A Secure Model For Efficient Live Migration of Containers

Zeynep Mavus and Pelin Angin*
Middle East Technical University, Ankara, Turkey
{e1670157, pangin} @ceng.metu.edu.tr

Received: August 3, 2019; Accepted: September 2, 2019; Published: September 30, 2019

Abstract

Cloud services have become increasingly widespread in the past decade due to their ability to reduce
the complexity and the cost of managing computers and networks. Cloud applications are run in
virtualized environments such as virtual machines and containers to be able to allocate resources in
an inexpensive manner. Both of these approaches require effective resource utilization, for which an
important enabling technology is live migration, which involves moving a service from one host to
another with the minimum possible downtime. Live migration is also required for system mainte-
nance, load balancing, and protecting services from attacks through moving target defense. While
migrating a service, the system should not be vulnerable to attacks. In this work, we propose a secure
model for efficient live migration of containers. Because the applications are isolated from each other
while running in Docker containers, checkpointing method was used to generate required migration
data. In our proposed model, we provide security of the migration data using secure authentication,
and ensuring all connections between the nodes are protected to provide communication security,
making the system protected against migration attacks. The efficiency of the migration system de-
signed based on the proposed model has been proven on stateless and stateful sample applications.
Experiments with applications running on the Docker container platform demonstrate that the pro-
posed approach achieves significantly better performance than its virtual machine live migration
counterpart.

Keywords: Containers, live migration, security.

1 Introduction

Cloud computing, which is one of the most popular computing paradigms of this decade, transforms IT
services to remote computing services over the Internet in an on-demand manner. Additionally, these
services can be configured according to the requirements of the customers. Because cloud customers
or users are not expected to pay for IT service infrastructure, buy the hardware and software resources
(such as licenses), cloud computing provides significant benefits to the customers in many aspects like
flexibility, portability and scalability.

While providing these benefits to the users, virtualization techniques are frequently utilized in the
cloud computing field to enable users to share the infrastructure, which makes service provisioning less
expensive. Without virtualization techniques, cloud providers would need to provide distinct resources
to their customers, which is possible, but brings high costs as a significant disadvantage.

In order to tackle the high service cost, virtualization technologies such as virtual machines (VMs)
and containers are used. In these cases, the whole performance of the cloud has a strong relation with
the performance of the VMs and containers. Other than performance issues, security concerns for cloud

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), 10(3):21 Sep. 2019
DOI:10.22667/JOWUA.2019.09.30.021

*Corresponding author: Pelin Angin, METU Department of Computer Engineering, Universiteler Mah. Dumlupinar Bulv.
No:1 Ankara/Turkey, Email: pangin@ceng.metu.edu.tr, Tel: +90 3122105532

21

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

systems are also strongly correlated with the security concerns for the virtualized environments used in
the cloud.

Containers are a new technology relative to VMs. Containerization technologies like OpenVZ [2],
LXC [5] and Docker [4] provide a different way of virtualization compared to classic VMs due to their
lightweight structure [36]. There are key differences between the two technologies: One difference is
that while VMs imitate the operating system kernel, containers make use of hardware and kernel of a
single host operating system in a shared manner. Containers encapsulate applications with their required
binaries in order to provide the application as a service [22]. Therefore, containers have less virtualization
cost and use less resources relative to VMs because of their lightweight nature [24]. Furthermore, since a
container does not need its own operating system, it uses only the resources required for the application
upon container start [21] [33]]. Both of the virtualization techniques have capability to provide increased
efficiency in the utilization of the resources in big data centers, which is achieved by the migration
of the encapsulated service. Live migration has become an increasingly popular topic because of its
contribution to the consolidation of services [8]. There are many other reasons to migrate a service
from a source host to a destination. These include system maintenance (for a software or hardware
update), load balancing, efficient resource utilization, service protection from attacks through moving
target defense, etc. There are many studies in the literature on VM live migration as in [19], [L16], [20].
In addition to those, migration management frameworks have also been developed for virtual machines,
such as OpenStack, to be able to apply load balancing between virtual machines.

Although VM migration has been extensively investigated and discussed in the cloud computing
arena, container migration does not have the same set of investigations in the literature, especially from
a security point of view, because it can be considered as a relatively new technology. Live migration of
containers can be vulnerable to many kinds of attacks such as eavesdropping, man-in-the-middle, denial
of service (DoS) etc. The migration system should take precautions for these types of attacks.

In this paper, we propose a live migration model for containers, which provides security of migration
data using secure authentication and data transfer protocols. The proposed model has been evaluated with
stateful and stateless applications, and promising results have been achieved in terms of performance
overhead of secure migration. The remainder of this paper is organized as follows: Section?] provides
background information on live migration and a summary of existing techniques for live migration of
VMs and containers. Section [3] explains the proposed secure live migration technique for containers.
Section [] provides the results of the experiments for secure live migration of sample application using
the proposed model. Section [5|concludes the paper with future work directions.

2 Background and Related Work

2.1 Live Migration Attacks

Live migration of containers/VMs is susceptible to active and passive attacks. Active attacks cause loss
of data integrity, whereas passive attacks cause the loss of sensitive data confidentiality. Some of the
most remarkable attacks can be listed as man-in-the-middle, DoS, overflow and replay attacks[27].

e Man-in-the-Middle Attack: Attackers can eavesdrop on the data while migrating from source host
to destination and modify data content, which could result in the loss of data integrity.

e Denial of Service (DoS) Attack: By using false resource advertisement, an attacker can attract
more virtual machines towards a specific machine. This will result in migrating virtual machines,
stealing the bandwidth resource by preventing the actual required migrations. This can lead to
serious problems in the cloud system, where migrations are started in an automatic manner.

22

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

e Overflow Attack: Stack overflow can be caused by attackers by creating congestion in the com-
munication channel traffic, which can result in the memory corruption of the running processes.

e Replay Attack: Attackers can re-transmit the previous replicates of memory pages to the des-
tination host where the changed ones are required. This happens because of frequent dirty page
occurrences. Attackers can also modify the order of memory pages sent to destination from source.
This results in ordering problems in the destination host. [27]]

2.2 Live Migration Security Factors

The factors that need to be achieved for making live migration secure are as follows:

e Access Control: Access control policies should be defined to ensure only users with granted priv-
ileges have control on the system [10].

e Authentication: Authentication is required between the source and the destination hosts for the
migration process[10].

e Non-Repudiation: All the actions of both the source and destination hosts should be observed.
While live migration is occurring, all activities should be logged|[/10]].

e Data Confidentiality: Data encryption is required while migrating data between source and desti-
nation hosts[|10].

e Communication Security: The data transmission channel should be protected on the migration
path between source and destination hosts.

e Availability: The system should be protected against DoS attacks to make resources available for
legitimate users.

e Privacy: The migration traffic is required to be isolated from the other networks in order to protect
the system from man-in-the-middle and sniffing attacks[/10].

