
AutoVNF: An Automatic Resource Sharing Schema for
VNF Requests

Wei Huang1, Haoren Zhu2, and Zhuzhong Qian2∗
1School of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167, China

wweihuang@sina.com.cn
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

haoren zhu@dislab.nju.edu.cn, qzz@nju.edu.cn

Abstract

Nowadays, network function virtualization (NFV) receives widespread concerns from the whole so-
ciety for its promising application. The main challenge for the deployment of VNF that comes
along is the resource allocation of demanded network services in NFV-based network infrastruc-
tures. Current offline resource mapping and scheduling algorithms are impractical for continuous
VNF requests in data centers, because of the high time consumption. In this paper, we firstly present
a resource sharing schema for VNF, including the automatic monitoring and fast switching mech-
anisms, which support multiple VNFs effectively share resource in one node. This VNF resource
sharing schema improves the acceptance ratio of VNF requests as well as the system utilization. And
then, we propose an automatic NFV resource allocation mechanism AutoVNF to optimize the VNF
deployment. AutoVNF includes mapping and scheduling algorithms, which automatically allocates
available nodes to VNF requests and schedules the execution of VNFs in one VNF queue. Simula-
tions show that AutoVNF has a good performance on acceptance ratio, average flow time, and total
cost compared with well-known scheduling algorithms.

Keywords: virtual network function, resource sharing, service function chain

1 Introduction

Specialized physical middleboxes play an important role in network infrastructure. With the dramatic
increasing of middleboxes, their drawbacks such as expensive price, high energy costs, less flexibility,
and short lifecycle[6] become unacceptable. To prevent the inconveniences of middlebox, a new network
architecture framework Network Function Virtualization (NFV) is proposed, and become more and more
popular.

Figure 1: A Service Function Chain Example in A Data Center

Under the paradigm of NFV, traditional middleboxes are managed as single modules of software,
named Virtual Network Functions (VNFs). Delivery of multiple VNFs in a sequence, in a data center
or among data centers, constructs many requirements on the overall service delivery architecture. Such

Journal of Internet Services and Information Security (JISIS), volume: 7, number: 3 (August 2017), pp. 34-47
∗Corresponding author: 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China, Tel: +86-25-89686292

34

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

architectures may be termed as service function chaining architectures, and the list of VNFs applied to the
traffic is a Service Function Chain (SFC). Fig.1 shows an example of north-south traffic virtual network
SFC in a data center[7]. Each VNF in the SFC may be deployed in a high performance specific server
or a general-purposed server according to different quality of service (QoS). However traffic does not
always strictly flow through all the VNFs in that order, and each permutation of these VNFs represents a
fully different service function chain.

Nowadays NFV is in a stage of rapid development, and there are still several challenges[6] in NFV,
among which how to effectively monitor the resource usage and status of VNF as well as properly
allocate resource to VNF are important issues to improve the performance. Resource allocation and
scheduling problem (NFV-RA) has also been widely studied in both academic and industry. Traditional
NFV-RA solutions are offline algorithms, whose precondition is often assumed that the service requests
are known in advance, so orchestrator[4] has enough time to get the global optimal solution through the
optimization algorithms and then accordingly deploy VNF allocating proper resources. But in a real
system, service requests are submitted one by one, instead of knowing all the requests in advance. So
orchestrator should handle incoming requests online, and deploy VNFs to proper servers immediately. To
the best of our knowledge, few research focuses on online dynamic NFV-RA problem, and the proposed
solutions often simplify the scheduling problem by relaxing some resource constraint.

According to surveys[10, 9, 5] in multi-tenancy mode data centers, each tenant has several different
virtual network SFC requests. In order to make full use of resources, it is necessary to delete the VNFs
which were in idle status for a long period of time. Science the lifecycle of each SFC various, some
longtime running SFCs allow put off the start time while some SFCs may run very short time. So we
construct a resource sharing mechanism which allows a single server accept multiple VNFs concurrently.
Based on this mechanism, some NFV can be deployed to busy nodes and be triggered after waiting for
a certain amount of time. That is, all the VNFs assigned to one server will wait in a queue, and run in
a certain order. Accordingly, system could accept more virtual network SFC requests, although some
of them may have to wait in a queue, it is much better to just reject the request. Actually, this resource
sharing mechanism improves the overall performance and resource utilization.

