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Abstract

The capacitated vehicle-routing problem (CVRP) is considered one of the descendants of the tra-
ditional vehicle-routing problem (VRP) based on the consideration of capital gains in logistics and
supply chains. Similar to VRP, CVRP is an NP-Hard problem; finding the optimal solution is dif-
ficult, especially with large amounts of data. In other words, the problem cannot be solved using
a traditional approach because of the high cost of such an approach, i.e., high computational time.
Thus, this research considers the possibility of integrating a variety of crossover methodologies into
an artificial bee colony (ABC) as a heuristic approach to identifying a candidate for a CVRP solver.
The research also optimizes ABC to obtain a better solution, rapidly, given time constraint, consider-
ing the effectiveness of randomness and precision enhancements related to both the crossover route
and path diversity. The practicality of the proposal was evaluated by pitting fourteen well-known
datasets against a traditional method, including other state-of-the-art CVRP heuristic solutions, and
the performance improvement was confirmed in terms of both accuracy (i.e., finding the best solu-
tion) and the computational time as tradeoff.
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1 Introduction

Vehicle-routing problems (VRP)[5] are critical in the area of logistics and supply chains, especially
regarding how to manage the schedule of vehicles - vans and trucks - traveling to different depots or
customers that might be located in different regions. The optimal management scheme results in an
investment-cost (fixed-cost) reduction for each transport. A better scheme will also decrease the travel
time or even determine a shorter path for the optimization of fuel consumption. Through these reductions,
the variable costs of each transport will also be reduced. However, for some varieties of these problems,
this optimization leads to high computational time, and, traditionally, such problems can be considered
NP-Hard problems[24], [34].

One of this problem’s unique characteristics is that it is difficult to find the solution via exact meth-
ods, especially when the problem size is large and the conditions and constraints are complex. Thus,
there have been many attempts by researchers to search for different methodologies to mitigate this
phenomenon. However, some approaches may be suitable only for a particular problem, and those ap-
proaches’ accuracy may decrease or their overall time complexity may increase when they are applied to
different contexts[24]. Presently, there are many descendants of the traditional VRP[10], including VRP
with Capacity Restriction (CVRP), VRP with Time Windows (VRPTW), VRP with Backhaul (VRPB),
and VRP with Pickup and Delivery (VRPPD), each of which has its own features and characteristics. In
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this research, however, our focus is on CVRP, the Capacitated Vehicle-Routing Problem[33], in which
there are specific conditions based on the vehicle capacity and distance constraint; thus, the research
objective with respect to CVRP is to provide a heuristic-based solution for practical deployment in the
logistics and supply chain industry and to fulfill the requirements imposed by decision makers[15].

Figure 1: CVRP: Example

In general, CVRP features an undirected graph. In other words, there exists a graph, route, or path
G = (V,E). Suppose nodes (V ) = {V1,V2,V3, . . . ,Vn} such that v1 is the depot and the other nodes
(V2, ...,Vn) are lists of customers; edges (E) = {(Vi,Vj)|Vi,Vj ∈ V, i 6= j} are sets of intermediate paths.
M is the number of vehicles used for transportation. Note that each vehicle has a capacity Q. There are
also other constraints as follows (as examples shown in Fig. 1):

• Each possible route (R) consists of nodes (V ) and edges (E), and the start and end points of travel
will be the same: either V1 or the depot.

• The vehicle will visit each customer, Vi, only once and travel only one route.

• The total capacity of each vehicle, Q, will be limited, and the capacity of each customer i is given
as qi. Equation (1) shows this constraint numerically.

• In each route Ri, there is a constraint on the total distance L.

∑qi ≤ Q (1)

For decades, the CVRP problem has been intensively researched. Tabu Search, proposed by É.
Taillard et al. in 1993[32], is a classic approach to the problem. A parallel iterative search method was
applied using Tabu, resulting in higher accuracy; however, because of its high level of time complexity,
this method is not feasible in practice. Thus, several generations of Tabu Search have been investigated.
For example, in 1998, C. Rego[27] applied a subpath ejection method to mitigate this problem.

Many techniques have also applied metaheuristics to alleviate the complexity, yielding best possible
solutions that are close to the best solution given computational timing constraint. For example, in 2007,
U. Derigs and R. Kaiser[9] proposed a hybrid model of an attribute-based hill climber and Tabu Search to
determine a better answer given a time constraint. Similarly, in 2009, S. W. Lin et al.[18] used simulated
annealing instead of the hill climber. Note that although there are many optimizations based on Tabu
Search, its main limitation is infeasibility caused by high computational time.

Recently, there have also been novel techniques based on soft computing (SC)[34] (a subset of ma-
chine learning), especially to solve problems - in particular, NP-Complete problems - that have no cer-
tainty as an approximation solution of computation. There are several approaches based on SC, such as
Neural Network (NN), Support Vector Machine (SVM), Fuzzy Logic (FL), Evolutionary Computation
(EC), e.g., Genetic Algorithm (GA), Bayesian Network, and Chaos Theory[19].
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There are many real-world applications, such as engineering, robotics and sensor networks[30],
which apply these techniques, primarily due to their key advantage of computational time alleviation.
The area of logistics and supply chains is another application that utilizes types of SC[15] and espe-
cially EC[2][4][20][22][25][26], especially bio-inspired algorithms including Ant Colony Optimization
(ACO)[6][28][35] and Artificial Bee Colony (ABC)[3][29][31].