2.3 Secure Live Migration of Virtual Machines

VM platforms handle the live migration problem within the concept of high availability by applying
checkpointing and record-and-replay strategies [[17]. Moreover, the security of the data is another issue
that needs to be handled in the live migration concept. In order to prevent attacks, many solutions have
been defined for virtual machines as given below.

In [29] the authors proposed a system with network isolation of the migration traffic. This approach is
mainly based on setting the migration network apart from the others. [[19]. In [35]] the authors proposed
a system using a Network Security Engine Hypervisor. In this architecture the physical resources are
accessible only by the hypervisor [19]. In [[15] the authors proposed a model utilizing the secure VM-
vITPM protocol. In the case that a Trusted Platform Module is included in the hardware, a Virtual
Trusted Platform Module (vTPM) might be implemented. In order to use in the migration traffic, an
authentication protocol providing security is presented by the vIPM module [19]]. In [32] the authors
proposed an improved version of the vIPM protocol for secure VM live migration. In this type of
vTPM protocol, an additional layer is appended. This additional layer has the Diffie Hellman (DH) key
exchange implementation.

In [30] the authors proposed a secure VM live migration model utilizing the IPSec Tunneling method.
IPSec Tunneling contains Internet Protocol Security (IPSec), which is a protocol in the network layer

23

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

which provides IP traffic security [19]. In [25]], the authors proposed a model for Inter Cloud Virtual
Machine Mobility, which contains inter cloud agents to create secure channels between proxies. Inter
Cloud proxies make the hosts, which are included in this mobility keep their IP address private. In
addition to that, unauthorized users will not be allowed to reach hosts that are utilized by this mobility.
An SSH tunnel is provided by the secure channel in between proxies. The aim of SSH tunneling is to
camouflage the details of the ”from” and to” nodes of the migration.

In [13] the authors separated the cloud domain into different sections with respect to security levels,
where it is the responsibility of the Reliable Migration Module (RMM) to manage the VM migration.
Four main operations are performed by this module. The initial operation is central security manage-
ment of resources that will also manage scheduling for all security levels. In the second operation of
RMM, integrity check and encryption are provided. The third operation is component security manage-
ment, which will separate nodes into different areas. The fourth operation is migration waiting queue
arrangement, which plans the VMs’ migration petitions.

In [26] the authors proposed a new way to secure VM live migration by utilizing RSA. RSA is a
public key cryptographic system to provide data transmission security. It has been released as a method
to make live migration secure by utilizing RSA encryption with the SSL protocol. They consider several
stages to migrate a VM using RSA with SSL. In order to achieve this aim, it computes the physical host
load. Then, by using pre or post copy they migrate memory from source to destination. In the end, RSA
is used to encrypt VM content and perform authentication.

In [19] the authors proposed a system model for VM live migration using runtime monitors. In this
architecture, including monitors is suggested for the whole migration event in the live migration proce-
dure. Therefore, for each hypervisor virtual machine, an independent monitor agent will be attached.
The main task of this agent is to watch different processes and detect any abnormal event. The struc-
ture consists of three main elements: Control Manager, Monitor Agents and Database Module. Control
Manager is the main part of the architecture. It gathers all migration requests from the different hypervi-
sors. Additionally, Control Manager assigns tasks to agents to watch the whole migration and owns the
permission to pause or end the migration. Each migration begins with the permission of this manager
[L9].

In [16] the authors proposed a system model for VM migration utilizing memory space prediction.
In order to decrease the data loss caused by the attacks on memory space and to perform the migration of
data in a secure manner, Virtual Machine Migration using Memory Space Prediction with compression
method is defined and developed [16].

In [28] the authors proposed a system model using AES encryption during migration. Firstly, accord-
ing to their requirements, resources are distributed to virtual machines. An under or overload is checked
continuously using a cloud monitoring system. In case of an underload or overload, the K-means clus-
tering algorithm is executed. When it finishes execution, VM migration is started. In order to provide
security, the AES encryption algorithm is used. As soon as the migration ends, the migrated data is
decrypted and resource allocation is applied. This process continues in a cyclic manner [28]].

2.4 Secure Live Migration of Containers

Due to the relative immaturity of the container technology, secure migration models for it are not as
well-established as those of VMs. One model that stands out is the ESCAPE live migration model[12].
ESCAPE is inspired from the survival techniques in nature. This approach is based on the moving target
defense mechanism by modeling the interaction between the attackers and their preferred victim hosts as
a predator looking for a prey game. ESCAPE uses runtime container (prey) live migration to overcome
attacks (predator). The whole process is driven by a behavior monitoring system, which is host-based
and observes containers for detecting intrusions/attacks.

24

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

In order to achieve checkpointing of a running application, the model employs Docker containers
that can run with the CRIU checkpoint tool to pause the running container and its attached applications,
taking a live memory content snapshot and any used documents/files. The images that are dumped are
saved in persistent storage. The initial step is setting up the configuration of the container in order to
host the application. To be able to monitor containers, the model employs an intrusion detection system.
The system is especially designed to observe Linux container behaviors. Based on intrusion detection
results, the migration process is initiated.

In the ESCAPE model, utilizing a virtual network interface with a specifically dedicated IP address
for each container is preferred to achieve runtime migration. The direct access right to a dedicated
network interface are given to applications in the container. ESCAPE deals with the runtime mapping by
local or network-wide mapping of interfaces and IPs.

ESCAPE initiates the migration process by choosing an appropriate destination host. The implemen-
tation utilizes the prey versus predator model to decide the next destination host to migrate the container
to. ESCAPE can also be capable of choosing the next destination with a distance logically far away to
escape from attackers. By definition, the logical distance depends on a diversity scale. If the destination
has more different settings on account of network, configurations and data center relation, it means that
itis a good candidate to become a new destination for ESCAPE. By this way, the model intends to select
a destination host to make the application of the same failure cause more complexity. After selecting
a suitable destination, ESCAPE mounts the shared storage, which keeps the running container and ap-
ply the network settings to provide network relocation. It insulates the destination host from the active
network by making its interfaces disabled and then begins the container process. When the container is
started, ESCAPE changes the ARP table to redirect the network traffic from the source to the destination
host and stops the source host. The migration process begins with checkpointing the container and termi-
nating the process on the source host, applying an ARP update in order to alter the MAC/IP assignment
of the previous server network interface to map the new one and resume the container and all related
applications on the destination.

ESCAPE is led by an intrusion detection system monitoring container behavior for possible attacks.
According to these attack indications, ESCAPE conducts a risk assessment, which determines whether
to migrate and where to migrate the running container to keep the victim away from the attacker[11].

