
Efficient Android Malware Detection Using API Rank
and Machine Learning

Jaemin Jung1, Hyunjin Kim1, Seong-je Cho1, Sangchul Han2∗and Kyoungwon Suh3

1Dankook University, Yongin, Republic of Korea
{snorlax, khj0417, sjcho}@dankook.ac.kr

2Konkuk University, Chungju, Republic of Korea
schan@kku.ac.kr

3Illinois State University, Normal IL, United States of America
kwsuh@ilstu.edu

Abstract

As more and more sophisticated Android malwares appear in the online markets, accurate malware
detection becomes an important issue in the Android ecosystem. This paper proposes a machine
learning based Android malware detection technique that uses ranked Android APIs as machine
learning features. First, our technique extracts the information of API invocation from APK files,
then produces two ranked lists of APIs frequently used by benign apps and malwares respectively.
After filtering out the APIs common to the both lists, we merge the two lists into a single list. We
apply three classifiers, random forests (RF), k-nearest neighbor (k-NN), and logistic regression (LR)
on a dataset of 60,243 apps using the merged list as the features of the classifiers. Our evaluation
results show that the RF classifier can achieve the highest accuracy of 97.47∼ 98.87% with very low
false positive rate (0.99 ∼ 2.38%) among them.

keywords: API call, Benign APIs, Malicious APIs, Android malware, Machine Learning, Ranked
API list

1 Introduction

Recently many security researchers and engineers attempt to apply machine learning techniques to detect
Android malware [3, 7, 9, 12, 13, 14]. Many of them use Android application programming interfaces
(APIs) invoked by apps, permissions, and intents of apps as the features for machine learning [3, 7, 9,
12]. These features need to be selected so that they are a representative set of features from which a
learning algorithm can construct a classification model for Android malware detection. This process,
called feature selection, is an important problem for the performance of machine learning [3, 13, 14].

This paper proposes a machine learning-based Android malware detection technique. In this tech-
nique, we use the information of API invocation as the feature. In our study the operating system is
Android 7.0 Nougat (API level 24). Android 7.0 supports approximately 133,000 APIs. We obtain the
API list from android.jar in the Android SDK by using Java reflection. android.jar contains Android
APIs and is referenced by all Android applications when they are built. By analyzing 60,243 apps, we
find out that about 57.24% of the 133,000 APIs are rarely used. This implies that 56,870 Android APIs
are commonly used by Android apps. Unfortunately, so many features often lead to huge overheads in
both training and testing stages. In addition, if there is too much irrelevant and redundant data, learning
during the training stage is more difficult.

Journal of Internet Services and Information Security (JISIS), volume: 9, number: 1 (February 2019), pp. 48-59
∗Corresponding author: Department of Software Technology, Konkuk University, 268, Chungwon-daero, Chungju-si,

Chungcheongbuk-do, Republic of Korea, Tel: +82-43-840-3605

48



Efficient Android Malware Detection
Using API Rank and Machine Learning Jung, Kim, Cho, Han, and Suh

Our technique identifies a much less but salient subset of Android APIs for learning. By analyzing
many benign apps and malwares, we produce two ranked lists of APIs that are frequently used by benign
apps and malwares respectively. After filtering out the APIs common to the both lists, we merge the two
lists into a single list Top N combined API list where N is a parameter. This list is a smaller but equally
effective subsets of the whole API list, which can be used as the features in machine learning algorithm
to classify Android apps as benign or malicious one. We adopt three classifiers; random forests (RF)
[4, 18], k-nearest neighbor (k-NN) [6, 11], and logistic regression (LR) [8, 15] on a dataset of 60,243
apps using the top N combined API lists as the features of the classifier. The evaluation results show
that among the three classifiers the RF classifier can achieve the highest accuracy of 97.5 ∼ 98.9% with
very low false positive rate (0.86 ∼ 2.41%).

This paper extends our previous work [10] where benign ranked API list and malicious ranked API
list are not merged, only top 50 APIs are used as the features, and only RF is applied. The work is
extended as follows. First, we merge the two ranked API lists and APIs commonly used in both benign
and malicious apps are removed. Second, we measure the performance of the proposed technique while
varying the values of the parameter N. Third, we add two new classifiers, k-NN and LR.