Recently, ABC has been a promising approach to a CVRP solution[3]: it has the key advantages of
simplicity, high accuracy but with computational time as tradeoff. However, ABC has some limitations,
in particular, the time that is required to determine the best solution when the data began to converge[31].

Therefore, in this research, our contributions are three-fold: 1) the enhancement of ABC with
randomness to better find a solution rapidly based on timing constraint, 2) the integration of various
crossover operations based on GAs into ABC to increase the opportunity to find the best solution (pop-
ulation diversity), and 3) the consideration of other criteria for the crossover route and path diversity.
The combination of these considerations is Random Artificial Bee Colony with Optimized Crossovers
(R-ABC-OC) for CVRP.

This article is organized as follows: Section 2 briefly explores some recent related work, especially
on CVRP and SC. Then, the concept of our optimization, i.e., R-ABC-OC, will be discussed in Section 3.
Next, Section 4 presents the comparative performance of our proposals versus that of a traditional CVRP
solution with ABC, including intensive evaluation against other well-known CVRP solutions based on
fourteen standard datasets. Finally, Section 5 contains both our conclusions and possible future research.

2 Related Works

Several research studies have proposed techniques to achieve possible solutions to VRP[24]. In this
section, however, our focus is only on CVRP. Even though various techniques have been investigated[33],
this research only considers a specific approach in which SC-based optimization [19], particularly a
class of Evolutionary Computation (EC), has been integrated as a heuristic method for the purpose of
practicality.

As a pioneer, É. Taillard[32] proposed a parallel technique for iterative search that would result in
high accuracy regardless of computational time constraint. Taillard and his colleague, Y. Rochat and É.
Taillard[29], also proposed a probabilistic diversification and intensification of local search. In terms of
precision, that technique’s performance is very high; however, there is no report on the timing tradeoff.
Thus, this technique has been used worldwide as a benchmark for other (meta)heuristic approaches.

With respect to ECs, B. M. Baker and M. A. Ayechew[2] proposed the GA to achieve higher accuracy
(a better solution) via crossover operators used as a heuristic approach for CVRP solvers; however, its
main limitation remains its high computational time. Similarly, J. Berger and M. Barkoui[4] investigated
how to apply GAs in parallel to improve their computational times required to find the best solution
(close to the actual solution). Here, however, these GA approaches can only utilize diversity based on
some of the crossover operators.

C. Prins[25] introduced a hybrid technique of Tabu search and GA (also with crossover optimiza-
tions) for the purpose of accuracy improvement over the computational time tradeoff. Note that V. F. Yu
et al.[36] proposed the application of Symbiotic organisms search (SOS) for CVRP solver by imitating
the ecology such that each route represents an organism which will develop by nature using parasitism
as over-cross (i.e., swap) to create new generation. SOS gains higher precision than GA including DE
(Differential Evolution); however, its precision is lower in case large-scale networks.

S. Kır et al.[16] and D. Zhang et al.[37] also applied Tabu search for CVRP. The first approach used
Tabu as an initial route generation instead of random; then, they applied adaptive large neighborhood
(ALN) search to polish the route given various operators, e.g., swapping and insert. The latter approach
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hybrids Tabu search and ABC; similar to [16], Tabu as the initial route generation but then ABC is
used instead of ALN. Although these Tabu enhancements can improve the precision but with complexity
trade-off.

In addition, D. Mester and O. Bräysy[20] proposed a novel methodology of active-guided evolution
as a metaheuristic approach to solve CVRP in a large-scale dataset. C. Prins[26] (the same author as
in [25]) again proposed a hybrid model. This time, however, the proposal involved hybridized greedy
randomized adaptive search and evolutionary local search.

In addition, Y. Nagata and O. Bräysy[22] introduced a technique that involved applying a memetic
algorithm for CVRP with a crossover optimization. Although this method can achieve very high preci-
sion, it consumes a great deal of computational time like 14 minutes. However, this approach has been
widely used as a standard benchmark for other derivatives.

There are also several proposals focusing on metaheuristics and swarm intelligence (one class of
EC). For example, several approaches focused on Ant Colony Optimization (ACO)[6][28][35]. B.
Bullnheimer et al.[6] and B. Yu et al.[35] applied ACO for CVRP; but, that approach’s many opera-
tions led to a situation of high computational time. Similarly, M. Reimann et al.[28] also proposed an
idea of ACO with divide-and-conquer concepts to further reduce time for better solution towards the ac-
tual solution. Recently, R. Goel et al.[12] also adopt ACO such that the concentration of the pheromone
is used instead of random route selection and Firefly algorithm is then used to develop a proper route
over. There is no report on the computational complexity due to the additional search.

Recently, several researchers have conducted experiments based on Artificial Bee Colony (ABC)
because of the key advantages of ABC’s simplicity and accuracy gain. For example, P. Ji and Y. Wu[13]
revised the traditional ABC with the assumptions that any new place found by the onlookers around
a certain food source would become a new food source and that after a food source is abandoned, a
concerned employed bee will find a new food source in the vicinity. These assumptions can be used to
enhance performance by three percent.

In addition, W. Y. Szeto et al.[31] greatly improved the ABC used for CVRP by considering various
neighborhood operations to achieve higher accuracy; this approach can be considered a baseline ABC
for CVRP, although its precision can be further improved.

