs , Tβ

)
,

Si :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
for i ∈ [`

( j)
s ].

5Even the normal signcryption and sf-type II signcryption can be computed directly using MS K and the supplied parameters
of the instance of DSG2
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B implicitly sets grs to be the Gp1 component of Tβ . The rest part of the signcryption U j is
computed as described in Signcrypt algorithm.

– Unsigncrypt: It is unsigncrypted by sf-type 2 uq-key. Let (U,B,Γs) be an unsigncrypt query, where
U = (com,δ ,CT), δ = (S0,{Si}i∈[`s]), CT = (C,C`e+1), C = (C0,{Ci}i∈[`e]) and Γe is the pol-
icy implicitly contained in U. B constructs the sf-type 2 uq-key U S K B (given below), then
unsigncrypts U by U S K B as described in Section 6.2.

U S K B := [B, K′ := gα+at(uh̄( j)
e

e ve)
r(W2W3)

t , K0 := grR0,

L := gtR′0, Ki := Ti
tRi ∀i ∈ B].

Since, t mod p2 and t mod p3 are uncorrelated, so the key U S K B is properly distributed sf-
type 2 uq-key.

Challenge: Similar to Lemma 6.6.

Query Phase-2: Similar to phase-1.

Guess: A sends a guess b′ to B. If b = b′ then B returns 1 else 0.

Analysis: It is very straightforward that if β = 0 (resp. β = 1) the distribution of the kth replied
signcryption is identical to normal (resp. sf-type I) signcryption. Therefore, the joint distribution of
keys, signcryptions, uq-keys and the challenge signcryption is identical to that of Game3−(k−1)−2 (resp.
Game3−k−1) if β = 0 (resp. β = 1).

Lemma 6.10. Game3−k−1 and Game3−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A there exists a PPT algorithm B such that |Adv3−k−1

A ,ABSC(κ)−Adv3−k−2
A ,ABSC(κ)| ≤

AdvDSG2
B (κ) for 1≤ k ≤ ν3.

Proof. Similar to the proof of Lemma 6.9, except the S01 component of the signature part δk of the kth

signcrypt query. B is given an instance of DSG2, (J , g, Z1Z2, W2W3, Z3, Tβ ) with β
U←− {0,1} and

depending on the distribution of β , B simulates either Game3−k−1 or Game3−k−2. Described here is
only the S0 part of the signature part δk and which is given by:

S0 :=
(
gα+at̃(Tβ )

h̄∗s as+bs(W2W3)
t̃ ,Tβ

)
.

Due to the additional term (W2W3)
t̃ , the exponent of g2 in S01 becomes uniformly and independently

distributed random variable over Zp2 . Rest of the proof can be handled in similar manner to as in the
previous lemma.

Lemma 6.11. Game3−ν3−2 and Game4 are indistinguishable under the DSG2 assumption. That is,
for every adversary A there exists a PPT algorithm B such that |Adv3−ν3−2

A ,ABSC(κ)−Adv4
A ,ABSC(κ)| ≤

AdvDSG2
B (κ)

Proof. Similarly, B is given an instance of DSG2, (J ,g,Z1Z2,W2W3,Z3,Tβ ) with β
U←− {0,1} and

depending on the distribution of β , B simulates either Game3−ν3−2 or Game4.

Setup: Similar to Lemma 6.3.

Query Phase-1: It consists of the following queries in adaptive manner.

– KeyGen: Similar to Lemma 6.6.
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– Signcrypt: It is sf-type II signcryption. It is generated in similar manner as that of proof of Lemma
6.9.

– Unsigncrypt: Similar to Lemma 6.9.

Challenge: It is similar to Lemma 6.4 except the signature part δ ∗ of the challenge signcryption U∗. B
generates δ ∗ using Tβ of the instance of DSG2. The signature part δ ∗ is given below, where B implicitly
sets grs to be the Gp1 component of Tβ :

S∗0 :=
(

gα+at̃(Tβ )
h̄∗s as+bs , Tβ

)
,

S∗i :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
for i ∈ [`∗s ].

Query Phase-2: Similar to phase-1.

Guess: A sends a guess b′ to B. If b = b′ then B returns 1 else 0.

Analysis: Similar to Lemma 6.4, the distribution of the ciphertext part CT∗ of the challenge signcryption
U∗ is identical to that of sf-type 1 and 2 signcryptions. Now, the rest of analysis depend upon the
distribution of the signature part δ ∗ of U∗. It is easy to check that if β = 0 (resp. β = 1), the distribution
of the signature part δ ∗ of U∗ is identical to that of sf-type 1 (resp. sf-type 2) signcryption. Hence, if
β = 0 (resp. β = 1) the distribution of the challenge signcryption U∗ is identical to that of sf-type 1
(resp. sf-type 2) signcryption. Therefore, the joint distribution of keys, signcryptions, uq-keys and the
challenge signcryption is identical to that of Game3−ν3−2 (resp. Game4) if β = 0 (resp. β = 1).

Lemma 6.12. Game4 and Game5 are indistinguishable under the DSG2 assumption. That is, for every
adversary A there exists a PPT algorithm B such that |Adv4

A ,ABSC(κ)−Adv5
A ,ABSC(κ)| ≤AdvDSG2

B (κ)

Proof. It is similar to the proof of Lemma 6.11, except the signature part δ ∗ of the challenge signcryption
U∗. B is given an instance of DSG2, (J , g, Z1Z2, W2W3, Z3, Tβ ) with β

U←− {0,1} and depending on
the distribution of β , B simulates either Game4 or Game5. Demonstrated here is only the signature part
δ ∗ as given below:

S∗0 :=
(

gα+at̃(Tβ )
h̄∗s as+bs(W2W3)

t̃ , Tβ

)
,

S∗i :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
for i ∈ [`∗s ].