The rest of the paper is organized as follows. Section 2 covers our machine learning based malware
detection technique. Section 3 explores the performance of the malware detection technique. Section 4
covers the related work. Section 5 concludes the paper and presents future directions.

2 Proposed Technique

2.1 Background

The Android platform provides the framework API that apps can use to interact with the underlying
Android system. The framework API consists of a core set of packages and classes. Because most
apps use many APIs, API calls of each app are suitable features for machine learning algorithms to
characterize and differentiate malicious apps from benign ones [12]. We reverse engineer APK file and
extract API calls of each app using the existing DexDump tool that is a part of Android Development Tool
(ADT) bundle [1]. DexDump converts the dex file inside the APK into assembly code. By analyzing the
assembly code, we can determine what APIs are used.

In a similar way used in [12], we can represent each Android app as binary vector of APIs, namely,
a vector A for an app where Ai = 1 if and only if the ith API is used in the app and Ai = 0 if the app does
not use the ith API. We generate such vector for each app in dataset, then construct ranked API lists, i.e.,
benign API list and malicious API list, based on the vectors.

We use RF, k-NN, and LR as the machine learning algorithms for classifying sample apps as benign
or malicious. RF has several advantages [4, 18]: (1) it does not require special preprocessing of input; (2)
it can deal with large numbers of training instances, missing values, and irrelevant features; (3) because
it uses the average of multiple trees, it is less sensitive to outliers in the training set and does not suffer
from overfitting compared to using a single decision tree; (4) both training and prediction phases are both
fast.

k-NN [6, 11] is a nonparametric classification method. It does not assume any parametric form
for the distribution of measured random variables. Due to the flexibility of the nonparametric model,
it is usually a good classifier for many situations where the joint distribution is unknown, or hard to
model parametrically. Another merit of k-NN is that missing values can be easily imputed. In addition,
k-NN has the advantage over artificial neural network (ANN) in terms of the ability to add more data
to the model without retraining, and infer the relative importance of the selected features based on their
respective weights.

49



Efficient Android Malware Detection
Using API Rank and Machine Learning Jung, Kim, Cho, Han, and Suh

LR [8, 15] is a widely used statistical modeling where the probability of an outcome is related to a
series of potential predictor variables. LR model can be used to model complex nonlinear relationships
between independent and dependent variables. The model complexity is low in LR, especially when no
or few interaction terms and variable transformations are used. Overfitting is less of an issue in this case.
Performing variable selection is a way to reduce a model’s complexity and consequently decrease the
risk of overfitting. However, this may cause a loss in the model’s flexibility.

2.2 Malware Detection Using Top Combined API list

Figure 1: Overview of our proposed technique

Figure 1 shows the overview of our proposed technique. We collect both benign apps and malicious
apps that are available in the online Android markets and well-known Android malware dataset. The first
dataset, namely benign dataset, is comprised of all benign apps and the second dataset, namely malicious
dataset, is comprised of all malicious apps. By analyzing the Android APIs called by each individual app
in the two datasets, we first obtain two ranked lists of Android APIs that are commonly used in benign
apps (what we call benign API list) and in malicious apps (what we call malicious API list).

50



Efficient Android Malware Detection
Using API Rank and Machine Learning Jung, Kim, Cho, Han, and Suh

More specifically, the rank of each API in benign API list is determined by the total count of benign
apps in our training dataset that uses the given API. For example, if an API is used by only one app in
our dataset, the API will be ranked the lowest in the ranked list. On the other hand, if an API is used
by all apps at least once, the API will be ranked the highest in the ranked list. The rank of each API
in malicious API list is also determined in a similar way. As we will show in the following, the main
reason that we create ranked list instead of unranked list is to select a subset of top-K APIs (i.e., most
commonly used APIs), in which K is the tunable parameter that we can choose.

From benign API list and malicious API list, we create top K benign API list and top K maliciou-
s API list by simply choosing the first K APIs in the ranked lists, respectively. On the two lists, we
conduct the following experimental studies:

(i) We check whether if there is any correlation between top K benign API list and top K malicious
API list.