3 Random Artificial Bee Colony Using Optimized Crossovers

In this section, a detailed explanation of our proposal is discussed. There are four main stages to achieve
our goals: (1) based on traditional ABC, a representation of ABC in CRVP, called ABC-CVRP; (2) an
additional random condition with various neighborhood operations, called R-ABC-CVRP; (3) an opti-
mization of crossover operators derived from GAs for CVRP, called OC-CVRP; and (4) a consideration
of crossover routes and path diversity, called R-ABC-OC-CVRP.

3.1 ABC for CVRP

Artificial Bee Colony (ABC) is one of the heuristic algorithms[34], [21] used to determine the best
solution that is close to the actual optimal solution (which may be impractical, especially at a high cost,
i.e., computational infeasibility). Traditionally, ABC behavior attempts to imitate how bees collect food.
There are three types of bees working in different functions as follows:

• Employed Bee: This type of bee only functions to randomly find food supplies and then inform
onlooker bees about the food resource.

• Onlooker Bee: Once the resource is known, this type of bee will select some of the best resources
and then collect the actual food. In addition, this bee will find nearby resources, if they exist, and
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then collect them all. It should be noted that once there is no more supply, the onlooker bee will
become a scout bee.

• Scout Bee: The purpose of this type of bee is food exploration in a random manner; again, once
the resource has been found, the employed-bee cycle will restart.

With this cycle of behavior, ABC can be applied to resolve the problem of CVRP as follows (See
also Algorithm 1 below):

Data: FoodSize, Threshold, α , β

Result: best–path
Initial Food Generation;
Fitness Function Evaluation;
while Threshold do

Employed Bees;
Onlooker Bees;
Scout Bees;
Fitness Function Evaluation;

end
Algorithm 1: ABC-CVRP

1. Initial Food Generation: This step is used to randomly create the paths or routes, i.e., initial
population, as the initial data for further procedures. Fig. 2 shows an example of this initial
process in that there are three routes here (from the first node and then going around until the first
node is visited again: V1 back to V1).

2. Fitness Function Evaluation: To select a proper set of the selected routes, this state is used to
measure performance as the selection criteria, as shown in equation (2). Here, C is the travelling
cost or the summation of the distances in meter (D), the penalty of overweight (q) in kilogram, and
the penalty of overtime (i.e., overdue in minute) (t). α (meter/kilogram) and β (meter/minute) are
the coefficient parameters as adjustable weights over overweight and overtime ranging between
0.1 and 1. Note that after the overall cost is derived over population (X), the selection criteria will
be applied to make ordered paths based on the lowest cost.

C = D+ αq+ β t (2)

Figure 2: ABC for CVRP: Initial Population

3. Employed Bee: This state is used to randomly select a set of data (routes) Y from the selected
population X to prepare for the next stage, i.e., cost evaluation.

4. Onlooker Bee: Given Y , this state will select the data (routes) with the best cost from Y to cre-
ate new data based on the neighbourhood operator, traditionally using a random-swap operation
between nodes.
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5. Scout Bee: This state is used to randomly create a new population, i.e., new routes.

It should be noted that the 3rd through 5th steps will be iteratively repeated based on a specific
threshold, i.e., the iterative threshold (T hreshold), as a limitation of ABC processes. Again, there is a
computational time tradeoff that yields to the accuracy gain.

3.2 Random ABC for CVRP

One of the main limitations of ABC-CVRP, as discussed above, is that an Onlooker Bee has no variety
on the neighborhood operator (only a random swap), most likely leading to precision deficiency. Similar
to the diverse operators proposed by W. Y. Szeto et al.[31], e.g., Random Swap of Subsequence (RSS),
Random Insertion (RI), Random Insertion of Subsequence (RIS), Reversing a Subsequence (RAS), Ran-
dom Swap of Reversed Subsequence (RSRS), and Random Insertion of Reversed Subsequence (RIRS),
all these operators will be used as our baseline step, one time only, to reduce the computational time to
find a better solution close to the actual solution.

In this research, however, not only these six operators but also four extra operations and a traditional
random swap are simultaneously applied to further improve our accuracy for the CVRP problem. In
addition to these operators, we integrated the randomness before performing these operators for the pur-
pose of computational time reduction, perhaps causing these extra operations, as stated in Algorithm 2.

Data: FoodSize, Threshold, α , β , γ

Result: best–path
Initial Food Generation;
Fitness Function Evaluation;
while Threshold do

Employed Bees;
if random < γ then

Onlooker Bees;
Scout Bees;

end
Fitness Function Evaluation;

end
Algorithm 2: Random ABC-CVRP (R-ABC-CVRP)

• Random Condition: As shown in Line 7, this step is used to randomly select the operation with
probability (γ) to perform the functionality of the Onlooker Bees. Here, the random number lies in
the range between 0 and 1, with the predefined probability (threshold) also between 0 and 1. Note
that if the threshold is high, the opportunity to perform the next stage is also high.

• Onlooker Bee: This state is used to select the best cost route from Employed Bee (Y ) to create
new populations using the following ten neighborhood operators, as set forth below:

1. Random Swap (RS): This is a traditional neighborhood operator used to swap the data of
two positions randomly. As shown in Fig. 3(i), nodes Vi and Vj are swapped such that i < j;
in this figure, i is 1 and j is 7, which is then 7 and 1 after swapping.