2.5 Live Migration of Containers vs Virtual Machines

Machen et al. 18] proposed a layered framework for live migration of applications encapsulated either
in containers or virtual machines. Experiments were conducted to make comparisons based on the results
obtained when working with VMs and containers.

The framework aims at achieving good performance based on the need of frequent migrations in
the mobile edge cloud architecture. Mobile edge cloud is a network architecture, which provides cloud
services at the cellular network edge.

When users travel around, it is required to migrate their applications in order to take the advantage of
the mobile edge cloud architecture. The proposed layered framework is compatible with the applications
running in VMs and containers.

The authors separated the container state into different kinds of layers. These are the base layer,
instance layer and application layer. Base layer has the operating system and kernel with no application.
Instance layer is for holding applications and their states while running. Actually, application layer is a
division of the instance layer. It only holds the application copy when the application is idle. The state
when the application is running is only saved in the instance layer. By this subdivision, the application
is copied when the service is running in the instance layer. The base layer is required to be available
on each mobile edge cloud. Only the instance layer is migrated to the destination host. This layering

25

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

technique provides improved performance, achieving decreased downtime. When we need to migrate a
service application, we pause it first and migrate just the instance layer by making the assumption that
the base layer is existent in all the mobile edge clouds. The migrated service can be restored by using
the instance and the base layer together. Without the need to migrate the base layer in all the migration
processes, it is intended to reduce the size of the transfer data. An improved version of this technique
uses three layers, which includes an application layer in addition. This separates the application from the
instance layer into an additional application layer, which includes the idle version of the application and
the data specific to the application. With the inserted application layer, the instance layer is only required
to store the application’s in-memory state. When the migration process is started, the application layer
is first migrated while the service is being executed. After that, the service is paused and the instance
layer is sent to the target. By using all layers after the migration in the target node, the service can be
resumed. An iterative file synchronization is used to send just the different parts between the application
and instance layers.

Methods Virtualization | Checkpoint / Restore S?rnchromzatlon Security
File Transfer
Proposed Model Container CRIU SCP v
Layered Framework .
for LXC Container Complementary Tools RSYNC X
Layered Framework . .
for KVM Virtual Machine | Complementary Tools RSYNC X

Table 1: Comparison of Live Migration Methods

In the work of Machen et al.[18] the difference between VM and container migration is analyzed.
Experiment results show that containers (LXC was used for the experiments) provide an advantage over
VMs (KVM was used for the experiments) for the total migration time, application downtime and the data
transferred from the source node to the destination while migrating. The main reason is that containers
are lightweight relative to VMs and the container memory content is mostly related to the application
running inside the container. However, for the VMs that is different, i.e. the VM memory content is
related to a lot of other processes including background processes, which may be mostly unrelated to the
migrated service application.

Table [T] summarizes the differences between existing works and the model proposed in this paper,
which is described in detail in Section 3]

3 Proposed Model

This section describes the proposed model for secure live migration of containers.

3.1 Model Architecture

This section describes the proposed model architecture. In our proposed model, there are five main
components. Two of these are the source and destination instances. The remaining main components
are an application server, a database (DB) server and the client interface. As shown in Figure [T] all
components have secure connections established between them.

The application server behaves as the controller of our model that initiates the migration. It connects
to the instances by SSH and issues commands over that SSH channel. Over that channel, the application

26

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

server has the right to start, stop, kill, and remove the docker containers. In addition to that, it has the
right to completely shut down the instance machines. Because of storing authentication information in
the application server, no migration process can be initiated if the application server does not take action.

The application server creates the related SSH channels between the instances and itself in this model.
In order to achieve that, it creates an SSH channel between itself and the host instance (instance-1) first.
Then, it commands instance-1 to run the application on Docker, and start migration if requested. That is,
it commands instance-1 to send related checkpoint files to instance-2 (destination instance) by using the
SSH channel created by the parameters provided by the application server. Parameters are also provided
by using the SSH channel, which means that an SSH command is sent to instance-1 to connect it to the
other instance by using the SSH command parameters.

TR

SSL SSL
Connection Connection

SSH Connection \ { $5H Connection
.
SSL
Connection

EE

HTTP
Connection

Figure 1: Model Architecture

An SSL connection is used for connecting to the DB server. The SSL connection can be set up to
only allow connections from the specified IP addresses. By configuring SSL in this way, we make the
DB server only allow the connections requested by the application server and cloud instances. No other
machine with a different IP address is allowed by the database server.

The migration process operates different flows for stateless and stateful applications. While there are
common steps in both flows, such as security check and controlling the life-cycle of containers, transfer-
ring data between nodes is the separating point among these application types. Migration operations for

27

A Secure Model For Efficient Live Migration of Containers

Mavus and Angin

stateless and stateful applications is visualized in Figure [2| Details of this process are explained in the

following sections.

Initiate
Migration

(LM Agent Running)

Stateless
Application

Create Secure Connection with [ves]
Source Cloud Instance

[Mo] Create Secure Connection with Sour
Cloud Instance

A/

I

Checkpoint Container Application
Running on the Source Cloud Instan

\%__/

Compress Checkpoint Files

Kill Container on the Source
Cloud Instance

N)

Transfer Checkpoint Data to
Destination Cloud Instance

L

2

Kill the Container at the Source Cloud
Instance

&/

Create Secure Connection with w
Destination Cloud Instance

Create Secure Connection with
Destination Cloud Instance

Extract Checkpoint Files in the
Destination Cloud Instance

v

TN 7N Y

Start Container on the \\ ‘\f;___. Resume the Container at the
Destination Cloud Insta.nl:E/I NS Destination Cloud Instance
Complete Migration

SN N

Figure 2: Proposed Model Activity Diagram

3.2 Model Execution Plan for Stateless Applications

In our stateless application example, Clock Application, we retrieve the system time from cloud in-
stances. We created a table in the database to store the current instance time. The users logged into the
migration system, after navigating the clock tab should observe the clock timestamp with the provider
cloud instance IP on the screen. Because our instances are located in the same geographic location, they
have the same system time information. If the user navigates to the Clock tab by using its own browser
application after connecting to the application server over the Internet, the user can see the clock data
and this data is not affected by any user input and does not save any state at the execution time on the

instance machine, which makes this application stateless, indeed.

28

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

If any attack occurs on instance-1, the application server kills the container running the application
in it by sending the relevant command to instance-1. Then, it runs the same application on instance-2, in
order to continue to provide the service to the end user.

Although the service provider address is changed after the migration process, the user does not have
to change the address on the browser. This is because the application server is also a bridge between the
user and service providers. The application server reads the output of the running application and serves
the result to the end user. The instances that provide the service in the backstage write the application
output to the database on the database server. The output is retrieved by the application server from the
database and after parsing the output and rendering the new page, the application serves the output to the
end user.