(ii) We construct top N combined API list by combining top K benign API list and top K malicious-
API list, and filtering out any common APIs overlapped in the two top K API lists, where N can

be ranged from K to 2K.

(iii) Using the APIs in top N combined API list as the features, we run the three classifiers, RF, k-NN,
and LR to detect malwares and measure their accuracy.

(iv) We analyze which classifier is the most efficient for classifying Android apps as benign or mali-
cious using the popular API calls.

The reasons that we employ a static analysis-based machine learning technique are as follows:

1) Static analysis can achieve high code coverage and requires little resources compared to dynamic
analysis [4];

2) Machine learning techniques can detect new/unknown malware and do not require a database of
malware signatures compared to traditional signature-based malware detection approaches [12];

3) A classifier should be robust and lightweight for classifying Android apps as malicious or benign
[3].

We select top N combined API list as the best features for machine learning that can distinguish
malware from benign apps and detect new/unknown malicious apps effectively and efficiently. We expect
that the combined API list include the representative APIs for both malicious and benign apps.

3 Experiment Result

In this section, we present the process of feature selection, i.e., the construction of top N combined API l-
ist, and the classification results of the three classifiers while varying K=10, 20, . . . , 100.

3.1 Datasets

We collected more than 31,000 Android apps from various Android markets including Google Play
(https://play.google.com/store), Amazon AppStore(https://www.amazon.com/amazonappstoreapp), and
APKPure (https://apkpure.com/) from December in 2016 to February in 2017. By relying on antivirus
tools provided by VirusTotal website [2], we first classified each of the collected Android apps as a

51



Efficient Android Malware Detection
Using API Rank and Machine Learning Jung, Kim, Cho, Han, and Suh

benign app or a malicious app. 30,159 of the 31,000 apps were identified as benign apps by VirusTotal.
The 30,159 benign apps were selected as the dataset of benign apps in our experiment. In addition, we
collected 30,084 malicious Android apps from AMD [16] and Drebin [5] datasets which are well-known
datasets and have been used in several research papers. The numbers of malicious apps we collected
from AMD and Drebin datasets are 24,547 and 5,537, respectively. The collected malicious apps were
selected as the dataset of malicious apps in our experiment. From the dataset of 30,159 benign apps and
30,084 malicious apps, we randomly selected 80% of the datasets respectively and used them as training
datasets. The remaining 20% of the datasets is used as test datasets.

3.2 Popular APIs

By analyzing the Android APIs invoked by each app in the two training datasets, we construct the be-
nign API list and malicious API list. Then, from the two ranked lists, we create top K benign API list
and top K malicious API list by simply choosing the first K APIs in the ranked lists, respectively, where
K is 10, 20, . . . , 100. For the interest of space, we present only the first 10 APIs of the two top K lists in
Table 1. Interestingly, we observe that 50 ∼ 60% of the two top K (K5100) API lists are common. As
shown in Table 1, the top 5 APIs are common in both top 10 API lists. Since these common APIs are
irrelevant with respect to the classification, we eliminate these irrelevant feature in the next step.

The top N combined API list is generated by merging top K benign API list and top K malicious-
API list, and filtering out the common APIs overlapped in the two top K lists. Table 2 shows Top 10

Combined APIs derived from API lists of Table 1. As it shows, the two lists shown in Table 1 are
combined after removing 5 common APIs of the both lists. Table 3 shows the number of common APIs
overlapped in both top K lists and the values of N in top N combined API list. Note that N means the
number of unique APIs in the lists.

Table 1: Top 10 Benign and Malicous APIs

Top 10 benign APIs Top 10 malicious APIs
1 Ljava/lang/Object;.<init>:()V Ljava/lang/Object;.<init>:()V
2 Ljava/lang/StringBuilder;.toString:()Ljava/lang

/String;
Landroid/app/Activity;.<init>:()V

3 Ljava/lang/StringBuilder;.append:(Ljava/lang
/String;)Ljava/lang/StringBuilder;

Ljava/lang/String;.equals:(Ljava/lang/Object;)Z

4 Landroid/app/Activity;.<init>:()V Ljava/lang/StringBuilder;.toString:()Ljava/lang
/String;

5 Ljava/lang/StringBuilder;.<init>:()V Ljava/lang/StringBuilder;.append:(Ljava/lang
/String;)Ljava/lang/StringBuilder;

6 Ljava/lang/String;.equals:(Ljava/lang/Object;)Z Landroid/content/BroadcastReceiver;.<init>:()V
7 Ljava/lang/StringBuilder;.append:(I)Ljava/lang