2. Random Swap of a Subsequence (RSS): This step is used to swap a set of nodes in se-
quence, e.g., given two sets of nodes, i.e., Vi, . . . ,Vj, and Vk, . . . ,Vl such that i < j < k < l.
Based on Fig. 3(ii), suppose the first set is 1 to 4, and 7 to 8 for the second set; once swapped,
the final route will be 7, 8, 5, 6, 1, 2, 3, 4, and 9.
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Figure 3: Neighborhood Operations

3. Random Insertion (RI): Similar to RS, this step randomly selects the two nodes Vj and Vj

such that i < j. Next, it inserts Vj left before Vi. Based on Fig. 3(iii), Vi and Vj are 1 and 7,
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and the final route will then move to node 7 before node 1.

4. Random Insertion of a Subsequence (RIS): Similar to RIS, instead of the insertion of only
one node, this operator involves the insertion of a set of nodes. For example, given nodes Vi

and Vj, . . . , Vk such that i < j < k, the set of nodes Vj to Vk will be moved in front of Vi. Fig.
3(iv) shows that if Vi is 2 and Vj to Vk are 5 to 8, the final sequence will be 1, 5, 6, 7, 8, 2, 3,
4, and 9.

5. Reversing a Subsequence (RS): This step applies a reverse operation in a set of nodes, i.e.,
given Vi to Vj, the final sequence of this set will be Vj to Vi. Fig. 3(v) shows that Vi to Vj is 2
to 6 and once reversed, the order will be from 6 to 2.

6. Random Swap of a Reversed Subsequence (RSRS): Given the reverse function, this step
is used to swap a set of nodes in sequence and then apply the reverse operator. For example,
given Vi to Vj and Vk to Vl such that i < j < k < l, after applying the operation, the final
sequence will be Vl to Vk and then Vj to Vi. Fig. 3(vi) shows that, say, if Vi to Vj are 1 to 3
and Vk to Vl are 7 to 8, then after RSRS, the sequence will be 8 to 7 and 3 to 1.

7. Random Insertion of a Reversed Subsequence (RIRS): This step is used as a combination
of insertion and reverse in that, given Vi and Vj to Vk such that i < j < k, after RIRS, a set of
nodes Vj to Vk will be moved in front of Vi in reverse position (Vk to Vi). Fig. 3(vii) shows
that Vi is 3 and Vj to Vk are 6 to 8; after RIRS, the final sequence will be 1, 2, 8, 7, 6, 3, 4, 5,
and 9.

8. Random Half and Reversing (RHR): This step applies the reverse function to half of the
nodes in the route, i.e., given n nodes, the nodes from V1 to Vn/2 will be reversed. For
example, from Fig. 3(viii), suppose the original sequence is 1 to 9; after RHR, the final
sequence will be 5, 4, 3, 2, 1, 9, 8, 7, and 6, where 5 is the middle node.

9. Random to Front or Back (RF or RB): This step is used to move the middle node either
to the front or to the back, i.e., moving Vn/2 to either V1 or Vn. For example, Fig. 3(ix) states
that node 4 will randomly move to the front of the sequence, i.e., in front of node 1.

10. Rotation (RO): This step is used to randomly rotate a set of nodes as follows: first, a random
number is drawn (either 0 or 1) to indicate a left or right rotation, and then another random
number will be generated as the number of rotations, i.e., K rotations. For example, Fig. 3(x)
shows that the first random number is 1 = right and the second represents K = 3; thus, after
RO, the final sequence will be 3, 4, 5, 6, 7, 8, 9, 0, 1, and 2.

• Scout Bee: Initially (again), this stage will be used to randomly create new routes (population)
and then replace them with the worst routes (worst cost).

3.3 Optimized Crossover for CVRP

In general, the Genetic Algorithm (GA) is one of the evolutionary computations[34], [17] used as an
approximation algorithm to imitate human genetics. The GA has three stages:

• Population Selection: This stage is used to properly select the population members of the current
generation that will be parents of the next generation (includes a size constraint).

• Genetic Operator: The purpose of this stage is to generate better children, primarily using
crossover and mutation techniques based on the various parents.

• Replacement: The children after the second stage will then replace those in the scaled population
given the utility function, such as a ranking-based scheme.
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Observe that the first and third stages are similar to the stages defined in ABC. In the second and third
stages, Employed and Onlooker Bees can perform random food selections provided diverse neighbour-
hood operations. However, a Scout Bee only performs a random operation that may not be necessary
when the data are converged. Thus, in this research, we proposed an optimized crossover to create a new,
diverse population instead of Scout Bees excluding the other two stages of GA.

Note that a mutation operation can be considered as the random swap in ABC, so there is no require-
ment for this operation. For the crossover operations, the example is as follows: given two routes, i.e.,
V11 to V1i and V1 j to V1k and V1l to V1n (n nodes) and V21 to V2i and V2 j to V2k and V2l to V2n (n nodes),
after applying crossover, two more sequences will be generated as follows:

V11 to V1i and V2 j to V2l and V1m to V1n;
V21 to V2i and V1 j to V1l and V2m to V2n

For example, Fig. 4 shows that given two selected routes, 1 to 7 and 8 to 14, once the crossover
operation is applied, two new sequences will be generated, i.e., 1, 2, 10, 11, 12, 6, 7, and 8, 9, 3, 4, 5, 13,
14.

