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Abstract

In this paper, we study privacy models for privacy-preserving WiFi fingerprint based indoor local-
ization (PPIL) schemes. We show that many existing models are insufficient and make unrealistic
assumptions regarding adversaries’ power. To cover the state-of-the-art practical attacks, we propose
the first formal security model which formulates the security goals of both client-side and server-side
privacy beyond the curious-but-honest setting. In particular, our model considers various malicious
behaviors such as exposing secrets of principles, choosing malicious WiFi fingerprints in location
queries, and specifying the location area of a target client. Furthermore, we formulate the client-side
privacy in an indistinguishability manner where an adversary is required to distinguish a client’s real
location from a random one. The server-side privacy requires that adversaries cannot generate a fab-
ricate database which provides a similar function to the real database of the server. In particular, we
formally define the similarity between databases with a ball approach that has not been formalized
before. We show the validity and applicability of our model by applying it to analyze the security of
an existing PPIL protocol. We also design experiments to test the server-privacy in the presence of
database leakage, based on a candidate server-privacy attack.

Keywords: Indoor localization, WiFi fingerprint, Security Model, Privacy

1 Introduction

People spend significant amounts of their time in public indoor environments including shopping malls,
libraries, airports, university campuses, etc. This has boosted the interest towards various indoor location-
based applications[1, 2] such as indoor-navigation or elderly assistance and emergency responding. How-
ever, in an indoor environment, the traditional Global Positioning System (GPS) may be not available
due to weak signal strengths caused by blocking constructions. To obtain a location in a building,
a client has to rely on certain indoor location services (ILS) provided by some server of the build-
ing. The most widely used approach for ILS is the one based on the WiFi fingerprinting technique
[3, 4, 5, 6, 7, 8, 9, 10, 11]. This method is very effective and popular because it uses an existing WiFi
infrastructure of a building. For a WiFi fingerprint based ILS, the server holds a geo-location database
(e.g. [12, Table 1]) containing signal strengths of WiFi access points (AP) in various reference locations,
as explained in Section 3. Roughly speaking, a client measures the signal strengths of WiFi APs in the
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client’s current (unknown) location and send them to the server. The server calculates the client’s loca-
tion based on the geo-location database, e.g., by calculating the k-nearest Euclidean distances between
the client’s input and reference fingerprints in the database. Finally, the server sends the location to the
client. However, this naive solution cannot prevent a malicious server from tracking its clients’ locations,
which of course violates the clients’ privacy.

Recently, several solutions, e.g. [13, 14, 15, 12], have been proposed to protect the clients’ location
privacy in ILSs. However, only a few pieces of research (e.g. [15]) have included a formal security
model for privacy-preserving indoor localization (PPIL) schemes. This deficiency has resulted in the
development of flawed protocols (e.g. [13, 15]) which may take years to discover. Therefore, applying
PPIL schemes without rigorous security proofs is inherently risky. For example, in INFOCOM 2014, Li
et al. [13] presented a WiFi fingerprint localization system called PriWFL which was claimed to provide
both clients’ location privacy and server’s database privacy (which will be referred to as client-privacy
and server-privacy for short, respectively). PriWFL is based on the ‘honest-but-curious’ setting where the
adversary does not change the protocol execution between an honest client and the server. Client-privacy
roughly states that no passive adversary (including the server) can infer the honest client’s location after
intercepting all protocol messages. Server-privacy requires that a malicious client cannot use location
queries for compromising the server’s database. However, Yang and Järvinen [12] recently unveiled a
practical attack (which will be called as chosen fingerprint attack) for breaking the server-privacy of
PriWFL. In this chosen fingerprint attack, the malicious client chooses special fingerprints, such as all-
zeros or single-one fingerprints, to compromise the whole server’s database. Unfortunately, their attack
idea can be applied to break also the protocol recently proposed by [15], as shown in [16]. One of the
major problems here is that the server-privacy defined in [13, 15] cannot cover the malicious client attack
of [12]. Hence, PriWFL has not been provably demonstrated to provide security against such attack
(due to lack of formal definitions). Namely, the curious-but-honest setting is not enough for proving the
security for PPIL schemes.

To fix the problem of PriWFL, Yang and Järvinen proposed a new PPIL scheme (which will be
referred to as YJ scheme) that relies on Paillier’s public key encryption (PKE) [17] and garbled cir-
cuits based secure evaluation function (SFE). Intuitively, the YJ scheme satisfies both client- and server-
privacy. However, we notice that its security is only informally justified in [12] without being analyzed
under an appropriate security model. Hence, there are still open questions: (i) how many active attacks
it can withstand and (ii) what the security assumptions of its build blocks and the corresponding security
reductions should be. The primary motivation for this work is to develop a formal security model that
allows formal analysis of the security of practical PPIL protocols.

We stress that the definitions on client- and server-privacy respectively are fundamental to the success
of ‘provably secure’ PPIL schemes. It is therefore highly desirable to define a security model to cover
the state-of-the-art attacks so that their securities can be formally proved to satisfy the security goals.
Recently, Zhang et al. [15] made an effort to formulate the client- and server-privacyin a curious-but-
honest setting. The definitions of client- and server-privacy in [15] can be seen as extensions from that
in [13]. In the location privacy attack [15, Definition 1], a successful adversary should compromise
either a client’s WiFi fingerprint or location in a query. However, in practice, an adversary may violate
client-privacy via learning (for instance) sensitive information about whether the client appeared at some
place or its whereabouts, even without knowing its exact location or fingerprints. In particular, the
definition of server-privacy is still vague in [15]. I.e., ‘a certain level of accuracy’ (in [15, Definition
2]) regarding ILS provided by an adversary is not clearly formalized. Specifically, there is no way to
measure the accuracy of an adversary’s ILS as there is no security experiment or any formulation about
the adversary’s advantage on breaking either client- or server-privacy. Furthermore, several important
practical attacks are not modeled in [15]) such as: (i) chosen fingerprint attack introduced by Yang and
Järvinen [12], (ii) known location attack (e.g. whether knowledge of an exposed (historical) location
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of a client affects the client’s unexposed locations), and (iii) known sub-area attacks (e.g. a follower is
curious about the direction of movement or location of a client within a specific area). It is still an open
question on modeling these malicious attacks. Hence, we conclude that Zhang et al.’s model is rather
weak and informal and it is not possible to give a thorough security analysis for a PPIL protocol using
such model.

Our results. In this paper, we present the first unilateral-malicious security model for WiFi fingerprint-
based PPIL schemes to solve the open problems in existing models. Generally speaking, the unilateral-
malicious setting is stronger than the traditional semi-honest setting but weaker than the fully malicious
setting. In the unilateral-malicious setting, we particularly formulate the malicious behaviors relative
to clients’ sessions, e.g., manipulating WiFi fingerprints and exposing locations. We require the server
to behave in semi-honest manner (for simplicity). Namely, the server may be curious about a client’s
location, but it should honestly run the protocol instance in order to provide a good service. We can
weaken the security requirement of the server since a server’s malicious behaviors (e.g., dishonest ex-
ecutions) would be easily caught in practice (and substantially punished) due to providing poor ILS. If
the service is poor, then clients would likely just stop using the service and, consequently, make such
an attack impossible. However, the server cannot easily identify a client’s malicious behaviors. This is
true especially when the client’s messages are (non-deterministically) encrypted by its own public key.
Hence, we define the first practical formal PPIL security model that focuses on modeling the most harm-
ful malicious behaviors on the client side. We specifically apply our new security model to analyze the
YJ scheme (as an example) to not only show the validity of our security model but also to exhibit another
attractiveness of the YJ scheme in its provable security.