/StringBuilder;
Landroid/content/Context;.getSystemService:
(Ljava/lang/String;)Ljava/lang/Object;

8 Ljava/util/ArrayList;.<init>:()V Landroid/content/Intent;.<init>:(Landroid
/content/Context;Ljava/lang/Class;)V

9 Ljava/util/Iterator;.hasNext:()Z Landroid/net/Uri;.parse:(Ljava/lang/String;)
Landroid/net/Uri;

10 Ljava/util/Iterator;.next:()Ljava/lang/Object; Ljava/lang/System;.currentTimeMillis:()J

52



Efficient Android Malware Detection
Using API Rank and Machine Learning Jung, Kim, Cho, Han, and Suh

Table 2: Top 10 Combined APIs

Label Top K combined API
Benign Ljava/lang/StringBuilder;.<init>:()V
Benign Ljava/lang/StringBuilder;.append:(I)Ljava/lang/StringBuilder;
Benign Ljava/util/ArrayList;.<init>:()V
Benign Ljava/util/Iterator;.hasNext:()Z
Benign Ljava/util/Iterator;.next:()Ljava/lang/Object;

Malicious Landroid/content/BroadcastReceiver;.<init>:()V
Malicious Landroid/content/Context;.getSystemService:(Ljava/lang/String;)Ljava/lang/Object;
Malicious Landroid/content/Intent;.<init>:(Landroid/content/Context;Ljava/lang/Class;)V
Malicious Landroid/net/Uri;.parse:(Ljava/lang/String;)Landroid/net/Uri;
Malicious Ljava/lang/System;.currentTimeMillis:()J

Table 3: Values of N in Top N combined API list

K No. of Common APIs N(=2(K - No. of Common APIs))
10 5 10
20 12 16
30 15 30
40 21 38
50 25 50
60 35 50
70 41 58
80 47 66
90 51 78
100 56 88

3.3 Evaluation Metrics

In this paper, we identify Android malicious app as the true instance and benign app as the false instance.
To evaluate the effectiveness of proposed method, we measure accuracy, false positive (FP), false nega-
tive (FN), true positive (TP), and true negative (TN) in our experiments. TP is the number of malwares
that are correctly detected, FP is the number of benign apps that are incorrectly detected as malwares,
FN is the number of malwares that are not detected (predicted as benign apps), and TN is the number
of benign apps that are correctly classified. In our test dataset, TP+FN = 6017, and FP+TN=6032. The
accuracy, false positive rate, and false negative rate are as follows:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

False positive rate = FP / (TN + FP)

False negative rate = FN / (TP + FN)

53



Efficient Android Malware Detection
Using API Rank and Machine Learning Jung, Kim, Cho, Han, and Suh

Table 4: Results with Top N Combined API list as Features in RF

K
Measure Metrics

TP FP FN TN Acc. Avg. of Acc.
10 5860 143 172 5874 97.39% 97.47%
20 5891 130 141 5887 97.75% 97.83%
30 5906 94 126 5923 98.17% 98.20%
40 5914 79 118 5938 98.37% 98.46%
50 5929 77 103 5940 98.51% 98.52%
60 5907 70 125 5947 98.38% 98.50%
70 5929 68 103 5949 98.58% 98.58%
80 5932 71 100 5946 98.58% 98.66%
90 5942 61 90 5956 98.75% 98.78%
100 5953 60 79 5957 98.85% 98.87%

Table 5: Results with Top N Combined API list as Features in LR

K
Measure Metrics

TP FP FN TN Acc. Avg. of Acc.
10 4618 610 1414 5407 83.20% 84.11%
20 5122 550 910 5467 87.88% 88.12%
30 5277 416 755 5601 90.28% 90.44%
40 5299 289 733 5728 91.52% 91.81%
50 5419 276 613 5741 92.62% 92.77%
60 5497 268 535 5749 93.34% 93.30%
70 5546 254 486 5763 93.86% 94.03%
80 5568 211 464 5806 94.40% 94.47%
90 5645 172 387 5845 95.36% 95.46%