Rest of the proof are easily handled as it is similar to the previous lemma.

Lemma 6.13. Game5 and GameFinal are indistinguishable under the DSG3 assumption. That is, for
every adversary A there exists a PPT algorithm B such that |Adv5

A ,ABSC(κ)− AdvFinal
A ,ABSC(κ)| ≤

AdvDSG3
B (κ)

Proof. The simulator B receives an instance of DSG3, (J ,g,gαX2,gsY2,Z2,Z3,Tβ ) with β
U←− {0,1}

and depending on the distribution of β , it simulates either Game5 or GameFinal .

Setup: B runs CSetup(1κ) to obtain the public commitment key C K . B chooses α,a,as,ae,bs,be
U←−

ZN and ti
U←− ZN for i ∈ U . Then, it sets us := gas ,ue := gae ,vs := gbs ,ve := gbe and Ti := gti for

i ∈U . B selects hash functions Hs,He : {0,1}∗ −→ ZN . It provides PP := (J , g, ga, us, ue, vs, ve,
gα

T := e(g,gαX2), {Ti}i∈U , Z3, Hs, He, C K ) to A . But B does not know the master secret MS K .

Query Phase-1: It consists of the following queries in adaptive manner.

– KeyGen: It is sf-type 2 key. Let A be a query set of attributes. It picks t U←− ZN , R,R′0,Ri
U←− Gp3

for i ∈ A and returns the following key to A :

S K A := [A, K := (gαX2)(gaZ2)
tR, L := gtR′0, Ki := Ti

tRi, ∀i ∈ A].
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Since, t mod p1 and t mod p2 are uncorrelated, so the key S K A is properly distributed sf-type
2 key.

– Signcrypt: It is sf-type II signcryption. Let A make a signcrypt query for the message (m,A,Γs,Γe).
B first computes an sf-type 2 key S K A (as above), then using this key it produces the sf-type II
signcryption U and returns it to A .

– Unsigncrypt: It is unsigncrypted by sf-type 2 uq-key. Let (U,B,Γs) be an unsigncrypt query, where
Γe is the policy implicitly contained in U. B constructs the sf-type 2 uq-key U S K B (given
below), then unsigncrypts it by U S K B.

U S K B := [B, K′ := (gαX2)(gaZ2)
t(uh̄( j)

e
e ve)

rR, K0 := grR0,

L := gtR′0, Ki := Ti
tRi ∀i ∈ B].

Since, t mod p2 and t mod p2 are uncorrelated, so the key U S K B j is properly distributed sf-
type 2 uq-key.

Challenge: The initial part similar to previous lemma. B generates CT∗ using Tβ of the instance of
DSG3. The signature part δ ∗ = (S∗0,{S∗i }i∈[`∗s ]) is computed below:

S∗0 :=
(
(gαX2)(gaZ2)

t̃(uh̄∗s
s vs)

rsR̃0, grsR̃′0
)
,

S∗i :=
(
(gt̃)α

(i)
s (gτ)βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′i

)
for i ∈ [`∗s ].

It selects v′e := (1,v′2, . . . ,v
′
n∗e
), where v′2, . . . ,v

′
n∗e

U←− ZN . For i ∈ [`∗e ], it sets λ
∗(i)
e :=< M∗(i)e ,v′e >. It

chooses r′i
U←− ZN for i ∈ [`∗e ]. The ciphertext components of the signcryption are given by

C∗0 :=
(

gsY2, decomb ·Tβ

)
,

C∗i :=
(
(gsY2)

aλ
∗(i)
e (gsY2)

−r′itρ∗s (i) , (gsY2)
r′i
)
, for i ∈ [`∗e ].

Now, it sets C∗ := (C∗0, . . . ,C∗`∗e ) and then computes h̄∗e := He(comb,C∗,δ ∗). Then it computes the final
component as

C∗`∗e+1 := (gsY2)
aeh̄∗e+be .

So, the ciphertext part of the signcryption is CT∗ := (C∗,C∗`∗e+1). B returns the challenge signcryp-
tion U∗ := (comb,δ

∗,CT∗) to A .

Query Phase-2: Similar to phase-1.

Guess: A sends a guess b′ to B. If b = b′ then B returns 1 else 0.

Analysis: It is obvious that if β = 0, i.e., Tβ := gαs
T (resp. if β = 1, i.e., Tβ

U←− GT ) form of the
challenge signcryption U∗ is identical to that of sf-type 2 (resp. sf-type 3) signcryption. Therefore, the
joint distribution of keys, signcryptions, uq-keys and challenge signcryption is identical to that of Game5
(resp. GameFinal) if β = 0 (resp. β = 1).

Lemma 6.14. For every adversary A there exists a PPT algorithm B such that AdvFinal
A ,ABSC(κ) ≤

AdvHiding
B,Commit(κ)

Proof. In GameFinal , the decommitment part decomb is masked with random element from GT or in
other words we can say that the ciphertext part in the challenge signcryption is a encryption of a random
message from the decommitment space. So, the ciphertext part of the challenge signcryption does not
carry any information about the challenge message mb. Therefore, the commitment part comb may
only have the information about mb. Now, we show that if the primitive commitment scheme C has the
hiding property, then the adversary A has no advantage in GameFinal . Suppose an adversary A has an
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advantage in GameFinal , then we will construct an PPT algorithm B for breaking the hiding property of
the commitment scheme C . Let C H be the challenger for the commitment scheme C .

