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Abstract

Android malware are currently the only practical vector to bring security attacks to smartphone and
tablets. Malware detection and prevention of zero day attacks requires a prompt analysis, which
would benefit in terms of timeliness and accuracy, from being collaborative. This paper presents
D-BRIDEMAID a reputation-based framework able to analyse Android applications, with the aim to
exploit an hybrid static/dynamic framework for malware analysis to initiate a distributed app evalu-
ation, involving real users willing to test the security features of an app on their device. This work
focuses on the definition of the collaborative protocol, the reputation based incentive system and the
models to compute revenue for users and security of apps. Simulative and real world experiments
are presented to validate the model.
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1 Introduction

Android malicious applications (apps) are growing in last years [1]. As a matter of fact, 98% of mobile
malware targets Android environment [2]: in 2016 every 4.6 seconds a new malware payload is emerg-
ing, while in the first quarter of 2017 this only takes 4.2 seconds [3]. Over one million of mobile malware
apps is currently distributed in the wild, showing always new attack vectors, together with several ag-
gressive techniques able to hide the malicious payload and cloaking its effect, deceiving both users and
current antimalware technologies [4]. Early detection of Android malicious payloads requires an active
monitoring of the main channels used for app distribution, and rigorous app analysis which should not be
limited to the standard, easy-to-deceive signature matching. In fact, in order to maximize the possibility
of detecting unknown threats i.e., the so-called zero-day attacks, the detection method should consider
static [5] and dynamic analysis techniques [6, 7], basically based on behavioral analysis, hardly deceived
by widespread and common obfuscation techniques employed by malware writer with the aim to elude
the signature-based detection [8] provided by common antimalware technologies. However, this analy-
sis process is computationally heavy and time consuming, hence difficult to apply on a large scale as a
standalone service. This consideration is further worsened by the fact that often dynamic still automatic
analysis is not effective, due to the ability of malware payloads to recognize when they are runned inside
an automated testing environment such, for instance, emulators and sandbox [9]. This is the reason why
app analysis might require direct interaction with real world users, which maximize the needed effort and
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can make the malware analysis for early detection of zero day threats, unfeasible on a large scale. We
argue that for a possible solution, it is necessary to design a collaborative approach [10], which leverages
on real device users, with a modest security awareness, with the aim to analyze several malware samples
in a shorter amount of time, still able to handle the introduced issues on trust and reliability.

Starting from these considerations, in this paper we propose D-BRIDEMAID (Distributed BRIDE-
MAID) a distributed framework to enable the cooperative analysis of Android apps , aimed at early
detection of new threats through distributed dynamic analysis. The framework leverages on BRIDE-
MAID (Behavior-based Rapid Identifier Detector and Eliminator of Malware for AndroID), an accurate
software for malware detection based on static and dynamic analysis, which obtains an accuracy equal
to 99.7% on a dataset of more than 3k real world malicious apps. This extension of the framework pro-
posed in [6], is designed to automatically analyze the behavior of apps on the devices of a pool of users,
collecting their reports and deciding on the trustworthiness of the tested app. These users, willing accept
to participate to a collaborative program for malware detection in which they install on their devices new
apps, potentially malicious, where the BRIDEMAID analysis software is running. Based on the observed
behaviors and eventually raised alerts, the user can send a report for every evaluated apps, deeming it as
Genuine or Malicious. The report of different users for the same app are collected in order to assess if an
app is malicious or genuine, and weighted according to parameters concerning the user reputation and
the reliability of report, based on analysis time and additional parameters which will be discussed in the
following. Since the envisioned model is Peer-to-Peer (P2P), without hypothesis of trust on users, the
proposed framework exploits a reputation management algorithm to detect and tackle eventual attackers,
not considering their reports, once they have been detected.

The main contribution of the paper are the following:

• We design a distributed framework for analysis of Android malicious applications which exploits
a set of cooperating users and advanced techniques for monitoring and detect malicious behaviors
based on static and dynamic analysis.

• We propose a mathematical model with the aim to evaluate the reliability of different reports and
combining them into a single index which expresses the overall reliability of an app evaluation.

• We report a set of features relevant in the evaluation of the reliability of an app testing, also related
with specific behaviors.

• We introduce a probabilistic model for incentivizing users in participating and behaving correctly
and with the aim to compute the correct revenue value.

• A set of simulative experiments is reported in order to evaluate the framework and mathematical
model we propose, measuring its reliability at the variation of the number and type of attackers,
considering four different attacker models and the possibility of colluding users.

• Finally we evaluate the proposed framework through a set of real world experiments involving a
limited group of real users, collaboratively testing real apps on real devices in order to demonstrate
that the effectiveness of the proposed solution in the real world environment.