#

‘ When instance-1 stops updating the database table
given below, instance-2 starts to update the daia to
provide service mihgration.

Eid | BEFVET_if e | Bl w
34 73166 226

SSL SS5L
Connection Connection

§SH Connection \ { §5H Connection
A
Docker commands are called . Docker commands are called

to kill the container. to create the container.

SSL
Connection

Application server continuously sends the query
E- fo the database fo refrieve the current ouiput of the service.

HTTP
Connection

Figure 3: Clock Application Execution Plan

3.3 Model Execution Plan for Stateful Applications

In our stateful application example, Face Recognition application, we give an image as input to the
application. This application performs detection of the faces in the given image, saves them to the

29

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

database, extracting the features of the given face and compares them with the images in the database.
We integrated model training functionality to the application, in order to make analysis of the migration
by making the application duration longer and making the checkpoint file size change dynamically. In
other words, we change the model training set size by providing parameters to the model training function
in the source code. In order to be able to take metrics on the system performance, this modification is
integrated to the application and does not affect the functionality of the application. It only affects the
application runtime duration and the complexity of the checkpoint and resume operations.

The application server also acts as a bridge between the client and the cloud instances, which means
that although the service provider address is changed after the migration process, the user does not have
to navigate to the new address of the service provider. Because the application depends on the user
input and is not required to execute infinitely as in the Clock application, we need to know the end of
the program execution and make the end user wait until the execution is finished. In order to achieve
that, we needed to save a status flag in the database located in the database server. This flag holds the
information on whether the result set has been updated or not. The application server waits until the flag
indicates that execution has ended. If the flag turns to 1, it means that the result is ready to display. The
application server again retrieves the output from the database. It also parses the result and renders the
page accordingly.

3.4 Satisfied Security Factors

The described container migration model achieves the security factors discussed in Section [2]as follows:

Access control, which requires that unauthorized users are not allowed to start, move and stop a
machine, is achieved with this model. In our case, the rights to perform these operations belong to the
application server, which acts like the control manager.

Authentication is achieved, because all the machines in the system authenticate to each other in
order to perform the required operations remotely. Instead of password-based authentication, we used
public key authentication with the help of strong key exchange and symmetric encryption algorithms.

Non-repudiation is also satisfied. The application server observes all the activities and handles the
exceptions. All the operations executing remotely are logged to the log files in the application server.

Data confidentiality is provided, too. While migrating, we use an SSH channel and the SFTP file
transfer protocol to guarantee data encryption between the source and the destination. This also enables
us to protect the migration process from man-in-the-middle attacks.

Communication security is provided, as the data transmission channel is protected via the SSH
protocol. Data integrity is also provided, as the SSH channel utilizes the available MAC algorithms for
integrity checking.

Availability is provided, as unauthorized users are not allowed to initiate a migration process, which
enables the system to prevent DoS attacks initiating unnecessary outgoing migrations in an increasing
manner, making the system resources unavailable to the authorized users.

The overflow attack is avoided, because the transmission channel is protected by the SSH protocol,
where attackers that are unauthorized users (who cannot perform public key authentication) cannot cause
congestion for the communication channel traffic.

The replay attack is achieved by re-transmitting the replicates of the dirty pages in a sequential
manner. In our scenario, only the checkpoint folder in a compressed file format is transmitted from
source to destination once for each migration. Besides, data integrity is satisfied by the SSH protocol,
which results in avoiding replay attacks.

30

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

This SSH connection is initiated by the
command sent by the application server.

‘ $5H Connection - ‘
" I .

1 bd e result_id « is_updated

b 1
SSL SSL
Connection Connection
S&H Connection $SH Connection

Input image is provided fo both instances
at the same time, in case of the immediate
need for migration.

SSL
Connection

Application server waits until
is_updated flag returns 1. At these period,

migration can take place in the back stage.
Ifit occurs, the flag is updated by instance-2.
Ifit does not, the flag is updated by instance-1.

*

HTTP
Connection

Figure 4: Face Recognition Application Execution Plan

4 Experiments

This section describes the experimentation setup used to analyze the overhead caused by the proposed
secure live migration model.

4.1 Experiment Setup

The experimental setup includes two identical Google Cloud [3] instances. One of them is the desti-
nation node, and the other one is the source node. The Checkpoint/Restore application (CRIU) runs
on a Dockerized image. This image is based on an Ubuntu distribution. The details of cloud instance
configurations are shown in Figure[3]

Throughout the document, these identical instances are named as instancel and instance2, which are
the source and destination machines on which the migration process is performed. The configuration
details of the application server and database server are provided in Figure [and Figure[7]

PostGreSQL 10.8 is installed on the database server in order to execute the SQL commands sent by

31

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

WebAppServer: Server

RAM = 3.75 GB
Processor = Intel{R) Xeon(R) CPU @ 2.30GHz
Disks =30 GB

-

Depl cr-',r
-

iR .08 LTS %:] Denlo Docker 17.04-ce : S:] CRIU 2.6 : 8:]
(Xenial) : 05 B RunsOn

—————————— Container Platform =~ — — — — — —|Checkpoint/Restore
App

Figure 5: Cloud Instance Details

WebAppServer: Server

RAM =1 GB
Processor = Intel(R) Xeon{R) CPU E3-1240 V2 @ 3 40GHz
Disks =30 GB

wexecutionEnvironments:
CentO5 Linux 7 (Core) : 05

wexecutionEnvironment: wexecutionEnvironments:
Python 3.5 Cpanel

wexecutionEnvironment» wexecutionEnvironment=
Apache Server PHP

Figure 6: Application Server Details

instances. In order to connect to the DB, we use the SSL protocol. PostgreSQL provides the ability to
give access to specific machines. Therefore, we specify the IPs of the instances and application server
in the PostgreSQL configuration files. This means that no machine other than cloud instances and the
application server can connect to the database to execute any query.

4.2 Applications Used in Experiments

Container live migration systems need to be analyzed with two kinds of applications: stateless and
stateful, as the system reaction can change based on the application type. For stateless applications, if

32

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

Database: Server

RAM =1 GB
Processor = Intel(R) Xeon(R) CPU @ 2.30GHz
Disks =17 GB

wexecutionEnvironments
Ubuntu 18.04.2 LTS : OS5

wexecutionEnvironments
PostGreSql 10.8 : Database

Figure 7: Database Server Details

Allow postgres user from the hosts with specified IP addresses to connect
to database named as "face".

TYFE DATABASE USER ADDRESS METHOD
host face stores 94.182.5.113/24 md5
host face st : 35.232.36.96/24 md5
host face store: 188.59.86.12/24 md5

Figure 8: SSL Connection Configuration

an attack is detected, the container is migrated to a new host without the need to save application state
and resume from that state. Therefore, the experiment with stateless applications does not include CRIU
tool utilization. For stateful ones, checkpointing is required to achieve the goal of preventing the loss of
service provided to the cloud client.