Setup: C H runs CSetup(1κ) and gives the public commitment key C K to B. Now B
executes J := (N := p1 p2 p3,G,GT ,e) ←− Gcbg(1κ) to have a composite order bilinear groups
with known factorization p1, p2 and p3 of N. Then, B sets the public parameters PP :=
(J ,g,ga,us,ue,vs,ve,gα

T ,{Ti}i∈U ,Z3,Hs,He,C K ) as per rule of the original setup and it gives PP
to A . Note that the simulator B knows all the secrets even including the generator of Gp2 .

Query Phase-1: It consists of the following queries in adaptive manner.

– KeyGen: It is of sf-type 2 key. B can generate the key as it knows all the secrets of signcryption.

– Signcrypt: It is sf-type II signcryption. By similar argument above, it is easily computable.

– Unsigncrypt: It is unsigncrypted by sf-type 2 uq-key. Let (U,B,Γs) be an unsigncrypt query, where
Γe is the policy implicitly contained in U. B generates the sf-type 2 uq-key U S K B and then
unsigncrypts it by U S K B.

Challenge: A provides two equal length messages m0,m1, a set of attributes A and the challenge ac-
cess policies Γ∗s := (M∗s ,ρ∗s ),Γ∗e := (M∗e ,ρ∗e ), where Ms (resp. Me) is an `∗s × n∗s (resp. `∗e × n∗e) ma-
trix to the simulator B. Then, B sends m0,m1 to C H . Now C H chooses mb

U←− {m0,m1}, runs
(comb,decomb)←− Commit(mb) and returns challenge commitment part comb to B. Note that B
does not know the decommitment part decomb of the challenge message mb, but it will not hamper
the task of B. B picks a random element dr from the decommitment space. Then it runs the rest of
Signcrypt algorithm on (comb,dr) using the policies Γ∗s and Γ∗e to produce the challenge signcryption6

U∗ of sf-type 4 and returns it to A .

Guess: A sends a guess b′ to B and B replies with the same guess b′ to C H .

Analysis: In sf-type 4 signcryption, the decommitment part decomb is masked with a uniformly and
independently chosen element form GT which is same as masking a random element dr with gαse

T . It is
straightforward to check that the keys, signcryptions, uq-keys and the challenge signcryption are properly
distributed. If A guesses correctly, then this guess will work for breaking hiding property as well.

6.4 Adaptive-Predicates Weak Unforgeability

The unforgeability model used here is similar to the Definition 2.13 except that the adversary is not
allowed to access the unsigncrypt oracle.

Theorem 6.15. If DSG1, DSG2 and DSG3 assumptions hold in J , the primitive commitment scheme
C has relaxed-binding property and Hs is a collision resistant hash function, then the proposed basic
SCP-ABSC scheme in Section 5 is existential unforgeable in adaptive-predicates model.

Proof. It follows from Theorem 6.16 and Theorem 4.2.

Theorem 6.16. If the primitive attribute-based signature scheme ABS is adaptive-predicate existential
unforgeable and the primitive commitment scheme C has relaxed-binding property, then the proposed
SCP-ABSC scheme in Section 5 is existential unforgeable in adaptive-predicates model.

6It first produces normal signcryption and then converts it to sf-type 4 using the generator of Gp2
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Proof. Suppose an adversary A can break the adaptive-predicates weak unforgeability of the proposed
SCP-ABSC scheme with non-negligible advantage ε . We assume that A has made ν number of signcrypt
oracle queries. Let (m(i),Ai,Γ

(i)
s ,Γ

(i)
e ) be the ith query and Ui = (comi,δi,CTi) be the corresponding

replied signcryption. Let U∗ = (com∗,δ ∗,CT∗) be the forgery by A for the message (m∗,Γ∗s ,Γ
∗
e). Let

Forged be the event that com∗||Γ∗e ||Γ∗s 6∈ {comi||Γ(i)
e ||Γ(i)

s
∣∣ i ∈ [ν ]}. Then, we have

ε ≤ Pr[A Succeeds] := Pr[A Succeeds∧Forged]+Pr[A Succeeds∧¬Forged]

=⇒ Pr[A Succeeds∧Forged]≥ ε/2 or Pr[A Succeeds∧¬Forged]≥ ε/2.

1. Case: Forged. We establish a PPT algorithm BABS (simulator) for forging to the primitive attribute-
based signature scheme ABS with advantage at least ε/2. In this simulation, the algorithm BABS will
make use of the adversary A . Let C H be the challenger for the primitive attribute-based signature
scheme ABS.
Setup: First, the challenger C H publishes the public parameters A BS .PP of ABS. Then, simula-
tor BABS runs CSetup(1κ) to produce C K . BABS chooses ae,be

U←− ZN and sets ue := gae ,ve := gbe .
BABS selects a hash function He : {0,1}∗ −→ ZN . It provides PP := (J , g, ga, us, ue, vs, ve, gα

T ,
{Ti}i∈U , Z3, Hs, He, C K ) to A . Interpretation of the variables described here are same as in the ABSC
scheme in Section 5.

Query Phase: It consists of the following queries in adaptive manner.

– KeyGen: Since the ABSC scheme and the primitive ABS scheme have the identical key distribution,
the key queries from A will be forwarded to the challenger C H . Similarly, the answers (keys)
will be reversed back to A .

– Signcrypt: Let us see how BABS will answer the signcrypt queries of A . Let (m(i),Ai,Γ
(i)
s ,Γ

(i)
e ) be

the ith signcrypt query to BABS by A . BABS runs (comi,decomi)←− Commit(m(i)). Then,
BABS makes a signature query for (comi||Γ(i)

e ,Ai,Γ
(i)
s ) to C H and gets the replied signature δi

from C H . Then, BABS runs encryption algorithm of the Signcrypt algorithm to produce the
ciphertext part CTi and it returns the ith signcryption Ui := (comi,δi,CTi) to A .