To achieve this resource sharing mechanism, we design an automatic monitoring mechanism to effec-
tively get the status of all nodes and a fast switching mechanism to quickly shut down and start up VNFs
in one node. The automatic monitoring mechanism is based on the Finite State Machine (FSM), which
converts original active monitoring to a passive monitoring and reduce the overhead of resource moni-
toring. The fast switching mechanism defines a Linux namespace as a minimal allocation unit, which is
more lightweight and can reduce switching delay. The experimental results show that this mechanism
not only guarantee the running efficiency, but also the acceptance ratio with a limited cost.

This paper presents an advanced virtual network function schema based on resource sharing Au-
toVNF. The contributions are summarized as follows:

(1) Lower monitoring costs: We design an automatic monitoring mechanism, so that AutoVNF can
detect changes of resources in the substrate network in time without high monitoring costs.

(2) Higher acceptance ratio: First, with resource sharing, service requests can be embeded af-
ter waiting for a certain amount of time and then more service requests can be accepted. Second, the
shceduling based on the fast switching mechanism can make requests more likely to be accepted by rea-
sonable adjustment for the allocated resources.

(3) Reasonable runtime and service delay: The global max heap kept by the automatic monitoring
mechanism allows AutoVNF to select candidate nodes fastly, and final runtime can be within reasonable
runtime. The fast switching mechanism can also ensure service delay within a tolerable range.

The rest of the paper is organized as follows. Section 2 introduces the resource sharing schema and
two system mechanisms. Section 3 gives the detailed model and problem description, and section 4
presents the resource allocation mechanism AutoVNF. Section 5 shows experiments results, and Section

35

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

6 gives some related work. Section 7 concludes the paper.

2 Resource Sharing Schema for VNF

If the substrate network could not meet the entire SFC resource requirement of VNF, the request will
be rejected, even only one VNF could not be deployed. This strict resource allocation policy provides a
good QoS guarantee for accept virtual network SFC Request, while it may reduce the resource utilization.
Actually, some SFC requests are not delay-sensitive, which may allow a certain delay. For example, a
start-up company use the cloud servers to provide online video transcoding services[6, 7], assuming
that videos of different formats need to deploy different VNFs. It allows the cloud provider delay its
VNFR requests for a certain time, because the waiting time is relatively small compared with the video
processing time. With the development of NFV, the cost of deploying/removing NFV is getting lower.
Thus, we design a VNF queue for each node and therefor construct a resource sharing schema, where
system assigns several VNFs to one node simultaneously, which wait in the VNF queue of the node and
will run one by one with FIFO.

In this section, we first define Hungry Index for VNF to evaluate capacity of both single VNF and
VNF queue that is composed of several VNFs. And two important mechanisms are presented: automatic
monitoring mechanism and fast switching mechanism. The former mechanism improves the speed of
getting node states, thus mapping speed is significantly improved. The second mechanism is based on
current sharing model, which reduces the switch delay in scheduling stage by avoiding launching a high-
delay server.

2.1 Hungry Index of VNF Queue

Based on the resource sharing model for VNF, we have the following observation.

• If the length of queue is shorter, the number of waiting VNFs is smaller;

• The short total waiting time (Tw) of a VNF queue indicates that the relative processor is faster;

• If the VNF has been running for a long time, it indicates that it may finish soon.

After considering the above factors, here, we define the hungry index HI to evaluate whether the
server is proper to load a new VNF, which is an important metric to choose available substrate nodes in
the allocation or scheduling stage. The Hungry Index HI is defined as follows.

HI(quei) = γ ·L(quei)+δ ·Tw(quei)−η ·Tr(quei) (1)

where γ , δ and η are constants aimed at scaling the weights of above there factors. These constants are
set as γ = 0.4, δ = 0.4 and η = 0.2 in this paper.

In scheduling stage, we need to consider the HI of each VNF queue, so original Tw(quei) needs to
be adjusted as Tw(quei, pos), where pos represents the position of the VNF in the queue.

Note: the queue length, running time and waiting time all need to be normalized using Min-Max
Normalization. To distinguish the node(server) HI and the VNF HI, we denote former as NHI, and the
latter as VHI.