This paper extends the work presented in [11] by adding a new incentive model related to the data
sharing framework (Section 4), a more complicated attack model for new simulative experiment which
also considers colluding attackers (Section 5) and a set of real world experiments with real users and
real devices using real apps. The remainder of the paper is organized as follows. Section 2 reports
the concept of static, meta data, and dynamic analyses of Android apps better explored in [6] and [8].
Section 3 describes the proposed framework, attacker model, and the workflow. Also it introduces the
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theoretical aspects of reliability, users’ reputation and result’s validity calculation. Section 4 presents all
the theoretical aspects of the incentive-based mechanism for information sharing. Section 5 validates
our framework showing a set of simulative experimental results with four different attacker and several
configurations. Section 6 illustrates the real world experiments performed. Section 7 reports a list of
related work in order to explain the current state of the art related to the malware detection in mobile
environment, while Section 8 concludes the paper.

2 Background

In this section we describe the BRIDEMAID approach i.e., the on device analysis framework for An-
droid applications able to combine static and dynamic analysis in order to discriminate between malware
applications and legitimate ones. The proposed framework exploits a multi-level and multi-feature anal-
ysis including permission scoring and evaluation, opcode analysis, kernel level monitoring and API calls
hijacking. Further details can be found in [6].

2.1 Static Analysis

With regards to static analysis, we take into account a binary classification problem in which an unknown
application has to be classified as malicious or legitimate. The static analysis phase consists of two
phases; (i) a learning phase: in this phase the classifier is trained using a labelled dataset of applications,
and (ii) the classification phase: in this phase an input application is classified as malicious or legitimate.
We consider as feature ngrams of smali code with n = 2 because a previous work [12] demonstrated
that the sequences of two consecutive opcodes exhibit better performance in Android malware detection.
Furthermore, BRIDEMAID exploits an analysis of meta-data gathered from the manifest file in order
to analyze the permissions required by the application under analysis with the aim to compute a threat
score. Furthermore, we consider the market of provenance, the download number, the user rating and the
developer reputation (if available). All these parameters are combined through the Analytic Hierarchy
Process [13], able to decide whether the application under analysis should be labelled as Trusted or
Suspicious. Mobile applications which are considered trusted can be executed on the device without
additional check on the performed behaviors. Applications which instead are classified as suspicious
will be subject to the control of the dynamic analysis monitors, as discussed in the following.

2.2 Dynamic Analysis

The dynamic analysis, considers both global features, i.e. related to the device and operative system,
and local ones which are related to specifically monitored application under analysis. This analysis is
based on two core elements that monitor different sets of features: the Global Monitor and the Per-App
Monitor. The Global Monitor is able to observe the device and OS features at three different levels,
i.e. kernel (SysCall Monitor), user (User Activity Monitor) and application (Message Monitor). These
features are monitored regardless of the specific app or system components generating them, and they are
used in order to shape the current behavior of the device itself: these behaviors are classified as genuine
or malicious by a classifier. The Per-App Monitor, implements a set of known behavioral patterns with
the aim to monitor the actions performed by the set of suspicious apps.
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3 Architecture and Workflow

In following section we explain the architecture of D-BRIDEMAID, introducing the components, their
interactions and the operative workflow.

3.1 System Model

Figure 1 depicts the main components of the envisioned architecture. As shown, the apps are stored

Figure 1: Architecture of the proposed framework.

in a cloud storage which also acts as orchestrator for the whole framework. The main actors of the
framework are the app testers, which are users that agree to participate to this app evaluation process.
Tester devices are all equipped with D-BRIDEMAID, which acts as a dynamic Intrusion detection Sys-
tem (IDS), reporting to the user suspicious behaviors. The testers willing offer their devices and their
app interaction time, being aware that both their mobile devices and the contained information might
be exposed to the risk of malicious apps. This risk is strongly mitigated by the effectiveness of BRIDE-
MAID, which detects and stops malicious identified behaviors. Moreover, testers receive a reward for the
service they are offering and the risk they are taking. The reward, which could also be monetary-based,
is used as incentive for user participation and together with a reputation-based algorithm discussed in the
following, fosters a correct user behavior. After evaluating an app, the user submits a report, based on
eventual BRIDEMAID alerts, deeming the tested app either as malicious or genuine. Reports of testers
concerning every analyzed app are then collected by an Aggregator which gets a decision on the app
trustworthiness, out of all the received reports.

3.2 On Device App

The D-BRIDEMAID framework is composed by an host application to install on the tester device. It is
a lightweight application and does not hinder the everyday smartphone usage.