Forgery: A outputs a tuple (U∗,Γ∗s ,Γ∗e). Then, BABS forges the signature δ ∗ for (com∗||Γ∗e ,Γ∗s ) to the
primitive attribute-based signature scheme ABS.

Analysis: From the event Forged, it implies that (com∗||Γ∗e ,Γ∗s ) has not been queried for signature to
C H .

2. Case: ¬Forged. We set up an algorithm BCommit (simulator) for breaking the relaxed-binding of
the primitive commitment scheme C with advantage at least ε/2ν . Let C H be the challenger for the
primitive commitment scheme C .
Setup: First, the challenger C H publishes the public commitment key C K . Then, BCommit runs
ABS.Setup(1κ) (Setup algorithm of an ABS scheme BABS) to produce A BS .PP . Rest are same
as above. Note that in this case, BCommit knows the MS K . BCommit picks j U←− [ν ] as a guess such
that com∗||Γ∗e ||Γ∗s = com j||Γ( j)

e ||Γ( j)
s .

Query Phase: It consists of the following queries in adaptive manner.

– KeyGen: The simulator BCommit can handle the key queries as MS K is known to itself.
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– Signcrypt: Let (m(i),Ai,Γ
(i)
s ,Γ

(i)
e ) be the ith signcrypt query to BCommit by A . If i = j, then BCommit

makes a commitment query for the message m(i) to C H to have a pair (comi,decomi) else
BCommit itself computes (comi,decomi). After that, BCommit follows the rest of Signcrypt algo-
rithm in Section 5 to produce the signcryption Ui := (comi,δi,CTi) for (m(i),Γ

(i)
s ,Γ

(i)
e ) and returns

it to A .

Forgery: A outputs a tuple (U∗,Γ∗s ,Γ∗e). By ¬Forged, we have com∗||Γ∗e ||Γ∗s = com j||Γ( j)
e ||Γ( j)

s .
Then, BCommit submits decom∗ to C H as a witness of breaking relaxed-binding property (for
(com j(= com∗),decom j)) of commitment scheme C . Note that BCommit obtains decom∗ by running
the Unsigncrypt algorithm on input U∗ as it knows the MS K .

Analysis: With probability 1/ν , BCommit can correctly guess j ∈ [ν ] such that com∗||Γ∗e ||Γ∗s =

com j||Γ( j)
e ||Γ( j)

s . It is easy to see that m∗ = Open(com∗,decom∗) and m( j) = Open(com j,decom j).
To draw the conclusion, we have to show that m∗ 6= m( j). Indeed, if m∗ = m( j) and we already
have com∗||Γ∗e ||Γ∗s = com j||Γ( j)

e ||Γ( j)
s implying (m( j),Γ

( j)
s ,Γ

( j)
e ) = (m∗,Γ∗s ,Γ

∗
e). Hence, it shows that

U∗ := (com∗,δ ∗,CT∗) is a forgery on (m( j),Γ
( j)
s ,Γ

( j)
e ), which is a contradiction to the definition of

existential unforgeability of ABSC scheme.

7 Proposed ABSC: Construction 2

In Section 5, we have provided weakly unforgeable and IND-CCA secure attribute-based signcryption in
signcryption-policy form. In this section, we explore strongly unforgeable and IND-CCA secure SCP-
ABSC scheme for the monotone span programs. The construction follows the similar paradigm as that
of the construction in Section 5, except a strong OTS is applied at the outside layer. As mentioned earlier
in this paper, we call this new paradigm as “Commit then Encrypt and Sign then Sign” (C tE &S tS )
paradigm. The technique [22] weakly unforgeable ABS is lifted to strongly unforgeable ABS, weakly
unforgeable ABSC in Section 5 is lifted to strongly unforgeable ABSC scheme. But to maintain IND-
CCA security of ABSC in Section 5, the OTS is to be applied cautiously in this new construction.

We give a short description of our strongly unforgeable and IND-CCA secure SCP-
ABSC construction, since it follows from the SCP-ABSC in Section 5 and the idea
of strongly unforgeable SP-ABS stated above. Let C := (CSetup, Commit, Open)
be a commitment scheme with hiding property (relaxed-binding property is not re-
quired). Let wABS := (wABS.Setup,wABS.KeyGen,wABS.Sign,wABS.Ver) and ABE :=
(ABE.Setup,ABE.KeyGen,ABE.Encrypt,ABE.Decrypt) be the ABS scheme and ABE scheme
respectively used in Section 5. Let OTS := (OTS.Gen, OTS.Sign, OTS.Ver) be a strongly un-
forgeable one-time signature scheme. Demonstrated in Figure 4 are only two algorithms, Signcrypt
and Unsigncrypt and rest are same as in Section 5. Let ∆s := Signcrypt(m,S K A,Γs,Γe) and
∆u := Unsigncrypt(U,S K B,Γs).

Correctness. It follows from that of Section 5.

Remark 7.1. For strong unforgeability of the proposed ABSC, we do not require the relax-bonding
property of the commitment scheme. But if we want the non-repudiation, then we have to assume
the relax-binding property of the commitment scheme. In the proposed construction, if we replace the
decom by the message m and ignore the commitment scheme, then the modified version will have
the same performance as the proposed construction except the modified version does not guarantee the
non-repudiation.
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– ∆s :=


(com,decom)←− Commit(m);‖(vk,signk)←−OTS.Gen(1κ);

δw←− wABS.Sign(vk,S K A,Γs);‖C←− ABE.Encrypt(decom,Γe);
where δw := (S0, . . . ,S`s) and C := (C0, . . . ,C`e);

let h̄e := He(com,C,δw);C`e+1←− fun(PP, h̄e,se);
δo←−OTS.Sign(h̄e||C`e+1||Γe||Γs,signk);

returns U := (com,δs := (δw,δo,vk),CT := (C,C`e+1))



– ∆u :=


Open(com,decom) if


OTS.Ver(h̄e||C`e+1||Γe||Γs,δo,vk) = 1;‖

wABS.Ver(vk,δw,Γs) = 1;‖
decom←− ABE.Decrypt(CT,S K B,Γe),

where
U = (com,δs = (δw,δo,vk),CT = (C,C`e+1))


⊥ otherwise.