100 5646 172 386 5845 95.37% 95.54%

Table 6: Results with Top N Combined API list as Features in k-NN

K
Measure Metrics

TP FP FN TN Acc. Avg. of Acc.
10 5644 202 388 5815 95.10% 95.24%
20 5691 164 341 5853 95.81% 95.83%
30 5733 119 299 5898 96.53% 96.78%
40 5785 121 247 5896 96.95% 97.20%
50 5815 109 217 5908 97.29% 97.49%
60 5770 107 262 5910 96.94% 97.24%
70 5798 104 234 5913 97.19% 97.38%
80 5788 100 244 5917 97.15% 97.30%
90 5819 101 213 5916 97.39% 97.46%
100 5826 86 206 5931 97.62% 97.62%

54



Efficient Android Malware Detection
Using API Rank and Machine Learning Jung, Kim, Cho, Han, and Suh

3.4 Evaluation Results

We repeated the following experiment 5 times for each K, in which K=10, 20, . . . , 100:

1) Randomly select training data (80%) and test data (20%)

2) Construct top N combined API list

3) Find optimal hyperparameters using grid search

4) Train and test for each classifier

Table 4, 5, and 6 show the results of the three classifiers. The column TP, FP, FN, TN, and Acc
show the measurement of the first experiment and the column Avg. of Acc shows the average accuracy
of the five experiments. As presented in Table 4 that summarizes the performance of RF, false negative
rate (FNR) was 1.31 ∼ 2.85%, and false positive rate (FPR) was 0.99 ∼ 2.38%. The average accuracy
has ranged from 97.47% to 98.87%. As to LR (Table 5, the average accuracy was 84.11 ∼ 95.54%,
FNR was 6.40 ∼ 23.44%, and FPR was 2.86 ∼ 10.14%. Table 6 shows the performance of k-NN (k=9),
where the average accuracy has ranged from 95.24% to 97.62%, FNR is 3.42 ∼ 6.43%, and FPR is 1.43
∼ 3.36%. Overall, RF outperforms other classifiers.

Figure 2 shows the average accuracy of the classifiers for each K. On the whole, the classifiers
perform better as K increases, that is, as more APIs are used as features. In particular, RF still works
effectively with high accuracy when a relatively small value is used for K. This implies that RF can
effectively detect Android malware with a small number of APIs if the APIs are selected properly.

Figure 2: Average accuracy of three experiments.

4 Related Works

Peiravian and Zhu combined permissions and API calls and used machine learning methods to classify
sample Android apps as benign or malicious apps [12]. By using permissions and API calls as features
to characterize each app, they could learn a classifier to identify whether an app is benign or malicious.
Their approach was validated by carrying out experiments on real-world apps with 1,260 malicious sam-
ples and 1,250 benign samples. In the experiments, they examined three classification methods: Support

55



Efficient Android Malware Detection
Using API Rank and Machine Learning Jung, Kim, Cho, Han, and Suh

Vector Machines (SVM), Decision tree (DT) of J48, and Bagging, and used 10-fold cross validation. J48
is a WEKA implementation of the C4.5 algorithm for the decision tree. Their approach achieved good
accuracy rate up to 96.88% with 1,456 features (130 permissions + 1,326 APIs).

Aafer [3] extracted relevant features to malware behavior captured at API level. More specifically,
they analyzed API level information to select the best features that distinguish between malicious and
benign. They generated the set of APIs used within each app, and performed a frequency analysis to
list out the ones which were more frequent in the malware than in the benign apps. They focused on
critical API calls (or dangerous APIs), package level information, and the parameters of the API calls.
Their analysis showed that 71% of the benign apps contained at least one advertisement package, and the
packages often exhibited some suspicious behavior. Meanwhile, certain frequent APIs in the malicious
samples did not differ from those of the benign sample. To increase the difference of these specific APIs
between the malicious and benign samples, data flow analysis on the APIs was performed in order to
recover the parameters that had been passed to them. Their study aimed to identify at what package level
a certain API is invoked. They evaluated different classifiers using the generated feature set. They could
achieve an accuracy as high as 99% and a FPR as low as 2.2% using the k-NN classifier when the top 20
used parameters was added the top 169 APIs.