Once installed, the D-BRIDEMAID host application authenticates the tester through the IMEI and
the IMSI in order to ensure that the application to test is running using a real environment and not on an
emulated one (we check this because mobile malware usually do not perform malicious action if executed
on emulated enviroment, this happens usually to elude honeypot. The D-BRIDEMAID application, once
the user is authenthicate to the framework, proposes a list of unknown applications to test. The D-
BRIDEMAID application shows, for each application, the results derived from static analysis module,
and the tester will decide whether run the application. In this case D-DRIDEMAID will install and
launch the application to test on the device. Once the application to test is running, D-BRIDEMAID is
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able to check the background or foreground time of application, these parameters are useful to compute
the user reliability, as explained in the next section.

D-BRIDEMAID host application is also capable to intercept a set of legitimate events that tipically
stimulate a malicious payload. An event in Android is sent from an application (i.e., the gps localization,
the presence of WiFi newtorks) and from the device user (i.e., boot the device, charge the phone).

Table 1 shows the most occurring events able to activate the malicious behavior, which the percentage
that the considered event is able to trigger the malicious payload. As matter of fact, there are several ways
that a malware may employ to be activated, each one associated with an activating system event. This
list and the percentage of malicious payload activation has been compiled taking into account the events
which most frequently trigger the payload in Android malware, according to several studies [14].

Table 1: Events used in order to trigger the malicious payload.

# Event Description App Behavior User Behavior
1 BOOT boot completed 80% 50%
2 CALL incoming call 30% 75%
3 SYS phone rooted 30% 35%
4 BATT battery status change 50% 85%
5 SMS reception of SMS 70% 85%
6 NET connectivity change 50% 80%

In Table 1, the first row represents the BOOT event, which is the most used within existing Android
malware. This event will be triggered and sent to all the applications installed in an Android device as the
system finishes its booting process, a perfect timing for a malware to kick off its malicious services. By
listening to this event, the malicious payload can activate itself without user’s interventions or interactions
with the system. Another event used from malware writers is the CALL one (second row in Table 1) event:
this event will be sent in broadcast to the whole system (and all the running applications) when a new
CALL is being received. The SYS events is accepted by rooted device, as matter of fact due to their
open-source nature, many users are able to root their device in order to customize it and to expand their
functionality. The BATT event is triggered when the power is connected or disconnected and when the
operating system send the battery low and battery ok signals. The SMS event is transmitted to the system
when a SMS message is received. Through this event, the malicious payload has the ability to respond
to specific incoming messages with the aim to undertake malicious actions. The last event, the NET one,
is transmitted when a change in the data connection happens (for instance when the connection switches
from GPRS to HSDPA network).

3.3 Workflow

Being a distributed system, D-BRIDEMAID needs to define a workflow to synchronize the actions of all
users testing apps. This workflow must be designed in the direction of flexibility, to ensure the highest
possible participation for each analysis, which might also include the possibility of having the same user
testing at the same time two different apps. Duration of app testing should be long enough to maximize
the probability that eventual malicious code activates, still limited to allow a timely decision on the app
trustworthiness.

We assume the system to own at each time a set of n active users (testers), i.e. currently able to install
and test the functionality of apps. Apps to be tested are chosen by D-BRIDEMAID from a repository
of apps considered suspicious after a first static analysis done by the system exploiting opcode n-grams
and app metadata. D-BRIDEMAID chooses a short list of apps, proposing them to the n users. D-
BRIDEMAID can decide which apps to propose to each user, in order to balance the number of users
testing each app. Each user can choose among the proposed ones, the apps to test. Once a user accepts,
the app is downloaded and installed on the device and the test can be run for a configurable time span
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named evaluation round, of duration tr. From the time the first user installs the app, any other invited
user can start its evaluation round, given that accepts the invitation before the evaluation round of the first
user ends. The duration of the evaluation round is the same for each user, whilst the whole duration of
an app evaluation is named evaluation epoch, having a variable duration named te. Due to the constraints
on the joining time, it is ensured that the duration of an evaluation epoch cannot be longer than twice
the evaluation round, i.e. tr ≤ te ≤ 2tr. This workflow is depicted in Figure 2, showing an example in
which four testers join to an evaluation epoch. The event of joining is represented by the small arrows.
As shown, after the end of the first evaluation round, no other testers can join to the evaluation. At

tr

te

tr t

Figure 2: Evaluation epoch timeline.

the end of her own evaluation round, the user produces a report. The report contains the following
information: a binary decision to classify the app as malicious or genuine. At the end of the evaluation
epoch, the aggregator collects all the reports concerning the analyzed app and computes a decision based
on the aggregated results. After the decision has been taken, tester reputation is updated according to
Algorithm 1 and revenue is assigned to users providing a useful, i.e. reliable and correct result.