Clock Application For the stateless application example, a clock application is used. This application
mainly gives the system time as the output. The resulting system time with the instance IP address is
displayed on a browser on client machines.

Face Recognition Application For the stateful application example, a face recognition application is
used. In order to recognize faces, it uses the dlib library, which utilizes deep learning. One of the features
of this application is face detection, which means that it detects all the people’s faces seen on a photo.
The other feature is to identify the people’s faces that appear on a photo.

SSH Connection and File Transfer Application An application was developed in Python 3.3+ to
establish an SSH [6] connection between cloud instances and between an instance and the application
server. User inputs are forwarded from the source to the destination machine by using this secure channel.

33

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

Also, this application provides transfer of checkpoint files with SFTP [1]. In order to do that, SSH
is configured to provide remote login in the related machine. This application uses SSH Public Key
Authentication [7] to achieve connectivity between source and destination during the live migration
process in a secure way. The communication encryption and key exchange algorithms are handled by
the SSH server and client programs [34]]. There are also configurations provided to the users in order
to make a choice between the algorithms in order to manage the security level. The checkpoint folder
contains the application snapshot and it should be migrated in a secure manner. For SSH communication
encryption, AES algorithm in counter mode with a 256-bit key size is used [31]. For the key exchange
process, the Diffie Hellman Key Exchange algorithm is used with SHA-256 for hashing [14] [9].

4.3 Experiment Metrics

In this section, the performance of the proposed model is evaluated based on the metrics listed below.

e Total migration time refers to the time frame starting from the migration operation initialization,
and ending at the successful resume operation of the containerized application at the destination
host.

e Application downtime refers to the total amount of time passed between stopping the container-
ized application at the source and resuming it at the destination from where it stopped. In this time
period, the service becomes unavailable to the user in the background. Because of that, this is an
important metric to decide the performance of the migration technique. Downtime is the summa-
tion of the time needed to transfer files between source and the destination, stop the container at
the source and start it at the destination.

e File transfer duration refers to the time frame required to transfer all checkpoint files from source
host to the destination. This metric has a great impact on the downtime metric.

o Transfer file size refers to the size of the folder generated by CRIU. It varies according to the
application state and memory used at that time.

e Upload speed has a great impact on file transfer duration, which means it also has an impact on
the downtime metric.

e Checkpoint duration refers to the time frame required to take the application snapshot at a specific
time of the execution.

e Resume duration refers to the time frame required to resume an application at the destination
node from where it stopped on the source node.

4.4 Experiment Results and Discussion

The first step in the experiment is to run one container on the source node and migrate it to the destination
node. By using this step, the gathered data of the specified metrics during the whole migration process
is analyzed. For the stateless application, there is no need to checkpoint the application, therefore,
checkpoint related metrics are not applicable. For the stateful applications, all of the metrics given above
are applicable.

The results obtained in the first step of the experiment show that the above metrics have a strong
relation. Total migration time basically depends of the file size to be transferred during migration. In
addition to that, the migration process consumes system resources like network bandwidth, CPU time etc.
Unless there are sufficient resources on the source machine, the migration time is influenced negatively

34

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

from these parameters. Although the checkpoint file is not considered as too large to transfer between
nodes, the migration time can increase because of low bandwidth. The first step was repeated 10 times
by using the Python logging library, log files were generated in order to monitor the whole process and
get the duration of each function used in the live migration process.

The migration performance of the model can be evaluated by analyzing the total migration time and
downtime, which means that these are the main metrics to be analyzed. Downtime is a part of the total
migration time. Experiment results for the Face Recognition Application are shown in Figure (9, which
shows both the total migration time and downtime of containers.

Total Migration Time & Downtime

30
25
20

15

10
5
0
33
52 o
%0
126
171
183
a0 5oy
751

TRANSFER FILE (CHECKPOINT file) SIZE (in MB)

TIME IM SECONDS

W Migration Duraion (in sec) B App Downtime Duration (in sec)

Figure 9: Total Migration Time and Downtime

Downtime has a great impact on total migration time. However, there is still another factor, which
affects the total migration time other than the downtime. This factor is the file upload speed in the
migration channel between the source and the destination nodes. Figure [9| shows that both of the total
migration time and downtime increase when the transfer file size increases. However, it does not increase
linearly because of the non-linear network bandwidth between the source and the destination nodes.

Checkpoint and resume operations are also part of the total migration time. Relative to file transfer’s
effect on total migration time, checkpoint and resume durations have a smaller effect when migrating
one container from source to destination host as given in Figure [I0]

For the stateless application, the duration for killing the container on the source host, starting the
container on the destination host, downtime and total migration time metrics are the only applicable ones.
Downtime refers to the time frame between killing the container on the source and starting the container
on the destination. Total migration duration refers to all the migration preparation operations such as
establishing a secure SSH connection using public key authentication and removing the containers with
the same name on the hosts, before starting on the destination and after killing on the source. The

35

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

Checkpoint and Resume Duration
based on File Size

16
&
014
Hi12
e
2 1
08
=
=05
0.4
0.2

0

33
¥ e 126
7 ogey
224
2

TRANSFER FILE (CHECKPOINT FILE) SIZE (in MB)
m Resume Duration m Checkpoint
Duration

1

Figure 10: Checkpoint and Resume Duration

experiment was performed ten times and the results are provided in Table 2]

Kill Duration (sec) | Start Duration (sec) | Downtime (sec) Total Mlgratlon
Duration (sec)

0.711551905 0.563214064 2.454 3.289
0.57733798 0.55944109 1.87 2.577
0.650537014 0.559459925 2.426 3.097
0.546288013 0.568042994 1.888 2.481
0.538717031 0.559737206 1.764 2.346
0.64366889 0.557837963 2.408 3.075
0.65865612 0.556710005 2.392 3.171
0.657931805 0.5573771 2.386 3.162
0.637104988 0.55532217 2.396 3.15
0.665262938 0.55846405 2.423 3.23

Table 2: Stateless Clock Application Experiment Results

The stages of the application are given in Figure [IT] Kill duration, start duration and downtime are
the stages of the application migration. According to the graph the biggest part of the migration time
frame belongs to application downtime, which is the time between killing the container on the source
host and starting the new container on the destination host.

4.4.1 Multi User Test Scenario Results

For the stateless application example (Clock Application) in our experiment, there is no need to create
a new container for each user in the cloud instances. Because the service does not save any state, the

36

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

Migration Results on Stateless App

TIME IMSECOMNDS
L

o - B = BN = =
1 2 3 4 5 £ 7

TEST CASE NUMBER

B Kill Duration Start Duration Total M gration Duration

Figure 11: Stateless Clock Application Experiment Results

output of the service is saved in the database server periodically. Therefore one container is enough to
provide service to all users connected to the system.