Figure 4: Attribute-based signcryption: construction 2

8 Security of Construction 2

8.1 Perfect Privacy

Theorem 8.1. The proposed SCP-ABSC scheme in Section 7 is perfectly private.

Proof. It is similar to Theorem 6.1.

8.2 Adaptive-Predicates IND-CCA security

Theorem 8.2. If DSG1, DSG2 and DSG3 assumptions hold in J , He is a collision resistant hash
function, C has hiding property and OTS is a strongly unforgeable one-time signature scheme, then our
proposed SCP-ABSC scheme in Section 7 is IND-CCA secure in adaptive-predicates model (Definition
2.10).

Proof. The proof can be obtained by the similar approach as in proof of Theorem 6.2 and the argument
used for proving CCA security in [11].

8.3 Adaptive-Predicates Strong Unforgeability

The strong unforgeability model used here is similar to what is stated in Definition 2.14 except the
adversary is not allowed to access the unsigncrypt oracle.

Theorem 8.3. If DSG1, DSG2 and DSG3 assumptions hold in J , OTS is a strong OTS scheme and
Hs,He are collision resistant hash functions, then the proposed basic SCP-ABSC scheme in Section 7 is
strongly existential unforgeable in adaptive-predicates model.

Proof. It is straightforward from Theorem 8.4 and Theorem 4.2.

Theorem 8.4. If the primitive attribute-based signature scheme wABS is adaptive-predicate weakly
existential unforgeable (Definition 2.6), OTS is a strong OTS scheme and He is a collision resistant hash
function, then the proposed basic SCP-ABSC scheme in section 7 is strongly existential unforgeable in
adaptive-predicates model.
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Proof. Let A be an adversary that breaks the adaptive-predicates strong existential unforgeability of
the proposed SCP-ABSC scheme with non-negligible advantage ε . Suppose A has made ν number
of signcrypt oracle queries. Let Ui = (comi,δ

(i)
s ,CTi), where δ

(i)
s = (δ

(i)
w ,δ

(i)
o ,vk(i)) be the replied

signcryption to the ith query message (m(i),Ai,Γ
(i)
s ,Γ

(i)
e ) for i ∈ [ν ]. Let U∗ = (com∗,δ ∗s ,CT∗) be the

forgery by A on the message (m,Γs,Γe), where δ ∗s = (δ ∗w,δ
∗
o ,vk

∗). We define an event as

Forged := vk∗ 6∈ {vk(i)
∣∣ i ∈ [ν ]}.

Then, we have

ε ≤ Pr[A Succeeds] := Pr[A Succeeds∧Forged]+Pr[A Succeeds∧¬Forged]

=⇒ Pr[A Succeeds∧Forged]≥ ε/2 or Pr[A Succeeds∧¬Forged]≥ ε/2

Case: Forged. We establish a PPT algorithm BwABS for forging to the primitive ABS scheme wABS
with advantage at least ε/2.

Setup: First, the challenger C H publishes the public parameters A BS .PP of wABS. Then,
the simulator BwABS runs CSetup(1κ) to produce C K . BwABS chooses ae,be

U←− ZN and sets
ue := gae ,ve := gbe . BwABS selects a hash function He : {0,1}∗ −→ ZN . It provides PP :=
(J ,g,ga,us,ue,vs,ve,gα

T , {Ti}i∈U ,Z3,Hs,He,C K ) to A .

Query Phase: It consists of the following queries in adaptive manner.

– KeyGen: Since the ABSC scheme and the primitive ABS scheme have the identical key dis-
tribution, the key queries from A will be forwarded to the challenger C H . Similarly, the
answers (keys) will be reversed back to A .

– Signcrypt: Let (m(i),Ai,Γ
(i)
s ,Γ

(i)
e ) be the ith signcrypt query to BwABS by A . BwABS exe-

cutes (comi,decomi) ←− Commit(m(i)) and (vk(i),signk(i)) ←− OTS.Gen(1κ). Then,
BwABS makes a signature query for (vk(i),Ai,Γ

(i)
s ) to C H and gets the replied signa-

ture δ
(i)
w from C H . Then, BwABS runs Ci ←− ABE.Encrypt(PP,decomi,Γ

(i)
e ). Com-

putes h̄(i)e := He(comi,Ci,δ
(i)
w ) and C

`
(i)
e +1
←− fun(PP, h̄(i)e ,s(i)e ). Then BwABS executes

δ
(i)
o ←− OTS.Sign( h̄(i)e ||C`

(i)
e +1
||Γ(i)

e ||Γ(i)
s ,signk(i)) and sets Ui := (com,δ

(i)
s ,CTi), where

δ
(i)
s := (δ

(i)
w ,δ

(i)
o ,vk(i)) and CTi := (Ci,C`

(i)
e +1

). It returns the ith signcryption Ui to A .

Forgery: A outputs a tuple (U∗,Γ∗s ,Γ∗e). Then, BwABS forges the signature δ ∗w for (vk∗,Γ∗s ) to the
primitive ABS scheme wABS.

Analysis: By the event Forged, we have vk∗ 6= vk(i) for i ∈ [ν ]. Therefore, (vk∗,Γ∗s ) has not been
queried for signature to C H .