As additional notes, the service is able to handle parallel session, with users testing on the same
device different apps at the same time. However, for each app there is a specific evaluation epoch, not
necessarily synchronized with the evaluation epochs of the other apps.

3.4 Reliability Computation

This section defines the reliability of a tester report as a function, which returns a real number in [0,1].
To shape the reliability function, the following components are considered:
• BRIDEMAID report: if a user determines that an application α is malicious and she declares that her
evaluation result is based on BRIDEMAID report on her device, then the provided information of this
user should receive the highest reliability score. This assumption is considered sound thanks to the high
accuracy of the BRIDEMAID software described in 2.
• Time: if the app is considered genuine, an higher reliability score is given if the app has been in
background or foreground for a time as close as possible to tr.
• Events: additional reliability is assigned to report if one or more of the events in Table 1 is performed.
In the following, we detail the aforementioned components and their impacts on reliability score.

Let user ui report that the application α is malicious, at time t. We denote it as fi(α, t) = 1, where fi

is a Boolean function which returns 0 if α is genuine or 1 if malicious. Formally:

fi(α, t) =
{

1 ui reports α is malicious at t
0 ui reports α is genuine at t

BRIDEMAID Report If user ui reports the application α as malicious, then the maximum reliability
score should be returned. Formally, we define:

fi(α, t,B) =

{
1 ui reports α as malicious
0 otherwise

(1)
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Time Let t0 be the beginning of the first evaluation round for α. We denote by t the amount of time
passed from t0; by T the maximum time duration, i.e. equivalent to evaluation epoch; and ti(α, t) the
duration of time that application α has been active in background or foreground for user ui’. Hence,
ti(α, t) ∈ [0,T ].
Moreover, the time should affect the reliability in exponential ascending scheme, since the probability
of an app activating the malicious payload is high at the beginning and exponentially decreases during
time. Therefore, we define the following function for computing the impact of time in reliability of the
report of user ui about app α:

τi(α, t) = 1− e−ti(α,t) ti(α, t) ∈ [0,T ] (2)

Events Representing by Bi(t), Ci(t), Yi(t), Mi(t), Ai(t), Si(t) and Ni(t) the Boolean functions of events
reported in Table 1 respectively, reported by user ui at time t, such that it equals to 1 if user ui has executed
the associated event during ti(α, t), and 0 otherwise. Formally, let γi(t)∈{Bi(t), Ci(t), Yi(t), Mi(t), Ai(t), Si(t)},
then we have:

γi(t) =
{

1 ui has executed γi till t
0 ui has not executed γi til t

As shown in Table 1, different events have different probability to be arisen. Hence, we consider the
following weights indicating the impact of each event execution:

ωB =
0.8
3.6

, ωC =
0.3
3.6

, ωY =
0.4
3.6

ωM =
0.4
3.6

, ωA =
0.5
3.6

, ωS =
0.7
3.6

, ωN =
0.5
3.6

Eventually, the effect of events in reliability reported by user ui at time t, denoted by Ei(α, t), is computed
as follows:

Ei(α, t) =ωB ·Bi(t)+ωC ·Ci(t)+ωY ·Yi(t)+

ωM ·Mi(t)+ωA ·Ai(t)+ωS ·Si(t)+ωN ·Ni(t) (3)

where Ei(α, t) ∈ [0,1], and the higher score shows that the report of user ui about application α is more
reliable in terms of events evaluation.

Having the above functions and relations, is possible to define the reliability function, denoted by
Ri(α, t), which returns a number in the interval [0,1], such that the higher score means that the higher
reliability is guaranteed on the report of user ui about app α at time t.
Formally, we have:

Ri(α, t) =
{

1 fi(α, t,P ) = 1
((1− c) ·Ei(α, t)+ c)× τi(α, t) otherwise

where fi(α, t,P ), τi(α, t), and Ei(α, t) are obtained applying relations 1, 2, and 3, respectively; and c is
a constant real number in [0,1], where the higher number means that the more weight is attributed to the
impact of time without executing the events. In our experiments, we set c= 0.5. The amount of reliability
equals to maximum output, i.e. 1, when the user report is based on the BRIDEMAID evaluation on her
device. The reliability approaches to zero if the time duration of having application α being active in the
background of user ui’s device goes to zero.
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3.5 Attacker Model

