A Study on EMG-based Biometrics

Jin Su Kim and Sung Bum Pan

Chosun University, Dong-gu, Gwangju, 61452, Korea
babotn5@gmail.com, sbpan@chosun.ac.kr



Biometrics is a technology that recognizes user's information by using unique physical features of his or her body such as face, fingerprint, and iris. It also uses behavioral features such as signature, electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). Among them, the EMG signal is a sign generated when the muscles move, which can be used in various fields such as motion recognition, personal identification, and disease diagnosis. In this paper, we analyze EMG-based biometrics and implement a motion recognition and personal identification system. The system extracted features using non-uniform filter bank and Waveform Length (WL), and reduces the dimension using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Afterward, it classified the features using Euclidean Distance (ED), Support Vector Machine (SVM) and K Nearest Neighbors (KNN). As a result of the motion recognition experiment, 95% of acquired EMG data and 84.66% of UCI data were obtained and as a result of the personal recognition experiment, 85% of acquired EMG data and 88.66% of UCI data were obtained.


Keywords: Biometrics, Electromyogram, Personal Authentication


+: Corresponding author: Sung Bum Pan
Department of Electronics Engineering, Chosun University, Dong-gu, Gwangju, 61452, Korea,
Tel: +82-62-230-6897


Journal of Internet Services and Information Security (JISIS), 7(2): 19-31, May 2017 [pdf]