Case: ¬Forged. In this case, we will develop an algorithm BOTS for forging to the primitive strongly
unforgeable one-time signature scheme OTS with advantage at least ε/2ν . Let C H be
the challenger for the primitive one-time signature scheme OTS. The challenger C H runs
(vk∗,signk∗)←− OTS.Gen(1κ) and gives vk∗ to BOTS. The simulator BOTS picks j U←− [ν ]
as a guess such that vk∗ = vk( j).

Setup: Similar to that of Section 5.

Query Phase: It consists of the following queries in adaptive manner.
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– KeyGen: BOTS can handle the key queries as it knows the MS K .

– Signcrypt: Let (m(i),Ai,Γ
(i)
s ,Γ

(i)
e ) be the ith signcrypt query to BOTS by A .

� (i 6= j) :
BOTS runs Commit(m(i)) and OTS.Gen(1κ) to obtain (comi,decomi) and
(vk(i),signk(i)) respectively. Then, runs δ

(i)
w ←−wABS.Sign(PP , vk(i),S K A,Γ

(i)
s ),

Ci ←− ABE.Encrypt(PP,decomi,Γ
(i)
e ), C

`
(i)
e +1
←− fun(PP, h̄(i)e ,s(i)e ), δ

(i)
o ←−

OTS.Sign(h̄(i)e ||C`
(i)
e +1
||Γ(i)

e ||Γ(i)
s ,signk(i)). It sets δ

(i)
s := (δ

(i)
w , δ

(i)
o , vk(i)), CTi :=

(Ci,C`
(i)
e +1

) and returns the ith signcryption Ui := (comi,δ
(i)
s ,CTi) to A .

� (i = j) :
Same as above except BOTS does not run OTS.Gen(1κ), but it sets vk(i) := vk∗ and it
makes a query to the challenger C H on the message h̄(i)e ||C`

(i)
e +1
||Γ(i)

e ||Γ(i)
s and gets the

replied signature δ
(i)
o .

Forgery: A outputs a tuple (U∗,Γ∗s ,Γ∗e). Then, BOTS forges the signature δ ∗o for h̄∗e ||C∗`∗e+1||Γ∗e ||Γ∗s
to the primitive one-time signature scheme OTS. We note that BOTS knows the MS K , so it
can compute h̄∗e from U∗.

Analysis: With probability 1/ν , BOTS correctly guesses j ∈ [ν ] such that this case is happened.
Now we only have to show that

(h̄∗e ||C∗`∗e+1||Γ∗e ||Γ∗s ,δ ∗o ) 6= (h̄( j)
e ||C`

( j)
e +1
||Γ( j)

e ||Γ( j)
s ,δ

( j)
o ).

Indeed, if
(h̄∗e ||C∗`∗e+1||Γ∗e ||Γ∗s ,δ ∗o ) = (h̄( j)

e ||C`
( j)
e +1
||Γ( j)

e ||Γ( j)
s ,δ

( j)
o )

we have h̄∗e = h̄( j)
e ,C∗`e+1 = C

`
( j)
e +1

,δ ∗o = δ
( j)
o . Since He is collision resistant, we have com∗ =

com j,δ
∗
w = δ

( j)
w , C∗ = C j and which implies that decom∗ = decom j. Then, using com∗ =

com j, we have m∗ = m( j). Altogether, we have (U∗,m∗,Γ∗s ,Γ∗e) = (U j,m( j),Γ
( j)
s ,Γ

( j)
e ), which is

contradiction to the definition of strong existential unforgeability of SCP-ABSC scheme.

9 Strong Unforgeability of Construction 2 in Presence of Unsigncrypt Or-
acle

The strong unforgeability of the construction 2 in Section 7 is proven without giving the unsigncrypt
oracle access to A . The main reason for not providing the unsigncrypt oracle access is that the proof of
8.4 (in Section 8.3) uses the black-box access to the ABS. In this section, we provide the proof of strong
unforgeability, where A is provided the access to unsigncrypt oracle.

The proof style is just an extension of the unforgeability proof of ABS (Section 4.1) and the different
oracle queries are handled in similar manner as in confidentiality proof of ABSC (Section 6.2). We
consider two forms of semi-functional keys (resp. uq-keys), viz., sf-type 1 and sf-type 2. We also
consider two forms of signcryptions, namely sf-type I and sf-type II. Description of all these semi-
functional objects are similar to Section 6.2, so we skip them here. We note that Ver and Decrypt
algorithms are run using the verification text and an uq-key respectively in the Unsigncrypt algorithm.
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We define a new object, called verification text key (in short vTextKey) which consists of vText and uq-
key. We consider four forms of semi-functional vTextKeys which are defined through the different forms
of the vTexts and uq-keys. We already have defined two forms of semi-functional uq-keys in Section 6.2,
so we skip them as well. Now, we define the two forms of vText (as defined in Section 4.1) as follows.

Semi-functional type 1 vText. Pick c, ι U←− ZN , vs
U←− Zns

N . For each i ∈ [`s], pick γ
(i)
s

U←− ZN .
For each i ∈ U , choose zi

U←− ZN . The sf-type 1 vText is obtained by modifying normal vText V =
(V0,{Vi}i∈[`s]) as given below:

V0 :=
(

gs gc
2 ,(uh̄s

s vs)
s gι

2 , gαs
T

)
,

Vi :=
(

gaλ
(i)
s T−r(i)s

ρs(i)
g

M(i)
s .vs+γ

(i)
s zρs(i)

2 , gr(i)s g−γ
(i)
s

2

)
, for i ∈ [`s].

Semi-functional type 2 vText. This is same as sf-type 1 vText except the following:
V0 :=

(
gsgc

2,(u
h̄s
s vs)

sgι
2, ĝt

)
, where ĝt

U←−GT .

Below we define semi-functional forms of vTextKey which depend on the forms of the underlying
uq-key and vText.