As the system is distributed, with testers being all peers, the lack of a root of trust exposes the framework
to a set of attacks which have to be counteracted. We assume that attackers are able to completely modify
the decision of BRIDEMAID, being thus able to submit their own decision for the app, with an arbitrary
level of reliability. Being interested in pushing the system to accept their decisions, attackers will always
choose a reliability score which is higher than the reliability threshold set by D-BRIDEMAID. A set of
envisioned attackers is briefly presented in the following:
Reputation Tamperer: This malicious tester aims at tampering the reputation of one or more genuine
apps, in order to discourage users from downloading it. Reports submitted by this tester for genuine apps
will deem the app as malicious with an high reliability level (i.e., higher than 0.8).
Malicious App Preacher: This tester accepts to participate to the evaluation program to push the system
in considering as genuine an app which is malicious. This tester when submits reports for malicious
apps, will always report the app as genuine, with an high reliability level.
Coin Flipper: The coin flipper gives random decisions on the trustworthiness of an app, with the objec-
tive of damaging the system still keeping a low profile to not be easily identified. This behavior can also
be used to model users with a malfunctioning BRIDEMAID app.
Persistent Liar: This tester aims at maximizing the damage to the system, performing correct and reli-
able app analysis but producing always the opposite decision. This attacker is particularly dangerous if
colluding with other attackers showing the same behavior.

3.6 Reputation Handling

The reputation model we considered in thefollowing work is the one based on the Jøsang model depicted
in [15]. The proposed model exploits a reputation score weighted by three different components i.e.,
belief, disbelief and uncertainty. The rationale behind choosing the considered model is the correspon-
dence with the three possible actions that an UCS is able to perform when asked to provide a cached
value. Every UCS has at the beginning a starting reputation score, defined as r0. At each attribute read-
ing in which a specific usage control system is involved, its reputation is updated according with the
following formula: r(t) = b(t)−d(t)−u(t), where t is the time that the reputation is requested.
Afterward, on the base of the provided value, after the decision process performed at step four of the
system evolution, the three reputation component are updated according to the depicted algorithm.

The belief component is increased every time a considered user provides a value that is not wrong (the
provided value is the one that is effectively considered good by the system). Whether the provided value
is considered not reliable enough (less than 0.5), the uncertainty component in this case is increased,
whilst the disbelief component is increased if the provided value is considered reliable but wrong. No
reputation changes happen for users that choose to not provide any value. The values of ∆d , ∆u and ∆b
are configurable parameters. Realting to the experiment we performed in following work, the considered
values are: ∆b = 0.25, ∆u = 0.15, ∆d = 0.6, whilst the acceptance threshold for reputation θr is equal to
0.5. These values mildly increase at each reading the reputation of those users providing correct values,
strongly penalize the users providing a malicious value, in this case the aim is to immediately reduce
their reputation under the acceptance threshold. We highlight that the uncertainty has a small impact on
the reputation, as a matter of fact it becomes consistent only after several non-enough-reliable readings.

3.7 Result Validity

With the definitions of reliability and reputation, it is now possible to formally define the decision pro-
cess, used by our architecture to choose the boolean value V ∈ [0,1] for an application α based on the
reliability of what the users u1,u2, . . . ,uN provide about this application and considering their reputa-
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Algorithm 1 Updating reputation rl

rl = bl−dl−ul
bl +dl +ul = 1
for all u ∈U j do

if u provides a correct value then
bl = bl +∆b
ul = ul− ∆b

2
dl = dl− ∆b

2
else

if u provides a non enough reliable value then
ul = ul +∆u

bl = bl−∆u

end if
else

if u provides a malicious value then
dl = dl +∆d
bl = bl− ∆d

2
ul = ul− ∆d

2
end if

end if
end for

tion. The higher score of validity means that the associated application is more probable to be malicious.
Moreover, let θR and θr be the thresholds of reliability and reputation, respectively.

To make the final decision, i.e. to give a malicious score to an application, the system collects the
triples Ui(α, t) = ( fi(α, t),Ri(α,τi),ri(t)) for each user ui who participated in the application evaluation,
fi(α, t) is the value provided by user ui about application α at time t, Ri(α,τi) returns the reliability of
fi(α, t), and ri(t) is the reputation of user ui at time t.
The system discards the triples for which either Ri(α,τi)≤ θR or r j(t)≤ θr. After discarding not reliable
values, the set of n triples are considered as the following:

Ui(α, t) = ( fi(α, t),Ri(α, t),ri(t)) f or 1≤ i≤ n (4)

Then, from the collected information at time t, the validity of application α, i.e. the malicious score of
application α based on the reports of n users, denoted by V (α, t), is computed as the following:

V (α, t) =
1
n

n

∑
i=1

fi(α, t)× (
Ri(α, t)+ ri(t)

2
) (5)

where the higher output of V (α, t) shows the higher malicious score of application α.
In this work, if V (α, t) ≥ 0.55, then the system reports the application α as malicious. Moreover, if
the number of reliable reports, i.e. reporting a reliability higher than θR is lower than a configurable
percentage of participating users, the evaluation is not considered valid and the app is scheduled for
reevaluation.
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4 Incentive-based Design of Data Sharing Framework

Participating in framework generally causes the user various costs, for instance mobile device battery
energy cost, charges asked by the operator for bandwidth needed in order to transmit data, processing
power cost, or discomfort of the user resulted from manual effort to submit data.