Figure 4: Crossover for CVRP: Example

In addition to Crossover for CVRP, based on our previous work[3], in which the crossover operation
is performed on the shortest-path problem, we now propose the Crossover operator for CVRP, as stated
in equation (3). We denote P1 and P2 as the parents (from the existing population), C1 to C4 as their
children, and P3 as the other parent selected from the best cost path.

(C1,C2,C3,C4) = (P1 ∩ P2)∪ (P3 ∩ (P1 ∪ P2)) (3)

In addition, note that after conducting a crossover, it may be possible to create an uncompleted route
(redundant nodes or incomplete visited nodes). Here, the best route will be selected to make a repair and
perform two steps below (as shown in the examples in Fig. 5).

• A sequential search will be performed to delete the redundant node.

• The local optimum solution (the best existing route solution or P3) will be selected as the route for
repairing any missing nodes, and those nodes will be placed in position according to the best path.

For example, given 6, 3, 1, 8, 7, 4, 2, 5, 0, and 9 as the best path; C is the path required for reparation
(6, 1, 4, 8, 0, and 2). Here, nodes 3, 5, 7, and 9 are missing, and so, to traverse over P3 to repair C, the
final repaired path will be as follows: 6, 3, 1, 7, 4, 8, 5, 0, 2, and 9.

3.4 Random ABC with Optimized Crossover for CVRP

Observe that on the one hand, Random ABC’s main advantage is its computational time optimization,
as one of the heuristic approaches with the nature of randomness. On the other hand, the crossover
operation is effective in terms of its better accuracy achievement, i.e., its effectiveness in finding the
solution, especially when the data tend to converge.
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Figure 5: Path Repair: Example

Thus, this research combines these two as Random ABC with Optimized Crossover for CVRP (R-
ABC-OC). Note that R-ABC-OC also considers two more cases with respect to making the crossover
routes leading to low accuracy be the crossover path with either the same or different vehicle.

Fig. 6 shows an example of those two cases: Case 1 (1, 2, 3, 4, 5, 6, and 1) and Case 2 (1, 2, 3, 4, 5,
6, and 1; and 1, 7, 8, 9, 10, 11, and 1). There are two steps used to alleviate this problem: the intersection
search of two lines and switch lines - the algorithm continues to search for the possible crossover path
and then determines the possible solution.

• Intersection Search of Two Lines: This step is first used to find the crossover path, as previously
stated (Fig. 6), and the methodology of our proposal is as follows:

Figure 6: Crossover Route: Example

1. Two-Path Selection: This sub-step is used to select two possible intermediate-paths (4
nodes) to generate their gradients to form the straight line representation, as stated in equa-
tions (4) and (5).

y = mx + c (4)

m = (y2–y1)÷ (x2–x1) (5)

where, m is the slope of each straight line, i.e., of coordinates (x1, y1) and (x2, y2) and c is the
constant value.
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2. Crossover Point Derivation: This step is used to derive the crossover point (xc and yc) based
on the two paths, as stated in equation (6), using a simplified matrix manipulation.[

xc

yc

]
=

[
−m1 1
−m2 1

] [
c1
c2

]
(6)

3. Crossover Point Confirmation: This step is used to confirm whether the crossover point of
the actual position lies on the path in a specific range, i.e., (x1, y1) to (x2, y2) and (x3, y3)
to (x4, y4). To confirm the answer, the checking condition of xc is within a specific range
between the minimum and maximum of (x1 to x4) and (y1 to y4) for yc.

• Switch Lines: Once there exists a crossover path, this step is used to unfold the route as previously
stated; in particular, there are two more subcases, which are set forth below.

1. Crossover Path with The Same Vehicle: This is the case when there is a vehicle that travels
over the same point within a single route (R). In other words, if there are routes Ri and R j,
here, i = j. To generate a new solution, we are given R = {V1,V2,V3, . . . ,Vn,V1} and the
(xc,yc) coordinate that can derive the node both before and after the crossing point, i.e., Vp

and Vq. This route can be unfolded from R (the sum of subroute r) to R′, as stated in equations
(7) through (10). It should be noted that rR is the reverse of subroute r.

r1 = {V1,V2 ... Vp} (7)

r2 =
{

Vp+1 ... Vq
}

(8)

r3 =
{

Vq+1 ... Vn,V1
}

(9)

R′ =
{

r1,r2,rR
3
}

(10)

Note that in Fig. 6, the route (R) (1, 2, 3, 4, 5, 6, and 1) again can be rearranged to 1, 2, 3, 4,
5, 6, and 1. Here, r1 is (1, 2), r2 is (3, 4, 5) and r3 is (1, 6).

2. Crossover Path with Different Vehicles: Each individual vehicle will not travel back to the
same point; however, it is possible for another traveling vehicle to pass through that particular
point. In other words, if there are routes Ri and R j, here i 6= j. There are two possible solu-
tions, which can be noted as stated in equations (11) through (14) below. Suppose there are
two routes (R1 and R2) with different vehicles: R1 = {r(1,1) to r(1,2)} = {V(1,1),V(1,2),V(1,3), . . . ,
V(1,n),V(1,1)} and R2 = {r(2,1) to r(2,2)} = {V(2,1),V(2,2),V(2,3), . . . ,V(2,n),V(2,1)}. It should be
noted that to simplify the notation, V(1,1) and V(2,1) are actually V1.

r(1,1) =
{

V(1,1),V(1,2) ... V(1,p)
}

(11)

r(1,2) =
{

V(1,p+1) ... V(1,n),V(1,1)
}

(12)

r(2,1) =
{

V(2,1),V(2,2) ... V(2,q)
}

(13)

r(2,2) =
{

V(2,q+1) ... V(2,n),V(2,1)
}

(14)
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Here, the first possible solution (R′) is derived from equations (15) and (16), and the second
solution can be computed from equations (17) and (18). Based on Fig. 5, the second case
can be rearranged to (R′1 = 1, 2, 3, 4, 5, and 7; and R′2 = 1, 6, 8, 9, 10, 11, and 1) or (R′1 = 1,
2, 3, 4, 5, 8, 9, 10, and 11; and R′2 = 1, 7, 6, and 1).