We consider the security model in a simulation environment (which covers the real world applica-
tions) with a single server and multiple clients, where each client may have multiple sessions for querying
different locations. Unlike previous work [13, 15, 12], we formulate the attacks of an adversary via a
series of oracle queries. Each query stands for a generic class of attacks. Under the unilateral-malicious
setting, we assume that the adversary can only run protocol instances between the client and server by
following the protocol specification. In spite of that, several important active attacks are defined via a
series of oracle queries allowing an adversary to manipulate and learn sensitive information of sessions.
Namely, an adversary can specify sessions’ initial states such as WiFi fingerprint and target location
area, record her own RSS measurements, or reveal a principal’s long-term or ephemeral secret key and a
client’s location. The details of these queries can be found in Section 3.

The security goal of client-privacy is defined in an indistinguishable manner following the approach
in [18]. Namely, a PPIL scheme is said to be client secure (informally) if no polynomial time adversaries
can distinguish the location of an unexposed session from a random location. Whereas the security
goal of server-privacy is achieved (informally) if all polynomial time adversaries are unable to generate
a database D′ which can provide a similar function of the server’s real database D. A key problem
required to be resolved is to formulate the notion of ‘similar function’. Here we adopt a ball approach.
Informally speaking, we say that the fabricated database D′ generated by an adversary has a similar
function to the real database D, if D′ results in a fabricated location L′ within a small ball that is centered
at the corresponding real location L (which is calculated based on D for a certain location query) with
a pre-defined radius ρ for most of the distinct location queries. Furthermore, each security goal is
associated with a corresponding security experiment which defines the interactions between adversary
and experiment simulator (challenger), rules of the adversary (on launching various attacks), and winning
condition of the adversary. Eventually, we carefully define the client- and server- privacy in conjunction
with the adversarial model, security experiment, and the corresponding adversaries’ winning advantages.
Here define a security model mainly for the WiFi fingerprint database. However, our security definitions
and the adversarial model might be still generic enough to address the security for different kinds of PPIL
schemes. It is not hard to see that the key elements (or formulation ideas) of our security model, such as
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adversary model, security experiment, and security definitions, can be simply applied to formulate other
types of databases with small changes.

In the security analysis of the YJ scheme, we first show that the client-privacy can be linearly reduced
to that of Paillier PKE and SFE. We also show that the YJ scheme does not leak any useful information
about a server’s database to the adversaries due to the large enough randomness space, and the security
of SFE. Since adversaries cannot gain overwhelming advantages from the messages of YJ protocol, the
security of the database is therefore determined by the secret entropy of the database itself.

To test the hardness of breaking server-privacy, we deliberately design experiments for emulating
the database similarity attack based on a real-world fingerprint database measured by Lohan et al.[19,
BUILDING1 NEW] and a simulated one. A candidate attack is developed to automatically generate
fabricated database relying on leaked fingerprints (from the target database). Via our attack, we study the
possible lower bound of (unexposed) bits that adversaries have to compromise for generating a successful
database. We figure out that the unexposed bits are proportional to the numbers of leaked fingerprints
and similar radius ρ (meters). For example, for ρ = 5 and 40% of leaked fingerprints, the adversary
can output a similar database with overwhelming probability. These experimental results could not only
support our security analysis on server-privacy but also help practitioners to figure out ways to mitigate
the database leakage threats (e.g. increasing WiFi access points).

Organization. The remainder of this paper is organized as follows. The security assumptions on the
building blocks of the YJ scheme are reviewed in Section 2. In Section 3, we introduce a new security
model for PPIL protocols. In Section 4, we introduce experiments for emulating a database similarity
attack. In Section 5, we review the YJ scheme and introduce the security analysis under our proposed
model. Finally, we give conclusion remarks in Section 6.

2 Preliminaries

General Notations. We let κ ∈ N be the security parameter and 1κ be a string of κ ones. Let [n] =
{1, . . . ,n} ⊂ N denote the set of integers. Let a $← S denote the operation sampling a uniform random
element from a set S. We use ‖ to denote the concatenation operation of two strings. Let | · | denote
an operation calculating the bit-length of a string, and # denote an operation calculating the number of
elements in a set.
Paillier Public Encryption Scheme. Paillier public-key encryption (PKE) scheme [17] is a probabilistic
encryption scheme. Let PrimG(κ) be a function which generates a set of primes of length κ . The Paillier
PKE scheme mainly consists of the following three algorithms:
• Key Generation (KeyGen). Given the security parameter 1κ , the algorithm chooses two large

primes p,q $← PrimG(κ/2), and computes n = p · q. It also selects a group generator g for the
multiplicative group Z∗n2 , such that the order of g is a non-zero multiple of n. The public key pk is
a tuple (n,g) and the secret key sk is λ = lcm(p−1,q−1). This algorithm returns (pk,sk).
• Encryption (Enc). This algorithm takes a message m < n and a public key (n,g) as inputs. It

selects a random value r $← [n], and computes the ciphertext: C = gm · rn mod n2. The output of
this algorithm is C. For simplicity, we may omit modulus n2 in the rest of the paper.
• Decryption (Dec). This algorithm takes C < n2 and the secret key λ as inputs, and outputs m =

L(Cλ ) mod n2

L(gλ ) mod n2 mod n where L(u) = u−1
n .

Paillier PKE scheme is additively homomorphic over the group Zn. Namely, for two ciphertexts
C1 = Enc(pk,m1) and C1 = Enc(pk,m2), we have that Dec(sk,C1 ·C2 mod n2) = m1 +m2 (mod n) and
Dec(sk,C1 ·C−1

2 mod n2) = m1−m2 (mod n), where the inverse can be computed via the exponentiation
C−1

2 =Cn2−1
2 mod n2. Using the above homomorphic additions, it is also possible to compute multiplica-
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tions and divisions by a scalar t ∈ [n]: Dec(sk,Ct
1 mod n2) = t ·m1 (mod n) and Dec(sk,Ct−1 mod n

1 mod
n2) = m1/t (mod n), where t−1 mod n can be computed with the Extended Euclidean Algorithm.

We review the security of Paillier PKE scheme via the following definition.

Definition 1. The security experiment for a Paillier PKE scheme Pai= (KeyGen, Enc, Dec) is defined in
the following:

EXPind-cpa
Pai,B (κ) :

b $←{0,1}, p,q $← PrimG(κ/2), n = p ·q;g← Z∗n2
,

(m0,m1)←B(n,g), s.t. |m0|= |m1| and 0≤ (m0,m1)< n ;
r0,r1

$← [n−1], C0 := gm0 · rn
0 mod n2, C1 := gm1 · rn

1 mod n2;
b′←B(pk,Cb); if b = b′ return 1, otherwise return 0.

We define the advantage of B as: Advind-cpa
Pai,B (κ) :=

∣∣∣Pr[EXPind-cpa
Pai,B (κ) = 1]− 1

2

∣∣∣ . We say that the Pail-
lier PKE scheme Pai is secure, if for all probabilistic polynomial time (PPT) adversary B the advantage
Advind-cpa

Pai,B (κ) is a negligible function in κ .

Two-party Secure Function Evaluation. We briefly review the formal notions regarding (circuit based)
secure function evaluation (SFE) which is used by the YJ protocol. Given a public function F̂ , a classical
SFE scheme allows two parties to run a protocol which results in party 1 learning only the outcome of
F̂(x1||x2), while party 2 learning nothing, where x1 and x2 are the private inputs of party 1 and party 2
respectively. We refer the reader to [20] for more details on the security notions and concrete example of
SFE.