For survivability of the proposed system, it is crucial to have an appropriate incentive mechanism
in order to motivate users to participate in data collection. It is assumed that the participation cost is
private information for users, and they are strongly motivated to misreport the actual cost to receive
higher revenue.

The incentive mechanism should be designed correctly such that it addresses the following chal-
lenges:

1) The mechanism should motivates the user to participate. This means that each user should obtain
utility at least as much as not participating.

2) Since the service does not know the actual participation cost, as it is expected by users, participants
have strong intent to misreport their cost, i.e. expressing a higher cost rather than the actual one for
obtaining higher revenues.

3) The quality of information that a user provides should be considered definitely in the participa-
tion level, i.e. for a user who provides always low quality information, it should be given little or no
compensation.

4) The quality of service should be guaranteed by the participation levels of data providers, while at
the same time the expenses of the service provider needs to be minimized.

4.1 System Model

Let the set N of n users provide reliable information as explained in Section 3.4. Suppose that pi denotes
the payment from service provider to user ui. Then, the main components of the system are the following:

1) Participation level: The participation level of user ui at current time t, denoted by li(t), is the
average level rate, i.e. the average rate with which the user submits her report to the provider. In our
system, lets that from the time that user ui has joined to the system till the current time t, Ni(t) times the
system proposed her an app for evaluation, and suppose ni(t)(≤ Ni(t) times the user ui answered to this
request. Thence, the participation level of user ui at time t is computed as ni(t)

Ni(t)
. For the sake of simplicity,

we use li instead of li(t), while always it is meant the participation level of user ui at current time t.
2) Participation cost: Each user has a perceived cost Ci > 0 per unit of participation level. For ex-

ample the perceived energy cost depends on proximity of the mobile device for accessing to wireless
and on the level of battery energy. The power cost depends on the number of jobs processed by the
device processor. The cost of manual data insertion is dependent to several factors, such as the dissatis-
faction of user ui to participate in data sharing. This dissatisfaction can be resulted from device resource
consumption, or time, attention and effort which needs to be put by the user.

Suppose that the cost Ci for user ui be a continuous random variable which takes value in the range
[ci

min,c
i
max]. Since Ci is private information of user ui, thence Ci’s are independent variables. Moreover,

let hi(.) denote the probability density function of Ci, and Hi(.) be the corresponding cumulative density
function. Then, the utility of user ui for participation level li and payment pi is given by:

Ui = pi−Ci · li

The quality of service depends on (1) the participation level li of each user ui and (2) the quality
of submitted information by each user. To measure the quality of submitted information, let Ui(αz, t) =
( fi(αz, t),Ri(αz,τi),ri(t)) be the information of user ui about application αz, for 1≤ z≤ Z, at time epoch
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τ prior to t, then the quality indicator for user ui at time t can be computed as follows:

Qi(t) =
1
Z

Z

∑
z=1

(
Ri(αz,τi)+ ri(t)

2
) (6)

The quality of service is dependent to two factors, namely participation level and quality of data.
More precisely, let L(t) = (l1, . . . , ln) be the vector of participation levels, and Q (t) = (Q1(t), . . . ,Qn(t))
be the vector of data quality, where li and Qi(t) are participation level and the data quality of user
ui (1 ≤ i ≤ n), respectively. Thence, we denote by g(L(t),Q (t)) the quality of service at time t, and
compute it as the following:

g(L(t),Q (t)) =
1
n

L(t)×Q (t) =
1
n

n

∑
i=1

li ·Qi(t) (7)

We denote by θQ the level of acceptable quality of service for the subscribers. Hence, the system needs
to operate under the constraint g(L(t),Q (t))≥ θQ.

4.2 The mechanism

Upon receiving the request for participation, the users report their perceived cost per participation level.
This cost is the minimum compensation requested for participation. The service collects users “declared
cost” vector C = (c1, . . . ,cn), where ci represents the declared cost of user ui.