R′1 =
{

r(1,1), r(2,2)
}

(15)

R′2 =
{

r(2,1),r(1,2)
}

(16)

R′1 =
{

r(1,1),r
R
(2,1)

}
(17)

R′2 =
{

rR
(2,2),r(1,2)

}
(18)

Observe that based on our intensive evaluation, there is a possibility that the algorithm cannot find the
best path, because there is no such thing in the current population; this was indicated by the convergence
of path finding. Thus, similar to the concept of backtracking, we randomly interchange the current
population (once the solution tends to converge given the round threshold) with the best selection path,
and so the probability to traverse the route in other directions (selecting the previous best solution for
further operations) is high. We call this reborn, and its details are stated as follows:

• Best Solution Population: This stage is used to collect the best-known solution, if it exists.

• Reborn: Once the solution finder is converge, i.e., the population with other possible exchanging
operations cannot be used to construct a better path, we randomly select some of the best paths in
the previous states to replace the existing population with high probability of diversity and thus, a
better solution can perhaps be derived.

This reborn step can only be used if there is no intersection between two lines to reduce the com-
putation time for better solution; this will also be applied given the threshold of finding convergence, as
detailed in Algorithm 3 as follows:

After the initial food generation and initial fitness evaluation (Lines 3-4) based on the population
size (FoodSize), the employed bee will be utilized in Line 6. There is a random effect given not only
threshold γ but also the optimization of onlooker bee states (with ten possible neighbourhood operations)
(called R-ABC) (Lines 7 to 10). An extra crossover step based on GA (called OC) is then used instead
of scout bees (Line 9).

A simple swap operation can be represented in the scout bee functionality; however, it is one of
the onlooker-bee operations. Line 11 states the fitness evaluation to rank the population; Lines 12 to 16
indicate the convergence threshold (CT ) of time to find convergence with the increase of the convergence
counter (CC). Before checking the condition with threshold iterations, Lines 17 through 23 state the
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conditional checking for crossover routes, reborn for the purpose of population diversity (R-ABC-OC).
Data: FoodSize, Threshold, α , β , γ , CT
Result: best–path
Initial Food Generation;
Fitness Function Evaluation;
while Threshold do

Employed Bees;
if random < γ then

Onlooker Bees;
Scout Bees;

end
Fitness Function Evaluation;
if there exists better solution then

Store Current Best Solution;
else

Increase CC;
end
if CC > CT then

if Intersection Search of two lines then
Switch Lines;

else
Reborn;

end
end

end
Algorithm 3: Random ABC with Optimized Crossover for CVRP

4 Performance Evaluation

This section discusses the performance of our approach based on ABC and optimized crossovers, includ-
ing the crossover route and path-diversity considerations, i.e., R-ABC-OC for CVRP versus a traditional
ABC[31] for CVRP. We also show algorithmic performance over different types of techniques for prac-
ticality using a set of standard benchmarks.

4.1 Empirical Configurations

The evaluation testbed is a standard configuration using the Windows 7 operating system (64-bits): In-
tel(R) (TM) quadcore 2.66 GHz CPU, 2048 MB DDR-SDRAM, and a 320 GB 7200 RPM disk. For
comparative purposes that consider precision, the simulation model is based on MATLAB[1] on a stan-
dard baseline dataset. To enhance computational speed, standard C was also used to simulate for testing
purposes[31] (14 sets from N. Christofides and S. Eilon[7] and N. Christofides et al.[8]).

For comparison purposes, the evaluation method defined a colony size according to the recommen-
dation provided by D. Karaboga and B. Basturk[14], i.e., 50. The coefficient parameters, i.e., α and β ,
are in the range between 0.1 and 1; based on intensive investigation, 0.45 is the best and will be used
throughout the experiments. In addition, in each evaluation there are 20 trials, each of which will be
limited to 100,000 rounds of iteration based on the recommendation provided by W. Y. Szeto et al.[31].
Then, in addition to the precision metric that will be defined later, the computational time in minutes will
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be measured accordingly.
There are three main scenarios in which to evaluate our performance. First, we selected one of the

fourteen sets, i.e., vpcn1, and then considered the measurement metrics of the minimum, maximum, and
average objective values, including computational times for our optimizations at each stage, i.e., ABC-
CVRP, R-ABC-CVRP, and R-ABC-OC-CVRP, against a traditional ABC for CVRP[31]. Our first stage,
ABC-CVRP, was developed as an implement justification, and the result should be close to the ABC
proposed by W. Y. Szeto et al.[31]. We also measured the time to convergence of those three techniques
using the best case.