We let f̂ denote a circuit for a certain function F̂ with input size n ∈N (that may be accessed as f̂ .n).
And let ev( f̂ ,x) be a canonical circuit evaluation function which takes as inputs f̂ and a string x, and
computes the output of the function F̂(x). Here we define a function Φ( f̂ ) to describe what we allow
to be revealed regarding f̂ . With respect to a garbling scheme, Φ may reveal a circuit’s size, topology,
identity, or many others. More concrete side information functions can be found in [20, 21].

In a two-party protocol, we suppose that party i (i ∈ [2]) has a private string xi with length ni, and
party 2 has a circuit f̂ where n = n1+n2. We describe a two-party protocol (for executing a SFE scheme)
via a pair of PPT algorithms Σ=(Σ1,Σ2) . Party i∈{1,2}will run Σi on its current state and the incoming
message from its intended partner, to generate an outgoing message and a local output. The initial state
of Σi includes the security parameter κ , a fresh random coin γi

$← Ri (chosen from a random space
Ri) and the (private) function input Ii of party i. The random coins γ1 and γ2 might be omitted (in the
following descriptions) for simplicity, i.e., they are implicitly generated and used. In order to represent
the protocol execution, we define a PPT algorithm Viewi

Σ which takes as input security parameter 1κ , and
inputs (I1, I2) for the two parties respectively, and returns an execution view vwi and output outi of party
i in a protocol instance. Nevertheless, we may denote an execution between two parties as SF.Σ(I1, I2) at
a high-level view.

Then a SFE scheme is a tuple SF = (Σ,ev) where Σ is a two-party protocol with input (I1, I2) as
above and ev is a circuit evaluation function. The correctness requirement states that, for all f̂ and all
x ∈ {0,1} f̂ .n, we have Pr[out1 = ev( f̂ ,x)] = 1, where x = x1||x2, x1 ∈ I1 and (x2, f̂ ) ∈ I2. We here review
the privacy of SFE in the honest-but-curious setting.

Definition 2. For a SFE scheme SF = (Σ,ev), a simulator S and an adversary E , the security experi-
ment relative to Φ is defined as follows:

EXPpri.sim,S
SF,E ,Φ (κ, i) : ExcuteSF(b, i,xi, f̂ ) :

b $←{0,1}; if xi * {0,1} f̂ .ni return ⊥;
b′← E ExcuteSF(b,i,·,·)(κ, i); x3−i

$←{0,1} f̂ .n3−i , I1 := x1, I2 := (x2, f̂ );
if b = b′ return 1, if b = 1 return Viewi

Σ
(1κ , I1, I2);

otherwise return 0. if i = 1 return S (1κ ,ev( f̂ ,x1||x2),Φ( f̂ ));
if i = 2, return S (1κ , f̂ , |x1|);
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We define the advantage of E , which is allowed only a single ExcuteSF query, in the above experiment
as: Advpri.sim,S

SF,E ,Φ (κ, i) :=
∣∣∣Pr[EXPpri.sim,S

SF,E ,Φ (κ, i) = 1]− 1
2

∣∣∣ . We say that SF is secure relative to Φ, if for

each i ∈ {1,2} and all PPT adversaries E , the advantage Advpri.sim,S
SF,E ,Φ (κ, i) is a negligible function in κ .

3 A New Security Model for Privacy Preserving Indoor Location Schemes

In this section, we define a new unilateral-malicious security model for privacy preserving indoor location
(PPIL) protocols which are based on WiFi fingerprints. The privacy for client and server is formulated
respectively following the well-known game-based modeling approach [18, 22].

Simulation Preliminary. We first describe the general simulation environment which will be ex-
ploited in the following security notions (in particular for security experiment). There are two types
of entities considered: client C and server S. The server S is supposed to provide the indoor location
service (ILS) of a building according to a client’s request. The building area (which is covered by the
location service) is assumed to be delicately divided into M reference locations LT = {i,(xi,yi,zi)}M

i=1,
e.g. the black dot in Figure 1, where (xi,yi) denotes the horizontal coordinates and zi denotes the vertical
coordinate (e.g., the position of a floor). One could consider the unit of each coordinate is meter (m)
for instance. Moreover, the building is deployed with N WiFi access points (AP) to provide network
service, where each i-th (i ∈ [N]) access point may have a unique identity APi. Let APT = {APj}N

j=1 be
list storing all identities of WiFi access points. In particular, each location has a so-called WiFi finger-
print which comprises of Received Signal Strength (RSS) values of certain WiFi AP, where each RSS
value is from a range Rv = [vmin,vmax] and (vmin,vmax) are minimum and maximum values respectively.
Consequently, the server is assumed to hold a pre-measured WiFi fingerprint database D which consists
of a set of tuples < i,Vi = {vi, j}N

j=1 >
M
i=1 (See also in [12, Table 1]) , where i is an index of a reference

location Li ∈ LT, each vi, j denotes the RSS value obtained at Li from APj. Furthermore, we let Dist be
a distance function which takes as input two locations Li and L j (with their corresponding coordinates
(xi,yi,zi) and (x j,y j,z j)) and outputs the distance between them. One could consider Euclidean distance,
i.e. equation 1, as a concrete example of Dist.

When C wants to know its location, it first measures the RSS values from all APs to get a real-time
WiFi fingerprint F = { f j}N

j=1. Then it may ‘privately’ submit F to S as a location query, and calculate its
location L from S’s response. We refer the reader to [12, §2.1] for more details on the principle of WiFi
fingerprint localization. Meanwhile, the private information of the client mainly includes its secret key
sk, location query F and the corresponding location L. The secret of the server is the database D.

In order to emulate the behaviors of a set of entities (including λ clients and 1 server), we may realize
a collection of oracles {πs

τ ,π
t
λ+1 : τ ∈ [λ ],s ∈ [d], t ∈ [λ × d]} for (λ ,d) ∈ N. Each oracle πs

τ behaves
as the s-th protocol instance (session) performed by the party τ for calculating one location. The special
party λ + 1 is assumed to be server. Each party may have a pair of pubic/private key (pkτ ,skτ) for
τ ∈ [λ +1], where pkτ can be accessed by all oracles. Moreover, each oracle πs

τ for τ ∈ [λ ] is supposed
to keep the following internal state variables: (i) dss

τ ∈ {accept, reject} – final decision of a session;
(ii) Fs

τ – fingerprint Fs
τ = {v′j}N

j=1 for a location query; (iii) inss
τ – index selection set (INS) specifying

the location indexes (in LT) which are close to the current location related to Fs
τ ; (iv) ers

τ – ephemeral
randomness used to run the protocol instance; (v) T s

τ – transcript recording all sent and received protocol
messages; (vi) Ls

τ = (xs
τ ,y

s
τ ,z

s
τ) – location of party τ calculated in the s-th session. We assume the variable

Ls
τ will be assigned if and only if dss

τ = accept (meaning that a protocol instance is correctly executed in
a session). The server’s oracles only have dss

τ and T s
τ .

In order to simulate a WiFi fingerprint used by a location query, we define a function FPTSim(i)
which on input a reference location index i generates a WiFi fingerprint Fi = { f j}N

j=1 with the following
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steps: (i) f j
$← [vi, j−∆,vi, j +∆] where ∆ is a pre-defined positive integer, where vi, j ∈D; (ii) If f j ≤ vmin

or vi, j = vmin then f j := vmin; (iii) Else if f j ≥ vmax then f j := vmax.
Adversarial Model. Here we define the power of an active adversaries. The active adversaries A in

our model are considered as a probabilistic polynomial time (PPT) algorithms, which may interact with
another PPT algorithm called simulator C via the following queries:
• InitCorruptO(τ,s, F̃): The variables dss

τ , T s
τ and Ls

τ (if any) of the client’s oracle πs
τ are initiated

with an empty string /0. This query initializes inss
τ := [M]. If F̃ 6= /0 and τ 6= λ +1, this query sets

Fs
τ := F̃ . Each oracle can be initialized by this query only once.