2.2 Automatic Monitoring Mechanism

One of the main challenges to achieve online resource scheduling is how to effectively get the status
of each node. General centralized implementation of the distributed system is utlizing one or more

36

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

control nodes to continuously poll information from each substrate node. However collecting status
information is not suitable for current system, because neither long time interval of polling nor short
interval cannot obtain a good result. If the time interval of polling is too long, system cannot detect the
scheduling opportunity on time; otherwise, it will cause serious system load, and meanwhile frequent
polling information will consume siginificant link resources.

We construct an FSM (Finite State Machine) for each node/queue, different operations of node will
trigger the state transition of the corresponding FSM. Once the VHI of a VNF has exceeded the critical
value, the FSM will trigger the scheduling state; Here all VNFs triggering the scheduling state will be
recorded in a global queue, and the controller will complete the scheduling for the global queue by using
specific scheduling algorithm. In addition, we maintain a global max heap (size S), used to record S
nodes whose NHI values are smaller than others. Based on this monitoring mechanism, the speed of
online resource scheduling will significantly improve, while the acceptance ratio is still high.

A simple mechanism example is illustrated in Fig.2. The corresponding FSMs for node 1,2,3 calcu-
late the VHI values of three nodes, shown in Fig.2.a. We assume the threshold of VHI and NHI is 20 and
50 respectively. The results calculated by FSM show that the VHI values of VNF2, VNF5 and VNF3 are
larger than the threshold, so these three VNFs will be recorded in the global queue shown in subgraph
Fig.2.c. At the same time, the max heap shown in subgraph Fig.2.b records the last three NHI values.
Note: if NHI value of each node is larger than the critical value means this VNFR should be rejected or
more substrate nodes should be added.

Figure 2: A Simple Introduction for Automatic Monitoring Mechnism.

2.3 Fast Switching Mechanism

Another important issue in resource sharing schema for VNF is how to reduce the overhead of frequently
switching VNFs, which is also important for fast failure recovery. The experiments in [8] show that,
in Openstack and Opendaylight, even if you launch a very lightweight virtual machine like ClickOS, it
needs 4.2s in average, and a general virtual machine or a physic server requires much more time. Here
based on our sharing model where a node (virtual machine or physic server) can share multiple VNFs
using Linux namespaces for isolation, but all the VNFs should run sequentially.

We design a less costly mechanism, as shown in Fig.3. Supposed that data flow needs to pass through
the NFVC: FW→DPI→NAT. When the FSM of DPI detects errors or scheduling, the MANO selects a
low-NHI node after receiving the message, and then remotely run the DPI process in another namespace.
After configuring network rules, the switch is successful. In our many experiments, the delay of starting
the namespace remotely is far less than restarting a new virtual machine.

37

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

Figure 3: A Simple Introduction for Fast Switching Mechnism.

3 Virtual Network Function Requests and Resource Allocation

In this Section, we first introduce the request model of Virtual Network Function Requests (VNFR) and
substrate network model, then we present the resource allocation problem.

3.1 The VNFR Model

Fig.4 depicts two virtual network SFC examples which are defined by VNFR model. In Fig.4 the life-
cycle type is a very important decision parameter for VNF scheduling. For example, if two optional
executing VNF queues involve only a short-lifecycle VNF and a long-lifecycle VNF respectively, gener-
ally we prefer the VNF queue with the short-lifecycle VNF. The VNF defined in the request has at least
one instance, and its type, the required processing ability, and the number of branches are defined, which
indicates the number of the outgoing data streams that are divided (such as the load balancer). The dashed
arrows shown in Fig.4 indicates the dependencies among VNFs and the pointed VNF. Meanwhile, each
links need to define the ratio of the output data rate to input. ”Ratio : 60%” denotes that the output data
rate is only 60% of the input.

Figure 4: Two VNFR Examples

38

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

3.2 The Substrate Network Model

The substrate network is modeled in Fig.5.a. Each node in the substrate network represents a virtual
machine or a physic server which is the minimal resource allocation unit. Each link shows the distance
between two nodes, which means if there are two links between two nodes, the distance between the two
nodes is two hops. Original approaches all try to allocate one VNF to a dedicated virtual machine or a
high volume physical server, result in the high resource consumption, which eventually reduce the ac-
ceptance ratio of VNF requests. Actually, as we discussed above, most VNFRs have short life cycle and
would be lightwight[10], while restart a new virtual machine or a physic server is time consuming[8].
Therefore, our resource sharing schema constructs each node as a queue which allows processing multi-
ple VNFs one by one, if we won’t make a new schedule.