Goyal [9] devised SafeDroid, an open source distributed service to detect Android malware by com-
bining static analysis and machine learning technique. SafeDroid inspects the device for installed apps
and classifies apps as benign or malicious. The backend system was implemented as a micro-service
which provides classification, based on the API calls of the examined app. SafeDroid identified a list of
743 APIs that described malicious behavior. Using Correlation Attribute Evaluation (CAE) method for
feature selection, the 300 top ranked features were selected from the 743 features. SafeDroid identified
the top 108 packages used in malicious apps more than in benign apps. The performance of SafeDroid
was evaluated using three different classifiers over a dataset of real application. The results were aver-
aged over 10-folds of cross validation. Goyal [9] found out that the Random Forest performed the best
with an accuracy of 99.51% and a FPR of 0.017.

Alam and Vuong [4] applied RF classifier on a dataset of 48,919 points of 42 dynamic features.
The dynamic features were obtained from emulating user action using adb-monkey on unrooted Android
device emulators. The predominant features included the Binder APIs, memory and CPU measurements,
battery usage, etc. Their objective was to measure the accuracy of RF in classifying Android app behavior
to classify apps as malicious or benign. The experimental results based on 5-fold cross validation of their
dataset showed that RF achieved an accuracy of over 99% in general, with less for forests of 20 trees or
more. Since they used the dataset collected from an Android emulator, the work should be extended to
gather dataset based on actual device usage.

Wu et al. [17] proposed a static feature-based mechanism for detecting the Android malware, where
the static feature information includes permissions, deployment of components, Intent messages passing
and API calls for characterizing the Android apps behavior. They tried to apply different kinds of clus-
tering algorithms to recognize different intentions of Android malware as well as enhance the malware
modeling capability. They have also developed a system, called DroidMat, which first extracts the infor-
mation (e.g., permissions and Intent messages passing, etc) from each app’s manifest file, and regards
Android components as entry points drilling down for tracing API Calls related to permissions. Then,
DroidMat applies K-means algorithm that enhances the malware modeling capability. Finally, it uses k-
NN algorithm to classify the apps as benign or malicious. The experiment results showed that DroidMat
could achieved up to 97.87 percentage points in accuracy.

Table 7 shows the differences between our approach and the previous studies. Compared to the
previous studies, our approach has several advantages: use of real dataset, single type of features, no
need of dynamic analysis, a much smaller feature set, and utilization of popular benign APIs.

56



Efficient Android Malware Detection
Using API Rank and Machine Learning Jung, Kim, Cho, Han, and Suh

Table 7: Comparison with Existing Works

Dataset Features Classifier Accuracy
Peiravian

&
Zhu [12]

1,260 malicious apps,
1,250 benign apps

1,326 APIs,
130 Permissions

SVM,
J48,

Bagging

93.54∼96.88%,
92.36∼94.46%,
93.60∼96.39%

Aafer et al. [3]
3,987 malware apps,

500 benign apps

169 critical APIs,
20 API Parameters,

Package info

k-NN, SVM,
ID3 DT, C4.5 DT

99.1%, 96.5%,
97.9%, 95.5%

Goyal et al. [9]
4,554 malware apps,
20,446 benign apps

300 top ranked
features of

743 malicious APIs

RF (trees=10),
Liner SVM,
k-NN(k=20)

96.95∼99.51%,
96.04∼97.27%,
96.46∼98.74%

Alam
&

Vuong [4]

1,330 malicious apps,
407 benign apps

42 dynamic features
RF (trees= 10,

20, 40, 80, 160)
Over 99%

Wu et al. [17]
238 malicious apps,
1,500 benign apps

Intents,
Permissions,

API calls

EM + k-NN,
K-means + k-NN,

EM + NB,
K-means + NB

Up to 97.87%

Our approach
30,084 malware apps,
30,159 benign apps

N popular
Combined APIs

(K=10∼100)

RF (trees =100),
LR,

k-NN (k=9)