For the stateful application example (Face Recognition Application), the service is not running in-
finitely. For each request taken from the user, a new container is created and started to run. When the
execution of the application is finished, the container is killed by using the command provided for the
Docker daemon. In order to provide isolation between the processes initiated based on the user requests,
we preferred creating a new container for each request taken.

When the number of containers increases, the checkpoint file size increases, as for each container
a new checkpoint folder is generated by the CRIU tool. After checkpointing all the containers, we
compress the folders into one and transfer this compressed file to the destination host. Experiments are
conducted with 1 CPU & 3.75 GB memory configuration. It is observed that the average upload speed
for the multi-user test case is 21.15 MB/sec. Experiment results are shown in Figure[12]

For the Face Recognition application, total migration time change according to file size and container
count are given in Figure [I2] The file size reaches gigabytes, and the file transfer process, which includes
encryption and decryption at the source and destination, relatively increases the total migration time.

In Figure we observed that the resume operation takes much longer time compared to the check-
point operation, when we increase the number of containers. Because when we migrate multiple con-
tainers at the same time, in order to speed up the checkpoint operation, each container is stopped after
checkpointing. However, in the destination host, while reading the checkpoint files from the disk, each
newly resumed application also starts to consume the resources. Each checkpointing operation results
in freezing one of the containers, but each resuming operation results in starting one of the containers.
Therefore, resource consumption increases rapidly because of that reason, which results in a long resume
duration relative to checkpointing.

4.4.2 Comparison with Layered Framework Experiments

The experiments conducted in [18] to analyze the live migration performance of the layered framework
proposed by the authors were performed with the following applications:

e Game Server Application: This is a server for an online game, which is used to transmit/receive
messages according to user position.

37

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

Total Migration Time and File Sizes

140 600
(7]

100 =
(r 400 o
= o
" B0 E
b= 300 2
= &0 =
= A

200
2 a0 5
- 100 =
2 20 =
=
0 0

3 10 20 25
MUMBER OF COMTAINERS

B SEe e—ieration Duraion

Figure 12: Multi-User Total Migration Time and Checkpoint File Sizes

e RAM Simulation Application: In order to simulate memory consumer applications, a script appli-
cation is used, which is named as RAM Simulation. The memory utilization of the application is
specified by the user as a parameter to that script.

e Video Streaming Application: This application requires to store a video of 50 MB in the mobile
edge cloud together with the application.

e Face Detection Application: This is an application used to detect faces in a video.

e No Application: This represents the operating system with no additional applications running.
This is used for analyzing the additional cost of the migration of the applications.

Three virtual machines were used to perform the experiments. The details of the VMs used in the
experiment setup are as given in Table 3}

Operating System Ubuntu 15.10
RAM 2 GB
Processor 2 vCPU
Intel Core i7 @ 2.6GHz
Link Bandwidth 100 Mbps

Table 3: Layered Framework Experiment Setup Machines’ Details

Two of the virtual machines used in that setup were used as mobile edge clouds on which the migra-
tion process takes place. The other virtual machines were used as users. Each virtual machine standing

38

A Secure Model For Efficient Live Migration of Containers

200

150

100

50

TIME IN SECONDS

Checkpoint and Resume
Duration

MUMBER OF CONTAINERS

B Checkpoint Dur &ion

B Resume Dur &ion

Figure 13: Multi-User Checkpoint and Resume Duration

Mavus and Angin

Resume Duraion

Checkpoint Dur aion

for a mobile edge cloud includes a KVM and LXC in the specified operating system in a nested manner
to be able to provide the service to the user. In those experiments, the rsync command was used for
iterative file system synchronization. Rsync is a command for copying and synchronizing files/folders
between remote machines used in Unix/Linux systems. Via using the rsync command, a Linux system
can be reflected to another system by performing synchronization of files, networks, data backups across
the source and destination machines. No encryption is performed with the rsync command on its own
unless a secure channel is used between the machines.

LXC Total Data Tranfer Size | LXC Total Migration Time | Downtime
(in MB) (in sec) (in sec)
No Application 1.4 6.3 2.0
Game Server 1.6 6.4 2.0
RAM Simulation | 97.1 19.8 15.3
Video Streaming | 7.4 8.5 33
Face Detection 10.0 15.5 3.7

Table 4: Total Migration Duration and Transfer Data Size for LXC

The experiment results as shown in Table [d]and Table [5|are obtained by computing the mean value
of the ten distinct executions.

Based on the experiment results, the authors state that containers’ performance is better than VMs’.

39

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

KVM Total Data Transfer Size | KVM Total Migration Time | Downtime
(in MB) (in sec) (in sec)
No Application 65.2 79.7 56.1
Game Server 69.7 80.9 58.7
RAM Simulation | 170.4 93.0 72.0
Video Streaming | 87.3 86.4 61.3
Face Detection 99.0 152.3 107.5

Table 5: Total Migration Duration and Transfer Data Size for KVM

The reason is that containers are lightweight compared to virtual machines, which means that the file
system and the memory context is related to the running application. On the other side, VMs can have
much more unrelated information to the application [18]].

When we compare the given results with the results of our performance analysis experiment results,
we can support the idea provided by the authors of [18]], which states container performance is better
than VM performance when live migrating the application. Although we have run our experiments with
instances having 1 vCPU and changing link bandwidth, we obtained better results especially compared to
KVM migration performance. Our architecture assumes that all the applications that need to be migrated
have already been installed to the potential migration machines. Therefore, in order to compare our
results with the layered framework, we need to use the data given in the Application Found column of
the results given in Table [and Table [5] If we compare the boundary values given in the test results, with
the 99 MB transfer data size, the migration process takes 152.3 seconds on average with 100 Mbps (12.5
MBps) bandwidth. However, the transfer data size close to 99 MB is migrated within approximately 13
seconds on average with 36 MBps bandwidth, which is much less than the KVM migration result. In
order to make bandwidth values of the experiments same, we can multiply the bandwidth of 12.5 MBps
with 3, which means that it will migrate 297 MB transfer data in that time frame, which can be migrated
approximately in 30 seconds in our model, which is still much less than the result obtained in the KVM
migration model. In addition to that, in this test scenario a 107.5 sec downtime is given in Table [5| Even
for transfer data of size 250 MB, our model downtime is measured as 11.127 seconds.

When we compare the results with the results given in Table [we see that the migration data size
is small with respect to our model. Although the size of the transfer data is smaller than the transfer data
obtained in our model, the total migration time takes longer with LXC. For instance, in 15.5-seconds
time frame, transfer data with size 10.0 MB can be migrated with 100 Mbps (12.5 MBps) bandwidth.
In our architecture, in that time frame, we could migrate approximately 126 MB of transfer data with
35 MBps bandwidth. In order to make bandwidth values of the experiments same, we can multiply the
bandwidth with 12.5 MBps with 3, it means that it will migrate 30.0 MB transfer data in that time frame,
which is still less than the our 126 MB result obtained in our test case.