Figure 5: Four Different Periods for the Substrate Network. Subgraph a) shows the initial substrate net-
work; Subgraph b) shows the substrate network after embedding SFC1; Subgraph c) shows the substrate
network after embedding SFC1 and SFC2; Subgraph d) shows the substrate network with SFC1 and
SFC2 after scheduling.

The following table is a summary of all the notations defined in this paper.

Table 1: Notation
Model Notation Description

V
N

FR

VNFRi/VNFRs the ith request in the VNF request sequence(VNFRs)
typei(VNFR j) the type of ith VNF in VNFR j
pi

vn f (VNFR j) the expected processing ability of ith VNF inVNFR j

branchi(VNFR j) number of branches of ith VNF in VNFR j
lin(VNFi) all the incoming links of ith VNF
lout(VNFi) all the outgoing links of ith VNF

ratio(VNFi,VNF j) the data flow ratio of ith and jth VNF
rateinit(VNFRi) the initial data rate of ith VNF
Vstart(VNFRi) the first VNF of the ith VNFR
Vend(VNFRi) the last VNF of the ith VNFR

Su
bs

tr
at

e
N

et
w

or
k G=(N,L) N denotes node and L denotes link

L(Quei) number of VNF in ith queue
Tw(Quei) the total waiting time of all the VNFs in ithe queue

Tw(Quei, pos) the waiting time of posth VNF in ith queue
Tr(Quei) the processing time of first VNF in ith queue

Pi
node the total processing ability of ith node

Bi
link the bandwidth of ith link

Typei the type of ith node, which could be one of computing, storage or netwok

39

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

3.3 Objectives of Resource Allocation

For a VNFR, system should allocate proper resources to all the VNFs. We should deploy all the VNFs
to a node and wait in its VNF queue, which we should keep the high acceptance ratio and low latency.
Our main objectives are minimizing the average flow time and cost, which are defined respectively.

Average Flow Time We define the average flow time AFT as a metric of average VNF processing
speed. The average flow time AFT is defined as in equation (2).

AFT =
1
n

m

∑
i=1

(t i
f in− t i

arr) (2)

where n represents the number of VNFR, t i
f in represents the time point when the processing of the

last function of a service is completed and t i
arr represents the time point when the service arrived.

Cost here we define the scheduling cost C as the main overhead when making a scheduling, both VNF
buffer cost and time cost are in consideration. The cost C is defined as in equation (3).

C =
m

∑
i=1

(α ·bi +β · (t i
f in− t i

arr)) (3)

where α and β are constants aimed at scaling the weights of buffer and time resources. These
constants are set as α = β = 0.5 in this paper. And bi represents the total buffer size occupied by all the
VNFs of the i-th VNFR.

The VNE problem is known to be NP-hard[1]. This VNF resource allocation problem is also NP-
hard. In this paper we design an online heuristic mapping algorithm to allocate resource to related VNF
and a fast schedule strategy which can get higher acceptance ratio with reasonable runtime and service
delay.

4 Resource Allocation Algorithms for VNFR

In this section, we present the automatic resource allocation schema AutoVNF in detail and explain this
mechanism through an example.

4.1 Resource Allocation Mechanism AutoVNF

The main resource allocation procedure is shown in Algorithm 1, including mapping and scheduling.
For an incoming VNFR, system constructs the VNF dependance graph according to VNFR model (line
4); Then recursion method RecProcessing will complete the mapping. The scheduling process is a
background running process, as long as the global queue is not empty (ie. there is some more VNFR
need to scheduled), each VNF will be scheduled in turn (shown in algorithm 3).