97.46∼98.87%,
84.11∼95.54%,
95.24∼97.62%

5 Conclusion and Future Work

In this paper, we proposed a machine learning-based technique to detect Android malwares efficiently
by analyzing the two ranked lists of APIs used by apps that we collected from online Android markets
and known malware data sets, respectively. The rank of each API in the lists was determined by the total
number of apps that call the corresponding API. Specifically, we selected the top K APIs in the ranked
list obtained from benign apps and the top K APIs in the ranked list obtained from malicious apps. Then,
we created top N combined API list by combining top K benign API list and top K malicious API list,
and filtering out some common APIs overlapped in the both top K API lists, where N (K5N52K) is 10,
16, 30, 38, 50, 50, 58, 66, 78, 88. We used RF, LR, and k-NN as the underlying machine learning
classifiers for Android malware detection and the top N combined API lists were used as features for
the classifiers. In all cases, accuracy, FP, and FN were measured. The RF classifier could achieve very
high detection accuracy (i.e., 97.47 ∼ 98.87%) with very small numbers of distinct APIs. In the future,
we plan to classify malicious Android apps into different malware families using the RM, LR, and k-NN
classifiers. In addition, we plan to develop malware detection methodologies based on SVM and artificial
neural network (ANN) and also compare the effectiveness of different machine learning approaches for
the purpose of malware detection and family classification.

Acknowledgements

This research was supported by (1) Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT (no. 2018R1A2B2004830),
and (2) the MSIT, Korea, under the ITRC support program (IITP-2019-2015-0-00363) supervised by the
IITP.

57



Efficient Android Malware Detection
Using API Rank and Machine Learning Jung, Kim, Cho, Han, and Suh

References

[1] Android developers. https://developer.android.com/, [Online; accessed on February 25, 2019].
[2] Virustotal. https://www.virustotal.com/, [Online; accessed on February 25, 2019].
[3] Y. Aafer, W. Du, and X. Zhu. Droidapiminer: Mining api-level features for robust malware detection in

android. In Proc. of the 9th International Conference on Security and Privacy in Communication Systems
(SecureComm’13), New South Wales, Australia, pages 86–103. Springer, September 2013.

[4] M. Alam and S. Vuong. Random forest classification for detecting android malware. In Proc. of the 2013
IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and
IEEE Cyber, Physical and Social Computing (GreenCom-iThings-CPSCom’13), Beijing, China, pages 663–
669. IEEE, August 2013.

[5] D. Arp, M. Spreitzenbarth, M. Huebner, H. Gascon, and K. Rieck. Drebin: Effective and explainable de-
tection of android malware in your pocket. In Proc. of the 2014 Network and Distributed System Security
Symposium (NDSS’14), San Diego, California, USA, pages 23–26. Internet Society, February 2014.

[6] W. Cedeño and D. Agrafiotis. Using particle swarms for the development of qsar models based on k-nearest
neighbor and kernel regression. Journal of Computer-Aided Molecular Design, 17(2-4):255–263, February
2003.

[7] P. Chan and W. Song. Static detection of android malware by using permissions and api calls. In Proc. of the
2014 International Conference on Machine Learning and Cybernetics (ICMLC’14), Lanzhou, China, pages
82–87. IEEE, July 2014.

[8] S. Dreiseitl and L. Ohno-Machado. Logistic regression and artificial neural network classification models: a
methodology review. Journal of Biomedical Informatics, 35(5-6):352–359, October 2002.

[9] R. Goyal, A. Spognardi, N. Dragoni, and M. Argyriou. Safedroid: a distributed malware detection service
for android. In Proc. of the 9th International Conference on Service-Oriented Computing and Applications
(SOCA’16), Macau, China, pages 59–66. IEEE, November 2016.

[10] J. Jung, H. Kim, D. Shin, M. Lee, H. Lee, S. Cho, and K. Suh. Android malware detection based on useful api
calls and machine learning. In Proc. of the 2018 IEEE 1st International Conference on Artificial Intelligence
and Knowledge Engineering (AIKE’18), Laguna Hills, California, USA, pages 175–178. IEEE, September
2018.

[11] S. Li, E. Harner, and D. Adjeroh. Random knn feature selection-a fast and stable alternative to random
forests. BMC Bioinformatics, 12(1):450, November 2011.