• InitHonestO(τ,s, i,rds): This query first initializes dss
τ , ers

τ , T s
τ and Ls

τ with empty string /0. Let
ĩns ⊆ [M] be a set of location indexes such that ∀ j ∈ ĩns the distance between Li = (xi,yi,zi) and
L j =(x j,y j,z j) is smaller than rds, i.e., Dist(Li,L j)≤ rds. Note that ĩns may cover indexes within a
ball centered at i with radius rds. If τ 6= λ +1 and #ĩns≥dχ ·Me (for a threshold say 0.1≤ χ ≤ 1)1,
this query initializes Fs

τ as follows: (i) j $← ĩns; (ii) Fs
τ := FPTSim( j); (iii) inss

τ := ĩns. Again each
client’s oracle can be initialized by this query only once.
• ExecutePPIL(τ,s, t): This query executes the protocol instance between an unused and initialized

client’s oracle πs
τ and a server’s unused oracle π t

λ+1, and returns the protocol transcript T s
τ . We call

πs
τ and π t

λ+1 proceeded in this query as partner oracles. The oracles run by this query are called
used. All server’s oracles here are assumed to be default initialized (without specific initiation
query).
• CorruptC(τ): This query responds with the τ-th client’s secret key skτ .
• CorruptS: This query responds with the server’s database D and secret key skλ+1 (if any).
• RandReveal(τ,s): Oracle πs

τ responds with the ephemeral secret key ers
τ .

• LocReveal(τ,s): Oracle πs
τ responds with the location Ls

τ .
• LocTest(τ,s): If the oracle has state dss

τ 6= accept or τ = λ + 1, then this query returns a failure
symbol ⊥. Otherwise, it does the following steps: (i) flip a fair coin b $← {0,1}; (ii) choose a
random index j ∈ inss

τ , obtain Fj := FPTSim( j), and calculate L0 based on Fj and D (following the
protocol specification) such that L0 6= Ls

τ ; (iii) set L1 := Ls
τ (which is the real location). Eventually,

the location Lb is returned. This query is allowed to be asked at most once during the following
corresponding security experiment. We call the oracle πs

τ selected in this query as test oracle.
• DBLeak(i): If the index i has been queried via this query, then it returns a failure symbol ⊥.

Otherwise, this query responses with a similar WiFi fingerprint F ′i ← FPTSim(i) according to the
i-th row of database D.

InitCorruptO query is used to model the chosen fingerprint attacks against server’s privacy (in the
unilateral-malicious setting), i.e., the malicious client may choose special fingerprints (e.g. all zeros)
to compromise the server’s database. For example, the attack introduced in [12] is a kind of chosen
fingerprint attack. An oracle initialized by this query is known as location exposed oracle.

InitHonestO query is used to initialize the honest (unexposed) oracle based on an area which is spec-
ified by an adversary in term of the reference location index i and a radius rds. We categorize the attacks
modeled by this query as known sub-area attacks. Consider the attack scenario that an adversary loses
his tracking target at a street corner (determined by i) and he wants to know the target’s ‘whereabouts’
(within a range rds). In this case, the attacker may know an approximate area of the client within a range.
Moreover, if rds is large enough then it may cover all location indexes in LT.

ExecutePPIL query formulates the passive adversaries which only observe the communication be-
tween the client and server.

CorruptC and CorruptS queries formulate the corruption of an honest principal’s long-term cre-

1If χ is too small, then there is no privacy at all.
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dentials respectively. The corrupted party is known as dishonest or malicious one.
RandReveal query models the randomness exposure attacks which may be caused by malware or

careless disposal.
DBLeak query ‘approximately’ formulates the attack that A measures and records the WiFi finger-

prints Vi
′ (which is similar to Vi of D) for certain location index i, say based on limited WiFi fingerprint

samples.
LocReveal query models the known location attacks (ULA). The resilience of ULA requires that the

exposed locations will not affect the others. For example, the PPIL scheme proposed in [14] is subject to
known location attack. To get a location, the client in [14] would issue a set of camouflaged localization
requests that follow a similar natural movement pattern. However, if one of the client’s locations is
exposed, e.g., by posting a picture, then the server can simply identify which location request is the real
one.

LocTest query will be exploited to formulate the capability of an adversary on breaking the client’s
privacy. The job of the adversary is to distinguish the bit chosen by the LocTest query.

Note that we are the first one to generalize the practical attacks against PPIL schemes via the above
generic queries which have not been formalized in previous work [13, 15, 12].

Client Privacy. We first define a security experiment as follows.

SECURITY EXPERIMENT EXPCP
Π,A (κ,D): On input security parameter κ and a server’s database D, the

security experiment is carried out as a game between a simulator C and an adversary A based on a PPIL
scheme Π, where the following steps are performed:

1. The simulator C first initiates the game by realizing a collection of oracles and generating all
public/private key pairs for all λ + 1 honest parties and all other public information. C gives A
all public information {pkτ}λ+1

τ=1 , LT, APT and PD .

2. A may adaptively issue a polynomial number of InitCorruptO, InitHonestO, ExecutePPIL,
CorruptC, CorruptS, LocReveal, and RandReveal queries. At some point, A may issue a
single LocTest(τ∗,s∗) query.

3. At the end of the game, A may terminate and output a bit b′ as its guess for b of LocTest(τ∗,s∗)
query.

4. Meanwhile, the experiment would return a failure symbol ⊥ if one of the following conditions is
satisfied: (a) A has not issued a LocTest(τ∗,s∗) query; (b) The LocTest(τ∗,s) query returns a
failure symbol⊥; (c) A asked an InitCorruptO(τ∗,s∗,F∗) query to the test oracle; (d) A asked a
CorruptC(τ∗) query; (e) A asked either a RandReveal(τ∗,s∗) query or a RandReveal(λ +1, t∗)
query, where π t∗

λ+1 is the partner oracle of the test oracle; (f) A asked a LocReveal(τ∗,s∗) query
to the test oracle πs∗

τ∗ .

5. The experiment finally returns 1 if b = b′, and 0 otherwise.

We call an adversary as a ‘legal’ one if it runs an experiment without failure. A legal adversary
should not violate the rules defined in the above step 4). Note that violating one of the rules c) to f )
would ‘trivially’ break the client-privacy, i.e., asking the corresponding queries (specified in the rules)
would enable the adversary to easily distinguish the bit b chosen in the LocTest(τ∗,s) query without
breaking the underlying protocol. These situations should be therefore forbidden in the experiment.
Otherwise, it would always return 1.

11



Modeling Privacy in WiFi Fingerprinting Indoor Localization Zheng Yang and Kimmo Järvinen

Definition 3 (Client-privacy). The advantage of legal adversaries A in the above experiment is AdvCPΠ,A (κ,D) :=∣∣∣Pr[EXPCP
Π,A (κ,D) = 1]− 1

2

∣∣∣ . We say that a PPIL scheme Π is client-secure, if for all PPT legal adver-

saries A , the advantage AdvCPΠ,A (κ,D) is a negligible function in κ .