The main mapping process (RecProcessing) shown in algorithm2 is a recursive function similar with
the mapping algorithm (CoordVNF) shown in[2], the main difference is: CoordVNF selects substrate
nodes only in limited search radius as candidate nodes for each VNF; Instead, we obtain the last n nodes
of NHI values directly from the global max heap (according to the automatic monitoring mechanism),
and sort the nodes in a specific order (line 6). Then, it chooses a node that meets all the constraints. Once
the mapping is successful, the data rate of all the branches of the VNF will be calculated again (line 13)
and recursively call RecProcessing to finish the mapping (line 14). RecProcessing mapping process will
cover all the possible solutions, while the runtime is still in reasonable range.

40

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

1: Define Ms as a global mapping set.
2: for all VNFRi ∈ VNFRs, Mi ∈Ms do
3: Mi←{}
4: Construct the corresponding graph VNFFGi

5: RecProcessing(VNFFGi,G,Nstart ,rateinit(VNFRi),Mi)
6: end for
7: while True do
8: highHungerVNFs← getHighHungerVNFsFromQue()
9: if highHungerVNFs 6= /0 then

10: Schedule(G,VNFFGs,Ms,highHungerVNFs)
11: end if
12: end while

Algorithm 1: AutoVNF(VNFRs, G)

1: VNFs← nextVNFs(VNFFGi, M)
2: if VNFs = /0 then
3: return M
4: end if
5: possibleSNodes← getPossibleSNodesFromMaxHeap()
6: sortPossibleSNodes(possibleSNodes)
7: for each sn ∈ possibleSNodes do
8: M

′ ←mapNodeAndLinkDemands(sn,prevSNode,rate)
9: if mapping is successful then

10: success← true, M
′′ ←M

′

11: else
12: continue
13: end if
14: for all l ∈ lout(currentVNF) do
15: rate

′ ← rate · ratio(currentVNF, v)
16: Msn← RecProcessing(VNFFGi,G,sn,rate,M

′′
)

17: if Msn 6= /0 then
18: M

′′ ←M
′′ ∪Msn

19: else
20: success← false, rollback(M

′′
), break

21: end if
22: end for
23: if success == true then
24: return M

′′

25: end if
26: end for
27: return /0

Algorithm 2: RecProcessing(VNFFGi, G, prevSNode, rate,M)

41

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

The main scheduling process shows in algorithm 3. Firstly, if the VNF Vr finished, Vr will be removed
from the queue and the successor VNF Vm start running (line 4). Then, if Vr is idle, it will be moved to
the tail of VNF queue and the successor VNF Vm start running (line 6-7). Finally, if the hungry index
of some VNF VHI is higher than the threshold, the mapping result will be removed and a new mapping
procedure will be triggered.

1: Define Vr as a running VNF in a queue
2: Define Vw as a waiting VNF in a queue
3: if the lifecycle of the Vr ends then
4: remove Vr and start subsequent VNF, Vw in the queue
5: else if Vr becomes idle then
6: place Vr in the back of the queue
7: start subsequent VNF, Vw in the queue
8: else if there are VNFs with high hunger index then
9: for each v ∈ highHungerVNFs do

10: eraseMapping(v, M)
11: sNodes← getPossibleSNodesFromMaxHeap()
12: sortPossibleSNodes(sNodes)
13: for each sn ∈ sNodes do
14: M

′ ←mapNodeAndLinkDemands()
15: if mapping is successful then
16: M←M

′ ∪M
17: return
18: end if
19: end for
20: undoEraseMapping(v, M)
21: end for
22: end if

Algorithm 3: Schedule(G,VNFFGs,M,highHungerVNFs)

4.2 An Example

The subgraph b) and c) in Fig.5 depict a simplified example when embedding SFC1 and SFC2 based
on the scenario presented in Fig.4. Here we assume that there is no other SFCs in the data center when
SFC1 arrives and SFC2 arrives after SFC1.

The whole process of embedding SFC1 involves several steps as follows. (1) We first embed the
VNF1 in Fig.4. Assuming node n1 and its links can meet VNF1’s demands, we directly embed VNF1
at node n1. (2) Fig.4 shows that VNF1 has two branch links, first we embed the first link. At the
same time, according to the dependency, VNF1’s optional next hop could be VNF2, VNF3 or VNF4,
here we select VNF2 as its next hop. Then we need to select the substrate node, observing subgraph
Fig.5.b, only node n2 or n3 meets demands, finally node n2 is chosen. (3) There is no VNF which has
a dependency on VNF2, in order to avoid introducing unnecessary VNF, we hope to directly select the
final VNF5. However VNF5 is dependent on VNF4, so the next two hops are VNF4 and VNF5, which
are respectively embedded in node n3 and n4. (4) The next step we need to do is embedding the second
branch links of VNF1, finally results are shown in subgraph. (5) Since VNF3 is still not be embedded,
the next hop of VNF4 is VNF3 and the substrate node is n7. (6) Finally, the end of this branch, VNF5, is
embedded in node n5.