An incentive-based mechanism M(C ) for finding a balance between users’ participation and system
payment, consists of computing participation level vector L(C ) = (li(C) : i ∈ N) and payment level
vector P(C ) = (pi(C) : i ∈ N), i.e. M(C ) = (L(C ),P(C )). Note the dependence of participation level
vector L(C ) and payment level vector P(C ) for each user ui on the entire vector of declared cost C . To
compute optimally these vectors, in what follows we first present some basic notations of the appropriate
incentive-based mechanism. Afterwards, in Section 4.3 we present the optimal solutions of L(C ) and
P(C ) for the mechanism M(C ).

4.2.1 Bayesian Game

In game theory, a Bayesian game is a game in which the players have incomplete information about
other players (for instance, their available strategies or payoffs), but they have beliefs with the known
probability distribution [16, 17, 18]. In our game, each user ui knows only her own cost ci and has
probabilistic knowledge about the costs of others. The costs of the others is denoted by C−i = (c j : u j ∈
N ,u j 6= ui). Each user ui tries to maximize its expected utility

EC−i [Ui(C )] = EC−i [pi(C )− ci · li(C )] (8)

where the expectation is taken with respect to the types of other users. A declared cost vector Y ∗ is
Bayesian Nash equilibrium if for each user ui ∈N , we have:

EY ∗−i
[Ui(y∗i ,Y

∗
−i)]≥ EY ∗−i

[Ui(yi,Y ∗−i)] (9)

for all yi ∈Ci,yi 6= y∗i . This means that in Bayesian Nash equilibrium, no user has incentive for changing
its cost declaration, due to the fact that such a change would not lead to the higher utility.
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4.2.2 Incentive Compatibility

A mechanism is called incentive compatible (IC), whether the strategy where each user reports its true
cost is a Bayesian Nash equilibrium, i.e. for each user ui, we have:

EC−i [pi(C )− ci · li(C )]≥ EC−i [pi(yi,C−i)− ci · li(yi,Ci)] (10)

for all yi ∈Ci that yi 6= ci, and C = (ci,C−i). Respecting this relation guarantees that each user prefers to
truthfully report its correct cost instead of misreporting its cost, given that all other users are truthful.

4.2.3 Individual rationality

A mechanism is called individual rational (IR), if for each user ui and ci ∈Ci, we have:

EC−i [Ui(C )]≥ 0 , i.e. EC−i [pi(C )− ci · li(C )] (11)

Individual rationality expresses that at the Bayesian Nash equilibrium, in truthful reporting strategy of
users, each user obtain at least as much utility as the one of not participating at all. In the latter case it is
assumed that participation cost and payment are zero.

4.3 Problem Statement

The service provider needs to design a mechanism for participation level and payment such that its
expected expenses for reimbursing participants is minimized. The challenges for this mechanism design
are as follows [19]:

1) Each user strategically try to maximize its own utility, i.e. the amount of reimbursement minus the
participation cost.

2) The service provider is unaware of the actual costs of users.
3) The service provider needs to consider the different quality of information provided by users.
4) The service provider needs to deliver the given expected quality to the users.
Let M (C ) be the space of all mechanisms M(C ) which respects the following properties:
•P1 : The vector L(C ) respects the minimum threshold, i.e. g(L(t),Q (t))≥ θQ.
•P2 : M(C ) is incentive-compatible (IC).
•P3 : M(C ) is individually rational (IR).
The problem that the service provider requires to address is the following:

min
M(C )∈M (C )

EC{ ∑
ui∈N

pi(C )} (12)

For each user ui, let ci be its true cost and yi be the declared one. Define Li(yi) to be expected
allocated participation level to user ui, if ui declares its cost as yi while other users declare their true
costs. Hence, we have:

Li(yi) = EC−i [li(yi,C−i)] (13)

Let Pi(yi) be the expected compensation to ui, if she declares cost yi and the other users declare true
costs, i.e.

Pi(yi) = EC−i [pi(yi,C−i)] (14)

Moreover, suppose Ui(yi,ci) be the expected utility for user ui if she declares cost yi instead of true cost
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ci, i.e.

Ui(yi,ci) = Pi(yi)− ciL(yi) (15)

Then, the condition for incentive-compatibility is as the following:

Ui(ci,ci)≥Ui(yi,ci)⇔ Pi(ci)− ciL(ci)≥ Pi(yi)− ciL(yi) (16)

and the condition for individual rationality would be the following:

Ui(ci,ci)≥ 0⇔ Pi(ci)− ciL(ci)≥ 0 (17)

Theorem 4.1. [19] A mechanism M(C ) = (L(C ),P(C )) is IC and IR if and only if for all users ui the
following are hold: 1) Li(yi) is non increasing on yi, and 2) the following relation satisfies:

Pi(yi) = Di + yiLi(yi)+
∫ c̄i

yi

Li(x)dx (18)

where Di =Ui(c̄i, c̄i) = Pi(c̄i)− c̄iLi(c̄i)≥ 0, and c̄i is the upper limit of the support set of cost.