Server Privacy. Informally speaking, the server’s privacy is achieved if all polynomial time ad-
versaries are unable to generate a database D′ which can provide a similar function as the server’s real
database D. We may call a location calculated based on D′ as a fabricated location, and a location cal-
culated based on D as real location. Given two databases D and D′, we have the following similar event
(as exemplified in Figure 1):

• Similar Event (SE): For a client’s location query regarding WiFi fingerprint Fi = { f j}N
j=1, the

corresponding location Li and the fabricated location L′i have distance at most ρ , i.e., Dist(Li,L′i)≤
ρ , where ρ is a pre-defined difference threshold (in meter).

L
L′
ρ L′′

Floor 3

Floor 1

Floor 2

L′′

L L′
ρ

Figure 1: Similar event occurrence examples in horizontal (left) and vertical planes (right). The small black
dots represent the reference locations in LT. The red dot represents the real location L. The green dot represents the fabricated location L′ in
which the similar event occurs. The blue dot represents the fabricated location L′′ in which the similar event does not occur.

The term on ‘similar function’ of two databases can be roughly illustrated as follows. Given a
number of distinct client’s location queries, the occurrence rate of SE is larger than a pre-defined success
threshold α (e.g. α = 0.7). Let T F be a test set that consists of |T F |> M distinct fingerprints of random
locations. For example, one could generate a fingerprint F ∈ T F by randomly choosing an index i $← [M]
and running F := FPTSim(i). Let SimilarTest be a function that is used to test the functional similarity
between two databases. SimilarTest takes as input two databases D and D′ with their related reference
location lists LT and LT′ (respectively), and a test set T F , and outputs the test result in {0,1}. The
execution steps of SimilarTest comprises of the following:

• Initiate a SE count variable cnt := 0. Suppose that for a fingerprint Fi ∈ T F the real location which
is calculated based on Fi, D and LT is Li = (xi,yi,zi), and the fabricated location which is calculated
based on Fi, D′ and LT′ is L′i = (x′i,y

′
i,z
′
i). For i ∈ [|T F |], if Dist(Li,L′i)≤ ρ then cnt := cnt +1.

• Finally, it returns 1 if cnt
|T F | > α; otherwise, 0 is returned.

The parameters, which are relevant to the formulation of the server-privacy, are summarized in Table
1.

SECURITY EXPERIMENT EXPSP
Π,A (κ,D,LT,ρ,α,φ): On input security parameter κ , a server’s database

D, and a distance accuracy threshold ρ , the security experiment is carried out as a game between a
simulator C and an adversary A based on a PPIL scheme Π, where the following steps are performed:

1. The simulator C first implements a collection of oracles and generates all public/private key pairs
for all λ + 1 honest parties and all other public information. All public information are given to
A .
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Params Description
D real database of server
φ a security parameter specifying the number of DBLeak queries
ρ distance threshold between the real location and the

fabricated location
α probability threshold of SE

T F test set of random fingerprints

Table 1: Parameters of server-privacy.

2. A may issue a polynomial number of queries to InitCorruptO, CorruptC, ExecutePPIL,
RandReveal, and LocReveal respectively, and at most φ DBLeak queries.

3. Eventually, A may return a database D′ and a relevant reference location list LT′ that has M′

reference location. Meanwhile, the experiment would return a failure symbol ⊥ if A asked either
a RandReveal(λ +1, ·) query or more than φ queries to DBLeak.

4. Finally, the experiment returns SimilarTest(D,D′,LT,LT′,T F).

Definition 4 (Server-privacy). The advantage of a legal adversary A in the above experiment is
AdvSPΠ,A (κ,D,LT,ρ,α,φ) := Pr[EXPSP

Π,A (κ,D,LT,ρ,α,φ) = 1]. We say that a PPIL scheme Π is server-
secure, if for all PPT legal adversaries A , the advantage AdvSPΠ,A (κ,D,LT,ρ,α,φ) is a negligible func-
tion in κ .

We define the above model based on WiFi fingerprint database as an example. Of course, one could
simply modify our model for other types of PPIL schemes since each query aforementioned represents a
generic class of attacks against PPIL schemes. One may only need to customize the simulation environ-
ment and slightly modify the queries if necessary.

Database Hardcore. The volume of a database D is determined by the number M of reference
locations (that is related to the area of a building), the number N of APs, and bit size of each RSS value
|Rv|. However, there is a general problem on how hard it is for adversaries to generate a valid fabricated
database D′ without any useful information from a PPIL scheme using D. I.e. is the D′ itself hard to
build? This question is independent of any concrete PPIL schemes. If D′ is easy to generate without
breaking the PPIL scheme, then we do not need a PPIL scheme at all. Since the server could just publish
its database for all clients. Intuitively, the adversary should be very hard to generate a valid fabricated D′

that has a similar function as D since D′ also has a large number of bits to predict. In the following, we
are going to give a formal definition regarding the security assumption of a database (that is non-relevant
to PPIL schemes).

Definition 5. The security experiment for testing the hardness of forging a similar database for a target
database D is defined in the following:

EXPDBH
D (κ,D,LT,ρ,α,φ) :

(D′,LT′)←DDBLeak(·)(LT,ρ,α,φ), Return SimilarTest(D,D′,LT,LT′,ρ,α,φ).

The advantage of D which can ask at most φ DBLeak queries in the above experiment is
AdvDBH

D (κ,D,LT,ρ,α,φ) := Pr[EXPDBH
D (κ,D,LT,ρ,α,φ) = 1]. We say that a database D is hard to

forge, if for all PPT adversaries D the advantage AdvDBH
D (κ,D,LT,ρ,α,φ) is a negligible function in

κ .

It is straightforward to see that D is hard to forge if only a small portion of D is leaked via DBLeak to
the adversary and D has large M, N, and |Rv|, e.g., M = 505, N = 241 and |Rv|= 8 in the real database
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Figure 2: Average success number of distinct location queries based on fabricated database. Distances
are compared to real database (a) and simulated database (b).

[19, BUILDING1 NEW] which has M×N× |Rv| = 973640 bits at all. However, an open question is
how hard it is to create a valid fabricated database. Such hardness might be closely related to the structure
of specific building and database generation algorithm. In the future work, one is encouraged to formally
analyze the database hardcore assumption in the setting with the leakage of side-channel information,
such as adversaries’ own RSS measurements modeled by DBLeak query. In this paper, we just focus on
the formalism of server-privacy for PPIL schemes.

Leak threshold φ
Similar threshold ρ

0 1 2 3 4 5
0.5 0 0 0 0.01 0.86 1
0.45 0 0 0 0 0.05 1
0.4 0 0 0 0 0 0.38
0.3 0 0 0 0 0 0
0.1 0 0 0 0 0 0
0 0 0 0 0 0 0

Leak Similar threshold
threshold φ ρ = 5

0.42 0.962
0.41 0.785
0.39 0.185
0.38 0
0.37 0
0.36 0

Table 2: Success probability for α = 0.7 against real database in 100 tests (left) and in 1000 tests (right)
respectively.

Leak threshold φ
Similar threshold ρ

0 1 2 3 4 5
0.5 0 0 0.03 1 1 1
0.45 0 0 0 1 1 1
0.4 0 0 0 0.73 1 1
0.3 0 0 0 0 0 0.33
0.1 0 0 0 0 0 0
0 0 0 0 0 0 0

Leak Similar threshold
threshold φ ρ = 3

0.36 0.211
0.35 0.032
0.34 0
0.33 0
0.32 0
0.31 0

Table 3: Success probability for α = 0.7 against simulated database in 100 tests (left) and in 1000 tests
(right) respectively.
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4 Database Hardcore Analysis

In this section, we study the problem concerning: how hard is for an adversary to generate a similar
database (i.e., satisfying Pr[SE] > α). We investigate this problem in presence of adversaries which
may measure the fingerprints at some location herself. This implies that an adversary may have some
prior knowledge about the target database D. We are going to show if the number of leaked reference
fingerprints from D is not small, it might be hard to create a valid fabricate database.