– Normal vTextKey. The uq-key and vText are of normal form.

– sf-type 1 vTextKey. The uq-key is normal and vText is sf-type 1.

– sf-type 2 vTextKey. The uq-key is sf-type 1 and vText is sf-type 1.

– sf-type 3 vTextKey. The uq-key is sf-type 2 and vText is sf-type 1.

– sf-type 4 vTextKey. The uq-key and vText are of sf-type 2.

Theorem 9.1. If DSG1, DSG2 and DSG3 assumptions hold in J , OTS is a strong OTS scheme and
Hs,He are collision resistant hash functions, then the proposed basic SCP-ABSC scheme in Section 7 is
strongly existential unforgeable in adaptive-predicates model (Definition 2.14).

Proof. Suppose an adversary A can break the adaptive-predicates strong unforgeability of the pro-
posed SCP-ABSC scheme with non-negligible advantage ε . We assume that A has made ν3

number of signcrypt oracle queries. Let (m(i),Ai,Γ
(i)
s ,Γ

(i)
e ) be the ith signcrypt query and Ui =

(comi,δ
(i)
s = (δ

(i)
w ,δ

(i)
o ,vk(i)),CTi) be the corresponding replied signcryption. Let U∗ = (com∗,δ ∗s =

(δ ∗w,δ
∗
o ,vk

∗),CT∗) be the forgery by A on the message (m∗,Γ∗s ,Γ
∗
e). We define an event as

Forged := vk∗ 6∈ {vk(i)
∣∣ i ∈ [ν3]}.

Then, we have

ε ≤ Pr[A Succeeds] := Pr[A Succeeds∧Forged]+Pr[A Succeeds∧¬Forged]

=⇒ Pr[A Succeeds∧Forged]≥ ε/2 or Pr[A Succeeds∧¬Forged]≥ ε/2

Case: ¬Forged. This case is similar to that of Theorem 8.4. We note that in this case the simulator can
handle the unsigncrypt queries as it knows the MS K .
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Case: Forged. Suppose there are at most ν1 key queries and ν2 unsigncrypt queries, then the security
proof consists of hybrid argument over a sequence of 2(ν1 +ν2 +ν3)+ 6 games. The games are
defined below:

– GameReal := Original APs-sUF-CMA game of ABSC scheme.

– GameR̂eal := This is same as game GameReal except the event Forged always happens.

– Game0 (:= Game1−0−2) is just like GameR̂eal except that the vTextKey for verifying the forgery
is of sf-type 1

– Game1−k−1 (for 1≤ k ≤ ν1) is same as Game1−(k−1)−2 except the kth key is sf-type 1.

– Game1−k−2 (for 1≤ k ≤ ν1) is same as Game1−k−1 except kth key is sf-type 2.

– In Game2−k−1 (for 1 ≤ k ≤ ν2) is same as Game2−(k−1)−2 except the kth unsigncrypt query is
answered by sf-type 1 uq-key. (So, in this sequel we define Game2−0−2 := Game1−ν1−2)

– Game2−k−2 (for 1≤ k≤ ν2) is same as Game2−k−1 except the kth unsigncrypt query is answered
by sf-type 2 uq-key.

– In Game3−k−1 (for 1 ≤ k ≤ ν3) is same as Game3−(k−1)−2 except the replied signcryption to
the kth signcrypt oracle query is sf-type I. (So, in this sequel we define Game3−0−2 :=
Game2−ν2−2)

– Game3−k−2 (for 1 ≤ k ≤ ν3) is same as Game3−k−1 except the replied signcryption to the kth

signcrypt oracle query sf-type II.

– Game4 is similar to Game3−ν3−2 except that the vTextKey for verifying the forgery is of sf-type
2.

– Game5 is similar to Game4 except that the vTextKey for verifying the forgery is of sf-type 3.

– GameFinal is similar to Game5 except that the vTextKey for verifying the forgery is of sf-type 4.

In GameFinal , the component V03 in the vText part of vTextKey is chosen independently and uni-
formly at random from GT . This implies that the forgery will be invalid with respect to the vTex-
tKey. Therefore, the adversary A has no advantage in GameFinal . The outline of the hybrid
arguments over the games is given below, where Lem stands for Lemma.
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Real

Forged
|

=⇒ R̂eal

Lem 9.2
|

DSG1
|

=⇒ 0

Lem 9.3
|

DSG2
|

=⇒ 1−1−1 . . . 1− (k−1)−2

1− (k−1)−2

Lem 9.3
|

DSG2
|

=⇒ 1− k−1

Lem 9.4
|

DSG2
|

=⇒ 1− k−2 . . . 1−ν1−2

Lem 9.5
|

DSG2
|

=⇒ 2−1−1

2−1−1 . . . 2− (k−1)−2

Lem 9.5
|

DSG2
|

=⇒ 2− k−1

Lem 9.6
|

DSG2
|

=⇒ 2− k−2 . . . 2−ν2−2

2−ν2−2

Lem 9.7
|

DSG2,CRHs
|

=⇒ 3−1−1 . . . 3− (k−1)−2

Lem 9.7
|

DSG2,CRHs
|

=⇒ 3− k−1

3− k−1

Lem 9.8
|

DSG2
|

=⇒ 3− k−2 . . . 3−ν3−2

Lem 9.9
|

DSG2
|

=⇒ 4

Lem 9.10
|

DSG2
|

=⇒ 5

Lem 9.11
|

DSG3
|

=⇒ Final

Using the lemmas referred in the above box (for details of the lemmas, refer to Section 9.1), we
have the following reduction:

AdvAPs−sUF−CMA
A ,ABSC (κ)≤ ν2Adv

sUF−CMA
B1,OTS (κ)+ν2Adv

CRHe
B2

(κ)+AdvDSG1
B3

(κ)+

(2ν1 +2ν2 +2ν3 +2)AdvDSG2
B4

(κ)+

ν3Adv
CRHs
B5

(κ)+AdvDSG3
B6

(κ)

where B1,B2,B3,B4,B5 and B6 are PPT algorithms whose running times are same as that of
A . This completes the proof.