In the layered framework, security issues are not mentioned, whereas our model’s main aim is to
achieve secure live migration. By using public key authentication, we also protect the passwords of the
instances. Instead of rsync, we used the sftp protocol over an SSH channel with the enabled channel
encryption mechanism.

5 Conclusion

Cloud computing provides an efficient common pool of hardware and software resources, which can be
scaled up and down in a simple manner, based on the various and continuously changing requirements

40

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

Results of Proposed Secure Model For Efficient Live
Migration of Containers

16 200
a .,
= 14 -
giz 150 =
w1 10 E
= g 100 H
s 5 @
F o4 50

rl

1 2 3 4 5 £ 7

TEST CASE NUMBER

Migration Duraion (in sec) App Downtime Duration (in sec) =—SEe (in MB)

Figure 14: Proposed Model Results with Face Recognition Application

of the users. Because the cloud services diminish the cost and complexity of resource management, it
has become preferred by users and the organizations. Cloud services as applications running in the cloud
are encapsulated in virtualized environments in order to lower the resource costs. Virtual machines and
containers are utilized to create a virtual environment for cloud services. In order to achieve effective
resource utilization, live migration should be supported by these virtualization techniques.

Live migration, by definition, is the process of moving a running service between different physical
or cloud machines. In addition to its contributions to efficient resource utilization, live migration also
plays an important role for system maintenance, load balancing and applying moving target defense
techniques to make services avoid attacks. Based on the small occupied space in memory and time frame
required to start up a service fast, the container technology has become a popular alternative for VMs
[23]]. While there are many studies in the literature on VM migration issues, secure container migration
is a relatively new topic that need further exploration.

In this work, we propose a model to apply live migration on containers in a secure manner. Docker
containers were used to implement the model and conduct the experiments in this study. By using Docker
containers, faster and more lightweight migration is possible. In the proposed model, the checkpointing
approach is used to take the snapshot of the running application and resuming functionality on Docker
container services. Via this method, we achieved decreased transfer file size, which affects model effi-
ciency and the time required to transfer data in a secure way, over an encrypted channel. In our proposed
model, in order to provide communication security and make the system protected against migration
attacks, we provide security of the migration data using secure authentication, and ensuring all connec-
tions between the nodes are protected. The efficiency of the migration system designed based on the
proposed model has been proven on stateless and stateful sample applications. Experiments with sample
applications running on the Docker container platform demonstrate that the proposed approach achieves
significantly better performance than its virtual machine live migration counterpart.

As future work, optimizations on the multi-user scenario should be applied. In addition to that,
a machine learning algorithm can be developed in order to decide the migration process source and
destination nodes. In our model, the application server acts like a control manager for the migration

41

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

process. In order to avoid single point of failure, the application server can be distributed into multiple
application servers.

References

[1] “SSH File Transfer Protocol,” https://www.ssh.com/ssh/sftp/, [Online; accessed on September 2, 2019].

[2] “OpenVZ Containers,” https://openvz.org/Main, [Online; accessed on September 2, 2019], 2005.

[3] “Containers at Google,” https://cloud.google.com/containers/, [Online; accessed on September 2, 2019],
2008.

[4] “Docker Container Technology,” https://www.docker.com/, [Online; accessed on September 2, 2019], 2013.

[5] “Linux Containers,” https://linuxcontainers.org/, [Online; accessed on September 2, 2019], 2013.

[6] “Understanding the SSH Encryption and Connection Process,” jhttps://www.digitalocean.com/community/

tutorials/understanding-the-ssh-encryption-and-connection-process, [Online; accessed on September 2,
2019], 2014.
[7] “SSH Public Key Authentication,” https://www.tecmint.com/ssh-passwordless-login-using-ssh-keygen-in-5-easy-steps/,
[Online; accessed on September 2, 2019], 2015.
[8] “Container Live Migration,” https://www.infoq.com/articles/container-live-migration, [Online; accessed on
September 2, 2019], 2016.
[9] M. Ahmed, B. Sanjabi, D. Aldiaz, A. Rezaei, and H. Omotunde, “Diffie-Hellman and Its Application in
Security Protocols,” International Journal of Engineering Science and Innovative Technology, vol. 1, no. 2,
pp. 69-73, 2012.

[10] M. Aiash, G. Mapp, and O. Gemikonakli, “Secure live virtual machines migration: Issues and solutions,”
in Proc. of the 28th IEEE International Conference on Advanced Information Networking and Applications
Workshops (WAINA’14), Victoria, British Columbia, Canada, no. March. IEEE, 2014, pp. 160-165.

[11] M. Azab, B. Mokhtar, A. S. Abed, and M. Eltoweissy, “Toward Smart Moving Target Defense for Linux
Container Resiliency,” in Proc. of the 41st IEEE Conference on Local Computer Networks (LCN’16), Dubai,
United Arab Emirates. 1EEE, November 2016, pp. 619-622.

[12] M. Azab, B. M. Mokhtar, A. S. Abed, and M. Eltoweissy, “Smart Moving Target Defense for Linux Container
Resiliency,” in Proc. of the 2nd IEEE International Conference on Collaboration and Internet Computing
(CIC’16), Pittsburgh, Pennsylvania, USA. 1EEE, November 2016, pp. 122-130.

[13] Y. Chen, Q. Shen, P. Sun, Y. Li, Z. Chen, and S. Qing, “Reliable migration module in trusted cloud based on
security level - Design and implementation,” in Proc. of the 26th IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW’12), Shanghai, China. 1EEE, May 2012, pp. 2230-2236.

[14] David A. Carts, “A Review of the Diffie-Hellman Algorithm and its Use in Secure Internet Protocols,” SANS
Institute, Tech. Rep., 2001.

[15] P. Fan, B. Zhao, Y. Shi, Z. Chen, and M. Ni, “An improved vITPM-VM live migration protocol,” Wuhan
University Journal of Natural Sciences, vol. 20, no. 6, pp. 512-520, December 2015.

[16] G.J.Jeincy, R. S. Shaji, and J. P. Jayan, “A secure virtual machine migration using memory space prediction
for cloud computing,” in Proc. of the 2016 IEEE International Conference on Circuit, Power and Computing
Technologies (ICCPCT’16), Nagercoil, India. 1EEE, March 2016, pp. 1-5.

[17] W.Liand A. Kanso, “Comparing containers versus virtual machines for achieving high availability,” in Proc.
of the 2015 IEEE International Conference on Cloud Engineering (IC2E’15), Tempe, Arizona, USA. 1EEE,
March 2015, pp. 353-358.