Second, similar to the first scenario, to elaborate on our intensive evaluation, all fourteen sets were
used for evaluation; however, only R-ABC-OC was performed against the best-known approaches based
on a standard benchmark provided by N. Christofides and S. Eilon[7] and N. Christofides et al.[8]. It
should be noted that in the fourteen sets, n denotes the number of customers; Q is the vehicle capacity
(e.g., kilogram); s is the service time (minute); L is the limitation of total distance (meter) and m is the
number of vehicles.

The precision metric (meter) used in this evaluation is a percentage deviation (PD), which is specific
gravity compared to the best-known solution derived from equation (19)[23]. Here, Sol denotes the
best solution available (meter); BKS is the best known solution (meter). We compared three baseline
algorithms provided by É. Taillard[32]; D. Mester and O. Bräysy[20] and Y. and É. Taillard[29]. We also
showed the computational time in minutes.

PD = ((Sol –BKS)÷BKS)×100 (19)

Finally, the third scenario is to numerically compare our proposal, R-ABC-OC, with other best-
known approaches (eleven well-known approaches), such as É. Taillard (1993)[32], M. Gendreau et al.
(1994)[11], Y. Rochat and É. Taillard (1995)[29], B. Bullnheimer et al. (1999)[6], B. M. Baker and M.
A. Ayechew (2003)[2], B. M. Berger and M. A. Barkoui (2003)[4], Y. Nagata and O. Bräysy (2009)[22],
S. W. Lin et al. (2009)[18], W. Y. Szeto et al. (2011)[31], R. Goel et al. (2018)[12] and V. F. Yu et
al. (2017)[36]. Here, the matrices are an average of PD of fourteen cases and computational time (CPU
time) (minutes), including the type of complier and computer specification. As previously stated, we
developed R-ABC-OC in the C language to achieve high performance in terms of computational time.

4.2 Empirical Results and Discussions

Considering the first scenario, Table 1 shows the objective values, including the computational times
of traditional ABC applied to CVRP against our proposals, i.e., R-ABC and R-ABC-OC. Observe that
ABC’s performance is similar to what was reported in[31], i.e., approximately 527 and 525 for the
minimum and 532 and 536 for the average, although the maximum was not reported, with 0.02 minutes
in computational time difference. Considering our proposal, it is obvious that R-ABC-OC’s performance
is outstanding, i.e., the average of objective values is just 527.85, compared to just 531.74 for traditional
ABC[31].

It should be noted that our first optimization stage, i.e., R-ABC, still outperforms the traditional
ABC by almost 2 in objective value reduction. In terms of computational time, it is understandable that
models with more stages will introduce extra times. However, with precision improvement, a degree of
computational time is not significantly affected, such as only 0.54 and 0.93 minutes versus 0.42 (tradi-
tional ABC[31]) minutes, respectively. In addition to both traditional metrics and the computational time
on average, Fig. 7 shows the iteration convergence to a steady state for the three schemes, i.e., ABC,
R-ABC, and R-ABC-OC.

Similar to the performance trend shown in Table 1, it is observed that R-ABC-OC is the best scheme;
the fastest convergence, i.e., the steady state, will be around iteration 4500 with R-ABC-OC. For the

34



ABC+GA for CVRP Chatchai, Chakchai, Phet, and Kanokmon

Table 1: Objective Values versus Computational Time for CVRP: ABC[31], ABC, R-ABC, and R-ABC-
OC

ABC-CVRP[31] ABC-CVRP R-ABC-CVRP R-ABC-OC-CVRP
Minimum 526.97 524.92 524.61 524.61
Maximum N/A 568.87 560.19 555.25
Average 531.74 536.16 529.58 527.85
CPU time (minutes) 0.42 0.40 0.54 0.93

Table 2: Comparative Results for Each Set in the Fourteen Cases Provided By [7], [8]
Instance n Q s L m BKS Average Sol PD Time
vrpnc1 50 160 0 ∞ 5 524.61a 527.85 524.61 0 0.93
vrpnc2 75 140 0 ∞ 10 835.26 a 840.52 835.26 0 1.47
vrpnc3 100 200 0 ∞ 8 826.14 a 833.49 826.14 0 4.46
vrpnc4 150 200 0 ∞ 12 1028.42 a 1052.52 1030.46 0.18 6.25
vrpnc5 199 200 0 ∞ 17 1291.29 b 1331.92 1299.64 0.65 13.33
vrpnc6 50 160 10 200 6 555.43 a 557.67 555.43 0 0.71
vrpnc7 75 140 10 160 11 909.68 a 915.53 909.68 0 1.24
vrpnc8 100 200 10 230 9 865.94 a 878.79 865.94 0 4.34
vrpnc9 150 200 10 200 14 1162.55 a 1193.88 1163.38 0.07 8.81
vrpnc10 199 200 10 200 18 1395.85 c 1428.73 1407.21 0.81 16.37
vrpnc11 120 200 0 ∞ 7 1042.11 a 1058.26 1043.11 0.1 3.51
vrpnc12 100 200 0 ∞ 10 819.56 a 825.86 819.56 0 2.07
vrpnc13 120 200 10 720 11 1541.14 a 1553.57 1542.25 0.07 2.50
vrpnc14 100 200 10 1040 11 866.37 a 869.31 866.37 0 1.92
Average 0.13 4.85

others, the iterations are 9000 and 14500 for R-ABC and ABC, respectively. It is worthwhile to note that
based on the evaluation of traditional ABC comparatively given by W. Y. Szeto et al. (2011)[31], their
time to convergence is beyond 50,000 rounds.