We carry out our experiments based on two types of database: (i) a real WiFi fingerprint database
[19, BUILDING1 NEW], and (ii) a simulated database. There are 505 reference locations and 241 WiFi
access points in both databases. The first fingerprint of the simulated test database is generated randomly
with a zero threshold around 0.8. All other fingerprints in the simulated database are generated relying
on its adjacent one with a random derivation (e.g. ranging from 1 to 8). Hence, the simulated database
has many co-related fingerprints.

In order to generate a fabricated database (fD), we design an ‘automatic’ database similarity attack
(DSA). In this attack, we mainly make use of the leaked fingerprint from the real database (D) and a
guessing strategy in terms of the similarity of fingerprints to generate fD. Let µ be a similarity constant
specifying how many fingerprints can be derived from a leaked fingerprint (via DBLeak query) in a
similarity attack. It is not hard to see that the value of µ is determined by the structure of a database
D. We can calculate µ based on the average number of each reference fingerprint’s closed (similar)
fingerprints (e.g. in the sense of Euclidean distance). For the real database [19, BUILDING1 NEW], we
have µ = 2. Let φ be the leak threshold specifying the ratio of DBLeak queries, and qc = bφ ·Mc.

In the following, we roughly illustrate our attack steps for µ = 2:

• Ask qc DBLeak(i) queries to even indexes i (0 ≤ i ≤ 2 · qc), where qc ≤ bM
2 c. For 0 ≤ i ≤ 2 · qc,

set the i-th fingerprint in fabricated database as fD[i] := D[i].

• For all odd indexes j (1 ≤ j ≤ 2 · qc + 1), find two references indexes (i.e., r j and l j) which are
non-zero and near to j (in terms of the coordinates in LT). Then calculate the fingerprint fD[ j] by
an average of these two references indexes’ fingerprints as fD[ j] = (fD[r j]+ fD[l j])/2.

• For all other indexes t, search for a reference index j within a radius (e.g. 10 meters) centered by
t. The fD[t] is generated in terms of the following two disjoint cases:

– When j is found. For 1 ≤ ι ≤ N, if fD[ j][ι ] = 0 then fD[t][ι ] = 0; otherwise generate a ran-
dom value fD[t][ι ] $← [fD[ j][ι ]−RSSdev, fD[ j][ι ]+RSSdev](∈ [vmin,vmax]) where the constant
RSSdev (e.g. RSSdev = ∆) represents the expecting difference between these two fingerprints.

– When j is not found. For 1 ≤ ι ≤ N, sample a random float number rι

$← [0,1], if rι > 0.8
(where 0.8 is an approximate ratio of zeros in D)2, then fD[t][ι ] = 0; otherwise generate a
random value fD[t][ι ] $← [vmin,vmax].

The ideal cases of r j and l j in our attack strategy are expected to be j+1 and j−1. This is also why
we first choose one interval to disclose the fingerprints of even indexes. Such attack scenario is based
on the idea that adjacent location indexes may have very close fingerprints. Hence, the impact of leaked
fingerprints could be proliferated to other unexposed location indexes as many as possible.

In the real world, attackers may have better attack solution. We here just show some reference attack
results via the above attack. In particular, we carry out a number of experiments by gradually changing
the parameters, i.e., leak threshold φ , similar threshold ρ , and success threshold α , to show the effects
of them in our attack. We first do 100 tests for each different set of parameters to obtain general results.

2The rate of zeros can be roughly counted in terms of leaked fingerprints.
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After this, we did 1000 tests for specific significant parameters to obtain more fine results. Meanwhile,
we choose the nearest location index (in LT) obtained in a location query to check the similar event for
simplicity, i.e., k = 1 in the K-NN algorithm.

From Table 2, an adversary could have an overwhelming probability around the leak threshold φ =
0.4 when ρ ≤ 5 (which may be a tolerable difference). In other words, when φ > 0.35, an adversary (with
better attack algorithms) might be very likely to output a similar database. Figure 2 shows the average
success numbers for different sets of parameters. One can see that the success number is linear in leak
threshold for both types of target databases. For φ = 0.35 and ρ = 5, the average success number against
the real database is about 300 that is very close to the boundary of success condition for α = 0.7, i.e.,
α ·M = 0.7 · 505 = 353. However, for a highly inner co-related database (i.e. our simulated database),
the attack is much easier as shown in Table 3 and Figure 2 (b). Nevertheless, under resealable thresholds
φ = 0.3 and ρ ≤ 3, the database similarity attack might be very hard as well.

In terms of our experimental results, one could find out that the success probability of an adversary
is closely related to the similarity (distribution) of reference fingerprints that may be determined by the
mounted positions of APs. Hence, we suggest to carefully select the locations where APs are installed
to reduce the co-related fingerprints. Besides the form of the target database (which is determined by
a specific building), another factor might affect server-privacy is the number of non-zero RSS values in
each fingerprint. Reducing the zeros in a database might be useful to enhance server-privacy. One could
make use of our above attack scenario to test the security of the resultant database.

Remark 1. Here we just give some ideas and example experimental results for testing database hardcore.
In practice, adversaries may use different parameters (e.g. N and M) to create its own database. We
encourage researchers to develop better experiments to figure out more accurate results. The primary
goal of this paper is to formalize the server-privacy.

5 On the Security of the YJ Scheme

The YJ Scheme. We first review the PPIL scheme [12] recently proposed by Yang and Järvinen. The YJ
scheme is built from Paillier PKE Pai = (KeyGen, Enc,Dec) and two-party SFE protocol SF = (Σ,ev).
Paillier PKE scheme is used to protect a client C’s fingerprint F = ( f1, f2, . . . , fN). In the YJ scheme, the
server S should compute the distances between F and Vi (of its database D), where each distance di is
assumed to be the following Euclidean distance:

di = ||Vi−F ||2 =
N

∑
j=1

(vi, j− f j)
2 =

N

∑
j=1

v2
i, j +

N

∑
j=1

(−2vi, j f j)+
N

∑
j=1

f 2
j . (1)

SFE protocol is used to privately compute the location LC = (x,y,z) of C as the centroid of the k nearest
reference locations indexed by i1, i2, . . . , ik, where i1, i2, . . . , ik indicate distances such that di1 ≤ di2 ≤
. . .≤ dik ≤ d j for all j 6= i1, i2, . . . , ik.

PROTOCOL DESCRIPTION. When C subscribes to the location service, it runs (sk, pk) $← KeyGen(κ) to
generate a key pair (sk, pk) for Paillier PKE scheme with a sufficiently large κ (e.g. κ = 2048) and sends
pk = (n,g) to S. The protocol execution is shown in Figure 3.