42

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

After a period of time, the SFC2 reaches the data center. Like the steps of mapping SFC1, each VNF
of SFC2 will be embedded in substrate nodes according the NHI value from the global max heap. Finally
results are shown in subgraph Fig.5.c.

According to the fast switching mechanism, when the right branch of SFC1 becomes idle, each VNF
of SFC2 will be re-scheduled and finally results are shown in subgraph Fig.5.d.

5 Evalution

In this section, we introduce the simulation setup and compare AutoVNF with well-known scheduling
mechanism CoordVNF[2].

5.1 Simulation Setup

AutoVNF is implemented and evaluated based on the ALEVIN simulation framework [3]. The arrival
number of VNFR follows the Poisson distribution, assuming that the total number of VNFRs is 150, and
the average number of VNFR arrivals per time unit is 5. In addition, we define the ratio of long-lifecycle
and short-lifecycle requests as 2 to 8. Other main parameters used in these simulations for creating
substrate nodes and services are chosen randomly following a range from minimum to maximum values
shown in Table.2. In adddtion, 5 VNFs are assigned to each VNFR. Dependencies between VNFs are
randomly chosen. Initial data rate of the VNFRs is set to 50 bandwidth units, and the amount of required
processing capacities is set to 1 capacity unit/bandwidth unit.

Table 2: Simulation Parameter Ranges

Parameter Minimum Maximum

Number of nodes 50 50

Capacity per node 50 100

Bandwidth per link 50 100

Queue length per node 1 3

Lifecycle per VNFR 1 10

Tolerated delay 1 3

5.2 Results Analysis

The results of the simulations are shown in Fig.6. Following is the detailed description of the results.

Time Complexity When each VNF in a SFC with length l is embeded, CoordVNF uses BFS to gain
the candidate substrate nodes. Its time complexity is O(|n|+ |e|), where n and e represent respectively
the number of nodes and the number of links traversed in each step of BFS. If the search radius is too
large, CoordVNF will be slower; On the contrary, too small search radius will cause seriously decrease of
the request acceptance ratio. So considering a tradeoff between speed and acceptance ratio, CoordVNF
set the search radius as 2. In our experiment, AutoVNF uses the automatic monitoring mechanism. After
each placement of VNFs, the global max heap will adjust itself and time complexity is O(logS), where

43

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

0 25 50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

Service Arrivals

A
cc

e
p

ta
n

ce
 R

a
ti

o
a) Acceptance Ratio

CoordVNF AutoVNF without scheduling AutoVNF with scheduling

0 25 50 75 100 125 150
3

4

5

6

7

Service Arrivals

A
v

e
ra

g
e

 F
lo

w
 T

im
e

b) Average Flow Time

0 25 50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

Service Arrivals

T
o

ta
l C

o
st

c) Total Cost

Figure 6: Performance comparison for three different aspects.

S is the size of the max heap. So AutoVNF can ensure global search field as large as possible, but also
executing speed as fast as possible.

Acceptance Ratio Fig.6.a shows the variation of the VNFR acceptance ratio with service arrivals.
Higher acceptance ratio means higher resource utilization and higher income for service providers. Ac-
cording to the results, it shows that AutoVNF has much higher acceptance ratio than CoordVNF. On the
one hand, this is because AutoVNF allows a deferred execution of services, and put them in the node
queue. The other is that when AutoVNF search for candidate substrate nodes, its search field is much
larger and more available nodes can be obtained. In addition, with the usage of scheduling, the accep-
tance ratio increases by about 10%, mainly because the scheduling algorithm of AutoVNF makes some
VNFRs in hungry state able to run, which shortens the length of the queue and then allows accepting
more requests.