9.1 Lemmas Used in the Proof of Theorem 9.1

The following lemmas can be proven similarly as that of SP-ABS and SCP-ABSC.

Lemma 9.2. GameR̂eal and Game0 are indistinguishable under the DSG1 assumption. That is, for every

adversary A there exists a PPT algorithm B such that |AdvR̂eal
A ,ABSC(κ)−Adv0

A ,ABSC(κ)| ≤AdvDSG1
B (κ).

Lemma 9.3. Game1−(k−1)−2 and Game1−k−1 are indistinguishable under DSG2 assumption. That is,

for every adversary A there exists a PPT algorithm B such that |Adv1−(k−1)−2
A ,ABSC (κ)−Adv1−k−1

A ,ABSC(κ)| ≤
AdvDSG2

B (κ) for 1≤ k ≤ ν1.

Lemma 9.4. Game1−k−1 and Game1−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A there exists a PPT algorithm B such that |Adv1−k−1

A ,ABSC(κ)−Adv1−k−2
A ,ABSC(κ)| ≤

AdvDSG2
B (κ) for 1≤ k ≤ ν1.
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Lemma 9.5. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under DSG2 assumption and colli-
sion resistant property of He. That is, for every adversary A there exists a PPT algorithm B such that
|Adv2−(k−1)−2

A ,ABSC (κ)−Adv2−k−1
A ,ABSC(κ)| ≤ AdvDSG2

B (κ) for 1≤ k ≤ ν2.

Lemma 9.6. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A there exists a PPT algorithm B such that |Adv2−k−1

A ,ABSC(κ)−Adv2−k−2
A ,ABSC(κ)| ≤

AdvDSG2
B (κ) for 1≤ k ≤ ν2.

Lemma 9.7. Game3−(k−1)−2 and Game3−k−1 are indistinguishable under DSG2 assumption and colli-
sion resistant property of Hs. That is, for every adversary A there exists PPT algorithm B such that

|Adv3−(k−1)−2
A ,ABSC (κ)−Adv3−k−1

A ,ABSC(κ)| ≤ AdvDSG2
B (κ)+AdvCRHs

B (κ) for 1≤ k ≤ ν3.

Lemma 9.8. Game3−k−1 and Game3−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A there exists a PPT algorithm B such that |Adv3−k−1

A ,ABSC(κ)−Adv3−k−2
A ,ABSC(κ)| ≤

AdvDSG2
B (κ) for 1≤ k ≤ ν3.

Lemma 9.9. Game3−ν3−2 and Game4 are indistinguishable under the DSG2 assumption. That is,
for every adversary A there exists a PPT algorithm B such that |Adv3−ν3−2

A ,ABSC(κ)−Adv4
A ,ABSC(κ)| ≤

AdvDSG2
B (κ)

Lemma 9.10. Game4 and Game5 are indistinguishable under the DSG2 assumption. That is, for every
adversary A there exists a PPT algorithm B such that |Adv4

A ,ABSC(κ)−Adv5
A ,ABSC(κ)| ≤AdvDSG2

B (κ)

Lemma 9.11. Game5 and GameFinal are indistinguishable under the DSG3 assumption. That is, for
every adversary A there exists a PPT algorithm B such that |Adv4

A ,ABSC(κ)− AdvFinal
A ,ABSC(κ)| ≤

AdvDSG3
B (κ)

10 Mechanism for Complete Construction

Although the technique is available in [25] but for self-containment, in this section we briefly demonstrate
it. The mechanism described here is for both SP-ABS and SCP-ABSC supporting MSPs. For complete
construction, the row labeling functions of span programs are not assumed to be injective. If we allow
an attribute to repeat in the span programs at most ϕ time and the size of the universe U is n, then the
size of new universe U ′ for the complete construction will be nϕ . In complete construction, for each
attribute χ ∈U , we consider ϕ copies of χ in U ′. To enumerate each copy, we assign a label say j to
the attribute say χ , i.e., U ′ := {(χ, j)|χ ∈ U , j ∈ [ϕ]}. Similarly, for any access policy Γ := (M,ρ) if
ρ(i) = χ and the attribute χ appears jth time, then we label the ith row by (χ, j), i.e., we have a new row
labeling function ρ ′ defined by ρ ′(i) := (χ, j). Likewise if A is a set of attributes corresponding to U ,
then A′ := {(χ, j)|χ ∈ A, j ∈ [ϕ]} is the set of attributes for U ′. Then, we have that the set of attributes
A satisfies the policy (M,ρ) if and only if A′ satisfies (M,ρ ′). Due to this technique, the sizes of public
parameters and key increase by a factor linear to ϕ , but the size of signature (resp. signcryption) and the
cost of sign and ver (resp. signcrypt and unsigncrypt) for SP-ABS (resp. SCP-ABSC) remain unchanged.

11 Conclusion

We have presented an ABSC scheme in C tE &S tS paradigm using our proposed AP-UF-CMA secure
SP-ABS and AP-IND-CPA secure CP-ABE of [25]. Since the algorithms of ABS and ABE run in
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parallel in Signcrypt and Unsigncrypt, the execution of the scheme is comparatively faster. To best of
our knowledge, this is the first ABSC scheme whose sUF-CMA security and IND-CCA security have
been proven in adaptive-predicates models. The scheme also has other features, signer-privacy and non-
repudiation, and supports combined-setup.
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