Note that the randomness space RR = Zn may result in the blinded distance being wraparound over
Zn, i.e. a modular n operation is involved in the generation of the blinded distance.
Security Analysis. The security results of our scheme are shown by the following theorems. Here we
briefly analyze the theorems.
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C
(sk, pk) $← KeyGen(1κ )

S
Database D

Location Retrieval with F = ( f1, f2, . . . , fN)
For j ∈ [N]: For i ∈ [M]:

C j,0 := Enc(pk,−2 f j) C∆i,1 := Enc(pk,∑N
j=1 v2

i, j)

C1 := Enc(pk,∑N
j=1 f 2

j ) C∆i,2 := ∏
N
j=1 Cvi, j

j,0
Cdi :=C∆i,1 ·C∆i,2 ·C1

−
{{C j,0}N

j=1,C1}, pk
−−−−−−−−−−−−−−−→

(θ ,{CRcb,ι}θ
ι=1,{Rι}θ

ι=1)
← Algorithm 1({Cdi}M

i=1,M)

←−
{CRcb,ι}θ

ι=1
−−−−−−−−−−−−−−−

For ι ∈ [θ ]:
dι :=Dec(sk,CRcb,ι ) Produce f̂

I1 = x1 := {dι}θ
ι=1 x2 := {Rι}θ

ι=1, I2← ( f̂ ,x2)

←−
SF.Σ(I1, I2)

−−−−−−−−−−−−−−−→
Obtain SF.ev( f̂ ,x1||x2)

Figure 3: The YJ Scheme

Algorithm 1: Pack Encrypted Distance Set
Input: {Cdi}M

i=1 and M
Output: θ , {CRcb,ι}θ

ι=1, and {Rι}θ
ι=1

1 θ := 1; µ := M; RR = Zn
2 while µ > 0 do
3 t := κ−1

m
4 if t > µ then
5 t := µ

6 Ccb,θ := ∏
t
i=1 C2(i−1)m

dµ−i
; Rθ

$←RR; CRcb,θ :=Ccb,θ ·Enc(pk,Rθ )

7 µ := µ− t
8 if µ 6= 0 then
9 θ := θ +1

10 return (θ ,{CRcb,ι}θ
ι=1,{Rι}θ

ι=1)

Theorem 1. Suppose that the Paillier PKE scheme Pai is secure and the SFE scheme SF is secure, then
the YJ scheme with a database D is client-secure with

AdvCPYJ,A (κ,D)≤ (dλ ) · ((N +1) ·Advind-cpa
Pai,B (κ)+

M
2
·Advpri.indSF,E ,Φ(κ,1)).

Proof of Theorem 1. The proof is given following the game-based approach [23], which is summarized
in Table 4. We use a superscript ‘∗’ to denote an element of the test oracle.
Game 0. The first game is the real security experiment, i.e. all queries in this game are simulated
honestly in terms of the protocol specification. In particular, C uses the real fingerprint F∗ = { f ∗ι }N

ι=1
$←

FPTSim(i∗) to generate ciphertexts {{C∗j,0}N
j=1,C

∗
1} and {C∗Rcb,ι}θ

ι=1. Thus we have that AdvCPΠ,A (κ,D) =
Adv0.
Game 1. This game proceeds as before, but C aborts if it fails to guess the test oracle. Since there
are λ ·d clients’ oracles at all, the probability of a correct guess is at least 1/(d ·λ ). Thus we have that
Adv0 ≤ (d ·λ ) ·Adv1.
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Game Description & Modification
0 Real experiment. {{C∗j,0}N

j=1,C
∗
1} and {C∗Rcb,ι}

θ
ι=1 of the test oracle

are computed with F∗ = { f ∗ι }N
ι=1

$← FPTSim(i∗).
1 Abort if the challenger fails to guess the test oracle.
2 {C∗

ι ,0}N
ι=1 are computed with F∗′ = { f ∗ι

′}N
ι=1, but {C∗Rcb,ι ,C

∗
1}θ

ι=1 are
computed with F∗ = { f ∗ι }N

ι=1, where f ∗1
′ 6= f ∗1 but { f ∗ι

′}N
ι=2 = { f ∗ι }N

ι=2.
3.j Game 2= Game 3.1

j ∈ [N] In Game 3.j: f ∗ι
′ 6= f ∗ι for 1≤ ι ≤ j, but { f ∗ι

′}N
ι= j+1 = { f ∗ι }N

ι= j+1.
4 Generating C∗1 using a random squared RSS values.

∀{{C∗j,0}N
j=1,C

∗
1} and {C∗Rcb,ι}

θ
ι=1 are independent now.

5 A random location is chosen to answer the LocTest query

Table 4: Sequence of games for client-privacy.

Game 2. In this game, C changes the encrypted location query of the test oracle based on a fingerprint
F∗′ whose first RSS value f ∗1

′ is distinct to f ∗1 ∈ F∗ (chosen in InitHonestO(τ∗,s∗, i∗,rds∗) query). And
we require that F∗′ results in a location within an area determined by inss∗

τ∗ . This requirement can be
achieved by repeating the sampling procedure of F∗′. However, the SFE protocol instance of πs∗

τ∗ is still
run based on the real distances {d∗ι}θ

ι=1 which are generated based on F∗ and the fingerprint database
D and the random values of S’s oracle. If there exists an adversary A distinguishing the real location
(related to the encrypted location query) from a fabricated one, then we can use it to build an efficient
algorithm B to break the security of Pai. Note that the encrypted location query with F∗′ may imply a
random location in the specified area.

The main reduction idea is to let B submit (−2 f ∗1 ,−2 f ∗1
′) to the PKE challenger CPai to obtain

the challenge ciphertext C∗Pai, and set C∗1,0 = C∗Pai. The rest of the ciphertexts in the location query of
the test oracle are generated as before. Next, B computes a distance set {d∗ι }θ

ι=1 based on F∗, D and
{R∗ι }θ

ι=1 of her own choice. Then, B generates {C∗Rcb,ι}θ
ι=1 based on {d∗ι }θ

ι=1 instead. The simulation of
SFE protocol is performed using {d∗ι }θ

ι=1 and {R∗ι }θ
ι=1. Other oracles and the corresponding queries are

simulated by B as the previous game using the secrets of her own choice.
If C∗Pai encrypts −2 f ∗1

′ then the game is equivalent to this game since out∗1 is a ‘fabricate’ location
that is not computed based on the encrypted location query. Otherwise it is identical to the previous
game. Applying the security of Pai, we therefore obtain that Adv1 ≤ Adv2 +Advind-cpa

Pai,B (κ).

Note that the ciphertexts {C∗Rcb,ι
′}θ

ι=1 (cf. {d∗ι }N
ι=1) received by the test oracle are irrelevant to C∗1,0

and C∗1 (cf. f ∗1 in F∗). In the following, we are going to modify the game to let the ciphertexts {C∗Rcb,ι
′}θ

ι=1
are independent of all ciphertexts (i.e., C∗1 and {C∗

ι ,0}N
ι=1) in the location query.

Game 3. In this game, we choose a random fingerprint F∗ $← FPTSim(i∗) and a random fingerprint
F∗′ $←RN

v such that F∗′ results in a location area determined by inss∗
τ∗ . The ciphtertexts {{C∗

ι ,0}N
ι=1,C

∗
1}

of the test oracle are computed based on F∗′. But the ciphertexts {C∗Rcb,ι}θ
ι=1 are computed based on F∗,

D and {R∗ι }θ
ι=1. In order to show that no adversary can distinguish the above modification, we first define

a series of sub-games (Game 3.1, Game 3.2, . . . , Game 3.N), where Game 3.1 equals to Game 2, and
Game 3.N equals to this game.