Average Flow Time Fig.6.b shows the variation of the average flow time with service arrivals. The
average flow time reflects the average processing speed of VNFRs. Results show that the average flow
completion time of the CoordVNF is four time units, AutoVNF without scheduling increases by about 2
time unit in the worst case because of the waiting time in queues. After using the scheduling, AutoVNF
makes the average flow time drop by 1 time unit and final average flow time is about 5 time unit. We
think this is reasonable and tolerable since each VNFR has a tolerance delay with a range from 1 to 3.

Total Cost Fig.6.c shows the variation of the total cost with service arrivals. In our experiment, we
only think of two overhead factors: buffer and time resources. Here buffer size and time unit need to be
normalized using Min-Max Normalization and the weights are respectively 0.5 and 0.5. Results show
AutoVNF’s overhead is much higher than the CoordVNF, but this is also essential for using the queuing
mechanism.

6 Related Work

Now the NFV resource allocation problem can be divided into three sub-problems[6]: (1) virtual net-
work SFC composition; (2) resource allocation (embedding); (3) task scheduling. And some existing
approaches which aim at solving one or more sub-problems will be described briefly in this section.

Mehragdam et al.[9] aims at VNF chain composition and embedding. It defines these two problems
as two NP-hard problems respectively: Location-Routing Problem(LRP)[11, 12] and Virtual Network
Empebedding(VNE)[5]. Then a greedy heuristic method is proposed to solving the first sub-problem,

44

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

where the data rate of total flows will reduce by preferentially choosing the function of lower ratio of
outgoing to incoming data rate. When the VNF forward graph has been composed using aforementioned
method, the second sub-problem could be solved by using a Mixed Integer Quadratic Constrained Pro-
gram (MIQCP) with regard for some different optimization criteria. Solving the second sub-problem
with an exact algorithm will cause huge runtime overhead, so this method is only suitable for offline
small-scale scenarios. Moreover, since solving the two problems separately, results got from the first
step could not meet some limitation of the second step.

Beck et al.[2] propose a recursive heuristic algorithm to coordinately solve first two sub-problems,
instead of considering them individually. With this method, each step, an optimal VNF selected accord-
ing to the dependency in the VNFRs, will be chosen to compose a viable VNF-FG, and at the same time
embedded in a substrate node which can satisfy all resource constraints. When a VNF cannot be embed-
ded, performs backtracking by going back to the last successfully mapped VNF and looks for a another
optional VNF in order to rapidly find a feasible solution. It should be noted that this method has a very
important parameter called maxPathLength which limits the maximum distance between two connected
VNF instances that are embedded into the substrate networks. For getting a faster runtime, a small value
should be chosen for this parameter, which, however, will cause a lower VNFR acceptance, because a
small value means the search area will be smaller and many possible substrate nodes are uncovered.

A few researches aiming at the last sub-problem (scheduling) of the NFV-RA problem. Riera et al.
[14], [13] provide the first formalization of the scheduling problem in NFV as a Resource Constrained
Project Scheduling Problem. However, no solution is proposed to solve the sub-problem in the two
papers. Mijumbi et al.[10] proposes three greedy and meta-heuristic (tabu search) approaches to reducing
the flow execution time. The VNF-CC sub-problem is not considered and the tabu search approach is
only suitable for ideal situation.

7 Conclusion

In the paper, we present a novel resource sharing schema for VNF. We design the automatic monitoring
and fast switching mechanisms, based on which we propose AutoVNF including an online heuristic re-
source allocation and a fast task scheduling strategy. We have extensive simulations to evaluate different
aspects of AutoVNF including time complexity, acceptance ratio, average flow time, and total cost. And
experiment results show that our algorithms can keep high acceptance ratio with reasonable runtime and
service delay.

References

[1] E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves. On the computational complexity of the virtual network
embedding problem. Electronic Notes in Discrete Mathematics, 52:213–220, June 2016.

[2] M. T. Beck and J. F. Botero. Coordinated allocation of service function chains. In Proc. of the 2015 IEEE
Global Communications Conference (GLOBECOM’15), San Diego, California, USA, pages 1–6. IEEE, De-
cember 2015.