[12] N. Peiravian and X. Zhu. Machine learning for android malware detection using permission and api calls.
In Proc. of the 25th International Conference on Tools with Artificial Intelligence (ICTAI’13), Herndon,
Virginia, USA, pages 300–305. IEEE, November 2013.

[13] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J. Nieves, P. Bringas, and G. Álvarez. Mama: Manifest
analysis for malware detection in android. Cybernetics and Systems, 44(6-7):469–488, August 2013.

[14] J. Saxe and K. Berlin. Deep neural network based malware detection using two dimensional binary pro-
gram features. In Proc. of the 10th International Conference on Malicious and Unwanted Software (MAL-
WARE’15), Fajardo, Puerto Rico, pages 11–20. IEEE, October 2015.

[15] J. Tu. Advantages and disadvantages of using artificial neural networks versus logistic regression for predict-
ing medical outcomes. Journal of Clinical Epidemiology, 49(11):1225–1231, November 1996.

[16] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou. Deep ground truth analysis of current android malware. In Proc.
of the 14th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’17), Bonn, Germany, pages 252–276. Springer, July 2017.

[17] D. Wu, C. Mao, T. Wei, H. Lee, and K. Wu. Droidmat: Android malware detection through manifest and api
calls tracing. In Proc. of the 7th Asia Joint Conference on Information Security (AsiaJCIS’12), Tokyo, Japan,
pages 62–69. IEEE, August 2012.

[18] S. Yerima, S. Sezer, and I. Muttik. High accuracy android malware detection using ensemble learning. IET
Information Security, 9(6):313–320, October 2015.

——————————————————————————

58

https://developer.android.com/
https://www.virustotal.com/


Efficient Android Malware Detection
Using API Rank and Machine Learning Jung, Kim, Cho, Han, and Suh

Author Biography

Jaemin Jung received the B.S. degree in Dept. of Software Science from Dankook
University, Korea, in 2018. He is currently a M.E. student in Computer Science and
Engineering at Dankook University, Korea. His research interests include mobile se-
curity and machine learning.

Hyunjin Kim received the B.S. degree in Dept. of mathematics and computer sci-
ence from Dankook University, Korea, in 2017. She is currently a M.S. student in
Data Science at Dankook University, Korea. Her research interests include machine
learning and recommendation system.

Seong-je Cho received the B.E., M.E. and Ph.D. degrees in Computer Engineering
from Seoul National University in 1989, 1991 and 1996, respectively. In 1997, he
joined the faculty of Dankook University, Korea, where he is currently a Professor in
Department of Computer Science and Engineering (Graduate school) and Department
of Software Science (Undergraduate school). He was a visiting research professor at
Department of EECS, University of California, Irvine, USA in 2001, and at Depart-
ment of Electrical and Computer Engineering, University of Cincinnati, USA in 2009

respectively. His current research interests include computer security, mobile app security, operating
systems, and software intellectual property protection.

Sangchul Han received his B.S. degree in Computer Science from Yonsei Univer-
sity in 1998. He received his M.E. and Ph.D. degrees in Computer Engineering from
Seoul National University in 2000 and 2007, respectively. He is now a professor of
Dept. of Software Technology at Konkuk University. His research interests include
real-time scheduling, and computer security.

Kyoungwon Suh received the B.S. and M.S. degrees in computer engineering from
Seoul National University, Seoul, Korea, in 1991 and 1993, respectively, the M.S. de-
gree in computer science from Rutgers University, New Brunswick, NJ, in 2000, and
the Ph.D. degree in computer science from the University of Massachusetts, Amherst,
in 2007. He is currently a Professor of Computer Science with Illinois State Univer-
sity, Normal. His research interests include network measurement/analysis/inference,
wireless networks, smart handheld devices, content distribution networks, big data

analysis, privacy, and security.

59


	Introduction
	Proposed Technique
	Background
	Malware Detection Using Top Combined API list

	Experiment Result
	Datasets
	Popular APIs
	Evaluation Metrics
	Evaluation Results

	Related Works
	Conclusion and Future Work
	Acknowledgements
	Author Biography