[18] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live Service Migration in Mobile Edge
Clouds,” IEEE Wireless Communications, vol. 25, no. 1, pp. 140-147, February 2018.

[19] A. M. Mahfouz, M. L. Rahman, and S. G. Shiva, “Secure live virtual machine migration through runtime
monitors,” 2017 10th International Conference on Contemporary Computing, 1C3 2017, vol. 2018-Janua,
no. August, pp. 1-5, 2018.

[20] V. Medina and J. M. Garcia, “A Survey of Migration Mechanisms of Virtual Machines,” ACM Computing
Surveys (CSUR), vol. 46, no. 3, pp. 1-33, January 2014.

42

https://www.ssh.com/ssh/sftp/
https://openvz.org/Main
https://cloud.google.com/containers/
https://www.docker.com/
https://linuxcontainers.org/
https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process
https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process
https://www.tecmint.com/ssh-passwordless-login-using-ssh-keygen-in-5-easy-steps/
https://www.infoq.com/articles/container-live-migration

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

A. A. Mohallel, J. M. Bass, and A. Dehghantaha, “Experimenting with docker: Linux container and baseos
attack surfaces,” in Proc. of the 2016 International Conference on Information Society (i-Society’16), Dublin,
Ireland. Infonomics Society, October 2017, pp. 17-21.

P. E. N, F. J. P. Mulerickal, B. Paul, and Y. Sastri, “Evaluation of Docker containers based on hardware
utilization,” in Proc. of the 2015 International Conference on Control Communication and Computing India
(ICCC’15), Trivandrum, India. 1EEE, November 2015, pp. 697-700.

S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete Container State Migration,” in Proc. of
the 37th IEEE International Conference on Distributed Computing Systems (ICDCS’17), Atlanta, Georgia,
USA. 1IEEE, June 2017, pp. 2137-2142.

S. Nadgowda, S. Suneja, and A. Kanso, “Comparing Scaling Methods for Linux Containers,” in Proc. of
the 2017 IEEE International Conference on Cloud Engineering (IC2E’17), Vancouver, British Columbia,
Canada. 1EEE, April 2017, pp. 266-272.

K. Nagin, D. Hadas, Z. Dubitzky, A. Glikson, I. Loy, B. Rochwerger, and L. Schour, “Inter-cloud mobility of
virtual machines,” in Proc. of the 4th Annual International Conference on Systems and Storage (SYSTOR’11),
Haifa, Israel. ACM, May 2011, pp. 1-12.

V. P. Patil and G. a. Patil, “Migrating Process and Virtual Machine in the Cloud: Load Balancing and Security
Perspectives,” International Journal of Advanced Computer Science and Information Technology, vol. 1,
no. 1, pp. 11-19, 2012.

J. B. Princess, G. Jeba, L. Paulraj, and I. J. Jebadurai, “Methods to Mitigate Attacks during Live Migration
of Virtual Machines — A Survey,” International Journal of Pure and Applied Mathematics, vol. 118, no. 20,
pp- 3663-3670, 2018.

S. Sengole Merlin, N. M. Arunkumar, and M. A. Angela, “Automated Intelligent Systems for Secure Live
Migration,” in Proc. of the 2nd International Conference on Inventive Communication and Computational
Technologies (ICICCT’18), Coimbatore, India. 1EEE, April 2018, pp. 1360-1371.

J. Shetty, A. M R, and S. G, “A Survey on Techniques of Secure Live Migration of Virtual Machine,” Inter-
national Journal of Computer Applications, vol. 39, no. 12, pp. 34-39, 2012.

A. Tamrakar, “Security in Live Migration of Virtual Machine with Automated Load Balancing,” International
Journal of Engineering Research & Techonology, vol. 3, no. 12, pp. 806-811, 2014.

B. Thiyagarajan and R. Kamalakannan, “Data integrity and security in cloud environment using AES algo-
rithm,” in Proc. of the 2014 International Conference on Information Communication and Embedded Systems
(ICICES’14), Chennai, India. 1EEE, February 2014, pp. 1-5.

X. Wan, X. Zhang, L. Chen, and J. Zhu, “An improved vIPM migration protocol based trusted channel,” in
Proc. of the 2012 International Conference on Systems and Informatics (ICSAI’12), Yantai, China. 1EEE,
May 2012, pp. 870-875.

M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. De Rose, ‘“Performance evalu-
ation of container-based virtualization for high performance computing environments,” in Proc. of the 2013
21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’13),
Belfast, UK. 1EEE, February 2013, pp. 233-240.

T. Ylonen, “SSH - Secure Login Connections over the Internet,” in Proc. of the 6th USENIX Security Sympo-
sium (USENIX Security’19), San Jose, California, USA, July 1996, pp. 37-42.

F. Zhang and H. Chen, “Security-preserving live migration of virtual machines in the cloud,” Journal of
Network and Systems Management, vol. 21, no. 4, pp. 562-587, December 2013.

Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A Comparative Study of Containers and Virtual
Machines in Big Data Environment,” in Proc. of the 11th IEEE International Conference on Cloud Computing
(CLOUD’18), San Francisco, California, USA, vol. 2018-July. 1EEE, 2018, pp. 178—185.

43

A Secure Model For Efficient Live Migration of Containers Mavus and Angin

Author Biography

Zeynep Mavus received the bachelor’s degree in computer engineering in 2013 and
the M.S. degree in computer engineering in 2019, both from Middle East Technical
University, Turkey. She is currently a software engineer at Aselsan in Ankara, Turkey.
Her research interests include cloud computing, virtualization technologies and ma-
chine learning.

Pelin Angin received the B.S. degree in computer engineering from Bilkent Univer-
sity, Turkey, and the Ph.D. degree in computer science from Purdue University, West
Lafayette, IN, USA. She was a Visiting Assistant Professor (2014-2015) at Purdue
University, and then a Postdoctoral Research Associate, until 2016. She is currently
pursuing her academic career with Middle East Technical University, Ankara, Turkey,
as an Assistant Professor of computer engineering. She is affiliated with the S2RL
Ml and WINS research laboratories. Her research interests lie in the fields of distributed
systems, cloud computing, and IoT security.

44

	Introduction
	Background and Related Work
	Live Migration Attacks
	Live Migration Security Factors
	Secure Live Migration of Virtual Machines
	Secure Live Migration of Containers
	Live Migration of Containers vs Virtual Machines

	Proposed Model
	Model Architecture
	Model Execution Plan for Stateless Applications
	Model Execution Plan for Stateful Applications
	Satisfied Security Factors

	Experiments
	Experiment Setup
	Applications Used in Experiments
	Experiment Metrics
	Experiment Results and Discussion
	Multi User Test Scenario Results
	Comparison with Layered Framework Experiments

	Conclusion