In Game 3. j (for 2≤ j≤ N−1)), two fingerprints F∗′ and F∗ are generated (as before) such that the
RSS value sets { fι} j

ι=1 ∈ F∗ and { fι
′} j

ι=1 ∈ F∗′ are chosen to be pairwise distinct, and { f ∗ι }N
ι= j+1 ∈ F∗

and { f ∗ι
′}N

ι= j+1 ∈ F∗′ are identical. Similarly, F∗ is used to generate {{C∗
ι ,0}N

ι=1,C
∗
1} while F∗′ is used

to generate {C∗Rcb,ι
′}θ

ι=1. Analogously, if there exists an adversary which can distinguish Game 3. j from
Game 3.( j−1), then it can be used to break the PKE scheme Pai.

The reduction is quite similar to the previous game. Namely, we submit (−2 f ∗j ,−2 f ∗j
′) to the PKE
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challenger, receiving back a challenge ciphertext C∗Pai which will be assigned to C∗j,0. If C∗Pai is an
encryption of−2 f ∗j , then the simulation is identical to Game 3. j, otherwise it equals to Game 3.( j−1).
Since there are N−1 ciphertexts are changed in this game (comparing with the previous game), we have
that Adv2 ≤ Adv3 +(N−1)Advind-cpa

Pai,B (κ).
Game 4. In this game, we change the computation of C∗1 by encrypting a random instead. This will lead
C∗1 to be also independent of the fingerprint in the location query. With the similar proof argument in the
previous game, we have that Adv3 ≤ Adv4 +Advind-cpa

Pai,B (κ).

Game 5. In this game, the LocTest query returns a random location L∗′ (related to the area specified
by the adversary). The challenger C chooses a random masked distance set with an appropriate random
number set {R∗ι }θ

ι=1 to generate {C∗Rcb,ι}θ
ι=1. However, C simulates the SFE protocol view of the test

oracle using a simulator S (1κ ,L∗′,Φ( f̂ )) without {R∗ι }θ
ι=1.

Specifically, E first randomly chooses a combined distance set x = {d∗ι }N
ι=1, and produces a circuit

f̂ . Then, E asks a ExcuteSF(b,1,x, f̂ ) query to obtain vw∗1 = (T ∗1 ,γ
∗
1 ), where T ∗1 will be appended to T s∗

τ∗ .
However, E will abort if out∗1 implies a location which is out of the area determined by inss∗

τ∗ , since E
does not know the random values {R∗ι }θ

ι=1 which are chosen by the ExcuteSF(b,1,x, f̂ ) query. We here
can only expect that the randomly chosen x could result in a location L∗′ within the area of inss∗

τ∗ . The
lower bound of the abort probability is about 2/M < #inss∗

τ∗/M. If E does not abort, it would simulate
the SFE protocol instance of the test oracle and its S’s partner oracle using vw∗1 and its own secrets. Due
to the security of SF, we have that Adv4 ≤ Adv5 +

M
2 ·Adv

pri.ind
SF,E ,Φ(κ,1).

Note that in this game the location returned by the LocTest query is a truly random value which is
independent of the bit b chosen by the LocTest query and any protocol messages. Thus, the advantage
that the adversary wins in this game is Adv5 = 0.

Putting all together the probabilities from Game 0 to Game 5, and obtain the overall result of this
theorem.

Theorem 2. Suppose that the SFE scheme SF is secure, the database D is hard to forge, then the YJ
scheme is server secure with

AdvSPYJ,A (κ,D,LT,ρ,α,φ)≤ d · ` ·Advpri.indSF,E ,Φ(κ,2)+
θ ·d · `

2κ
+AdvDBH

D (κ,D,LT,ρ,α,φ).

Game Description & Modification
0 Real experiment.
1 Abort if two random values are equal.
2 The random values used to generate the ciphertexts {C∗Rcb,ι}

θ
ι=1 and

corresponding SFE protocol instance are different.
3 Apply database entropy assumption as Definition 5.

Table 5: Sequence of games for server-privacy.

Proof of Theorem 2. We summarize the proof of this theorem in Table 5. The proof proceeds via the
following games.
Game 0. The first game is the real security experiment. Thus we have that AdvSPΠ,A (κ,D) = Adv0.
Game 1. In this game, the challenger aborts if two random values used to blind the distance are identical.
Recall that the decrypted distances di (i ∈ [θ ]) are masked by fresh random numbers Ri (i ∈ [θ ]) chosen
by a server’s oracle. We claim di is collision-free with overwhelming probability about 1

2κ . In addition,
an adversary cannot obtain any useful information from the blinded distance since a modular n operation
is implicitly used in the generation of a blind distance. Therefore, we have that Adv0 ≤ Adv1 +

θ ·d·`
2κ .

Game 2. In this game, the challenger chooses valid random values (to result in a location in the
specified area), which are different from the ones used in the ciphertexts, to execute the SFE instances.
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Any adversary which can distinguish this game from the previous game can be used to break the party
2’s security of SF. Since there are d · ` instances, we have that Adv1 ≤ Adv2 +d · ` ·Advpri.indSF,E ,Φ(κ,2).
Game 3. Due to previous modifications, the adversaries A (in this game) cannot gain overwhelming
advantages via the protocol messages, so that it can only generate the fabricated database based on other
attack powers. If the database D used by the YJ scheme satisfies the database hardcore assumption (as
Definition 5), A cannot output a valid fabricated database as well. Therefore, we have Adv2 ≤ Adv3 =
AdvDBH

D (κ,D,LT,ρ,α,φ).

Putting all together the advantages in the above games, we have the overall results of this theorem.

6 Conclusion

We presented the first formal privacy model for Wifi fingerprint based PPIL schemes, where both client-
and server- privacy are formulated in a unilateral-malicious setting to cover state-of-the-art active attacks.
The client-privacy is defined based on the classic notion of indistinguishability, and the server privacy is
defined in a computational manner. The proposed model is verified by applying it for proving a recent
PPIL protocol. An interesting open question here is whether or nor our security analysis approach can be
applied to prove other kinds of privacy-preserving schemes which have a similar construction (i.e., using
Paillier PKE and SFE) to the YJ scheme, e.g., the protocols for face recognition [24, 25]. For theoreti-
cal interesting, the reader is encouraged to define a stronger security model in the full malicious setting
based on our model, and to proposed PPIL protocols which can be proven secure under such model. For
example, one could allow the active adversaries to send her own messages to oracles (masquerading as
either client or server). In the future work, it is also required to formally study the complexity of Defi-
nition 5. Nevertheless, it might be also interesting to consider whether or not it is possible to model the
server-privacy based on indistinguishability.
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[3] T. Roos, P. Myllymäki, H. Tirri, P. Misikangas, and J. Sievänen, “A probabilistic approach to wlan user
location estimation,” International Journal of Wireless Information Networks, vol. 9, no. 3, pp. 155–164,
2002.

[4] K. Kaemarungsi and P. Krishnamurthy, “Modeling of indoor positioning systems based on location fin-
gerprinting,” in Proc. of the 23th IEEE International Conference on Computer Communications (INFO-
COM’04), HongKong, China. IEEE, March 2004, pp. 1012–1022.

20



Modeling Privacy in WiFi Fingerprinting Indoor Localization Zheng Yang and Kimmo Järvinen

[5] E. Elnahrawy, X. Li, and R. P. Martin, “The limits of localization using signal strength: A comparative study,”
in Proc. of the First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communica-
tions and Networks (SECON’04), Santa Clara, California, USA. IEEE, October 2004, pp. 406–414.

[6] N. Swangmuang and P. Krishnamurthy, “Location fingerprint analyses toward efficient indoor positioning,”
in Proc. of 6th Annual IEEE International Conference on Pervasive Computing and Communications (Per-
Com’08), Hong Kong. IEEE, March 2008, pp. 100–109.

[7] V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piché, “A comparative survey of wlan location fingerprint-
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