Table 2 shows the results from the second scenario with the fourteen datasets. Based on the three
best well-known approaches, our proposal’s performance is comparative; for example, in (a), our PDs
are in the range of 0 to 0.18 and essentially 0 for 9 sets out of 14 sets. The PD of our proposal falls
between 0.65 and 0.81 for the others, i.e., (b) and (c). On average, the PD for all fourteen cases is 0.13
with a 0.25 standard deviation. Moreover, in terms of computational time, the average is approximately
4.85 minutes with a 4.83 standard deviation. R-ABC-OC took less than approximately 6.25 minutes to
achieve the best solution, and the computation time is higher for the cases that require more iterations,
i.e., in vrpnc5, 9, and 10 (maximum of 16.37 minutes for vrpnc10).

Finally, to intensively illustrate the practicality of our scheme against the other best well-known
approaches on average, Table 3 shows the results in terms of APD and CPU time for 12 approaches.
It is obvious that the best existing approaches in terms of the precision or APD are those of Y. Rochat
and É. Taillard[29] and Y. Nagata and O. Bräysy[22], i.e., 0 for APD; however, the computational time
is neither provided nor extensively high (13.8 minutes for the second approach), probably leading to
unfeasible solutions. That trend also applied to É. Taillard[32] (APD = 0.05).

Our proposal, R-ABC-OC, yields very high precision, although it may not be better than those ap-
proaches; however, our computation time is acceptable at only 4.85 minutes. Note that although it
may not be possible to make a fair comparison based on computational time caused by the use of var-
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Table 3: Comparative Results Based on the Best-Known Results
References APD CPU Time Techniques Compiler Computer

(minutes) Specification
Y. Rochat and É.
Taillard (1995)[29]

0 N/A Diversify; Intensify; Par-
allelize

C Silicon Graphics
100 MHz

Y. Nagata and O.
Bräysy (2009)[22]

0 13.8 EAX Memetic C++ Opteron 2.4 GHz

É. Taillard
(1993)[32]

0.05 N/A Parallel Taboo Search C++ Silicon Graphics
100 MHz

R. Goel et al.
(2018)[12]

0.093 N/A Ant colony + firefly Algo-
rithm

Matlab Core i3 2.3 Ghz

R-ABC-OC 0.13 4.85 ABC + GA Optimizations C Core2 2.66 GHz
V. F. Yu et al.
(2017)[36]

0.24 1.29 SOS C++ Core i7 3.4 GHz

S. W. Lin et al.
(2009)[18]

0.35 8.21 Variable-length Neighbor
List Record-to-Record
Travel

C Pentium IV 2.8
GHz

W. Y. Szeto et al.
(2011)[31]

0.46 4.4 Artificial Bee Colony C++ Pentium 1.73 GHz

J. Berger and M.
Barkoui (2003)[4]

0.49 21.25 Hybrid Genetic Algo-
rithm

C++ Pentium 400 MHz

B. M. Baker and
M. A. Ayechew
(2003)[2]

0.56 29.11 Genetic Algorithm C Pentium 266 MHz

M. Gendreau et al.
(1994)[11]

0.86 46.8 Tabu Search N/A Silicon Graphics
36 MHz

B. Bullnheimer et
al. (1999)[6]

1.51 18.44 Ant System N/A Pentium 100 MHz

ious platforms, our proposal outperforms the traditional ABC, including its derivatives, as stated in the
first scenario. Moreover, considering the other seven approaches with computational complexity report,
R-ABC-OC is outstanding in both precision (only 0.13 versus 0.35 to 1.51) and computational time
(approximately 4 minutes versus 4 to 30 minutes). To specifically compare with the first top-four ap-
proaches, again, although our APD is a bit lower than those, according to the nature of heuristics, our
practicality based on computational time is low.

5 Conclusion and Future Work

In this research, we conducted an investigation of the application of SCs - applying bio-inspired compu-
tation, i.e., crossover operations and ABC, to solve the problem of a derivative of the vehicular routing
problem given the capacity constraint, i.e., CVRP. Because CVRP is an NP-Complete problem, this
combination can be considered as a metaheuristic approach, i.e., the best solution given the practicality
versus the computational time tradeoff. Our hybrid model of GA and ABC, called Random ABC with
optimized crossover (R-ABC-OC), concerns the crossover route and path diversity and can be considered
as a CVRP solver candidate.

Based on our intensive evaluation, the performance of R-ABC-OC is outstanding, and in particular,
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Figure 7: Iteration Convergence

it outperforms the traditional ABC with an insignificant computational time tradeoff. Considering the
evaluation of the fourteen standard sets used as a benchmark, R-ABC-OC can also be considered a
competitive solver in terms of both precision and computational time improvement. In addition, when
compared with other schemes in various well-known models and configurations, R-ABC-OC continues
to maintain high accuracy with computational time tradeoff.

Although this hybrid scheme of ABC with optimized crossovers achieves high performance, more
investigations, assumptions, and constraints could be further explored - i.e., to achieve higher accuracy
- and a variety of conditions, stages, and optimizations, including other combinations of hybrid models,
can be well-investigated. To achieve a high degree of computational time improvement, programming
experts with great coding skills may be required for code optimization. A larger dataset can also be
considered for high time complexity problems, including the heterogeneity of the dataset. It is also worth
noting that different aspects of VRP solvers, such as VRP with Time Windows and Pickup/Delivery, are
being explored, and all of this is ongoing research.
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