[3] M. T. Beck, C. Linnhoff-Popien, A. Fischer, F. Kokot, and H. De Meer. A simulation framework for virtual
network embedding algorithms. In Proc. of the 16th International Telecommunications Network Strategy and
Planning Symposium (Networks’14), Funchal, Portugal, pages 1–6. IEEE, September 2014.

[4] ETSI. European telecommunications standards institute, 2016. http://www.etsi.org/

technologies-clusters/technologies/nfv, [Online; Accessed on August 1, 2017].
[5] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach. Virtual network embedding: A survey.

IEEE Communications Surveys & Tutorials, 15(4):1888–1906, February 2013.

45

http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

[6] J. G. Herrera and J. F. Botero. Resource allocation in nfv: A comprehensive survey. IEEE Transactions on
Network and Service Managemnet, 13(3):518–532, August 2016.

[7] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma. Service function chaining use cases in
data centers. IETF Internet-draft (work in progress), January 2016. https://tools.ietf.org/html/

draft-ietf-sfc-dc-use-cases-04, [Online; accessed August-2017].
[8] X. Li and C. Qian. An nfv orchestration framework for interference-free policy enforcement. In Proc. of

the 36th IEEE International Conference on Distributed Computing Systems (ICDCS’16), Nara, Japan, pages
649–658. IEEE, June 2016.

[9] S. Mehraghdam, M. Keller, and H. Karl. Specifying and placing chains of virtual network functions. In Proc.
of the 3rd IEEE International Conference on Cloud Networking (CloudNet’14), Luxembourg, Luxembourg,
pages 7–13. IEEE, October 2014.

[10] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and S. Davy. Design and evaluation of
algorithms for mapping and scheduling of virtual network functions. In Proc. of the 1st IEEE Conference on
Network Softwarization (NetSoft’15), London, UK, pages 1–9. IEEE, April 2015.

[11] G. Nagy and S. Salhi. Location-routing: Issues, models and methods. European Journal of Operational
Research, 177(2):649–672, March 2007.

[12] C. Prodhon and C. Prins. A survey of recent research on location-routing problems. European Journal of
Operational Research, 238(1):1–17, October 2014.

[13] J. F. Riera, E. Escalona, J. Batalle, E. Grasa, and J. A. Garcia-Espin. Virtual network function scheduling:
Concept and challenges. In Proc. of the International Conference on Smart Communications in Network
Technologies (SaCoNeT’14), Vilanova i la Geltru, Spain, pages 1–5. IEEE, June 2014.

[14] J. F. Riera, X. Hesselbach, E. Escalona, J. A. Garcia-Espin, and E. Grasa. On the complex scheduling
formulation of virtual network functions over optical networks. In Proc. of the 16th International Conference
on Transparent Optical Networks (ICTON’14), Graz, Austria, pages 1–5. IEEE, July 2014.

——————————————————————————

Author Biography

Wei Huang received the PhD degree in computer science in 2009. She is an associate
professor and vice dean of the school of computer engineering, Nanjing Institute of
Technology. Her research interests include distributed system, cloud computing and
software engineering.

Haoren Zhu is a master student in the Department of Computer Science and Tech-
nology, Nanjing University. His research focuses on virtual network.

46

https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-04
https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-04

AutoVNF Wei Huang, Haoren Zhu, and Zhuzhong Qian

Zhuzhong Qian received the PhD degree in computer science in 2007. He is an
associate professor in the Department of Computer Science and Technology, Nanjing
University, P.R. China. He is also a research fellow of the State Key Laboratory for
Novel Software Technology (http://keysoftlab.nju.edu.cn/). He is a member of the
IEEE and ACM. His current research interests include cloud computing, distributed
systems, and datacenter networking. He is the PI and chief member of several national
research projects on distributed computing and networking. He has published more

than 60 research papers in related fields.

47

	Introduction
	Resource Sharing Schema for VNF
	Hungry Index of VNF Queue
	Automatic Monitoring Mechanism
	Fast Switching Mechanism

	Virtual Network Function Requests and Resource Allocation
	The VNFR Model
	The Substrate Network Model
	Objectives of Resource Allocation

	Resource Allocation Algorithms for VNFR
	Resource Allocation Mechanism AutoVNF
	An Example

	Evalution
	Simulation Setup
	Results Analysis

	Related Work
	Conclusion