A mechanism M(C ) with Di = 0 which minimizes the following relation:∫
C

∑
i∈N

[li(C )(ci +
Hi(ci)

hi(ci)
)]h(C )dC

= ∑
i∈N

EC [Li(C )(ci +
Hi(ci)

fi(ci)
)] (19)

and satisfies the properties P1,P2, and P3, it solves optimally the relation in 12 subject to threshold θQ,
and it is IC and IR.

For given the cost vector C , let the participation level vector L(C ) be the solution of the following
optimization problem:

L(C ) = argmin
l

∑
ui∈N

li(ci +
Hi(ci)

hi(ci)
) (20)

subject to g(L(t),Q (t))≥ θQ.
Moreover, suppose the payment pi(C ) to each user ui ∈N be as what follows:

pi(C ) = cili(C )+
∫ c̄i

ci

li(s,C−i)ds (21)

then we have the following theorem:

Theorem 4.2. Let δi(ci) = ci +
Hi(ci)
hi(ci)

> 0, and assume that δi(ci) be non-decreasing on ci.
(a) if function g(L) can be written as a monotone function of the sum of terms which are linear in li for
ui ∈N , i.e. we have:

g(L) = I( ∑
ui∈N

kili) (22)

where ki ∈R, t hen, the mechanism 20, 21 is incentive-compatible (IC) and individual-rational (IR), and
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minimizes the compensation cost of the provider [19].
(b) if function g(L) can be written as sum of concave strictly increasing functions gi(li), ui ∈N , i.e.

g(L) = ∑
ui∈N

gi(li) (23)

then the mechanism 20, 21 is incentive-compatible (IC) and individual-rational (IR), and minimizes the
compensation cost of the provider.

Theorem 4.2 presents two potential forms of function g(.) which could be exploited by the service
provider to minimize the cost of payments while motivate users for participation.

4.4 Our Optimal Solution

In this section we propose an incentive-based mechanism for our problem which holds the requirements
of Theorem 4.2, and thence guarantees the best trade-off between users’ participations and payments.

Suppose that the probability density function of cost Ci be a uniform distribution on [ci
min,c

i
max], i.e.

we have:

hi(x) =

{
1

ci
max−ci

min
ci

min ≤ x≤ ci
max

0 x < ci
min or x > ci

max

with the corresponding cumulative density function Hi(x) as the following:

Hi(x) =


0 x < ci

min
x−ci

min
ci

max−ci
min

ci
min ≤ x≤ ci

max

1 x > ci
max

then for the amount of cost ci ∈ [ci
min,c

i
max], we have δi(ci) = ci +

Hi(ci)
hi(ci)

> 0, since:

δi(ci) = ci +
Hi(ci)

hi(ci)
= ci +

ci− ci
min

ci
max− ci

min
> 0 (24)

Moreover δi(ci) is non-decreasing on ci, since if we have ci < c j, then it is resulted from Relation 24 that
δi(ci)< δ j(c j). This means that the second condition of Theorem 4.2 also satisfies.

Afterwards, from the definition of g(L(t),Q (t)) in 7, we have:

g(L(t),Q (t)) =
1
n

n

∑
i=1

li ·Qi(t)

which by considering ki = Qi(t) and I equal to identity function, the third condition of Theorem 4.2.(a)
holds.

This means that our proposed approach is incentive-compatible, individual-rational, and it minimizes
the compensation cost of provider.

5 Experimental Result

To validate our methodology simulative experiments have been run to simulate the interactions among
a set of 50 testers participating at the evaluation campaign of 100 apps, 20 of which genuines and 80
malicious. Simulative experiments have been run on a custom simulator, allowing to vary the percentage
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of malicious users for each run. Each run for each configuration has been run 1000 times with different
seeds, hence reported results are in the form of average and standard deviation. It is worth noting that no
Android apps have been effectively run in the simulator, instead the behavior of each app has been set as
simulation parameters, specifying the possibility for the malicious code to activate for any of the actions
reported in Table 1.

5.1 Simulative Experiments

In the simulation for each evaluation epoch, a random number of testers ranging between 30 and 50
choose to participate to evaluate that specific app. Table 2 summarizes all the parameter values set for the

Table 2: Simulation Parameters

Parameter Value
Tester Number 50

Apps 100
Genuine Apps 20

Malicious Apps 80
θr , θR 0.5 , 0.7

∆b, ∆d , ∆u 0.25 , 0.6 , 0.15
ρ 2

Number of cycles 1000
Attacker percentage 10%≤ x≤ 50%

Aggressiveness 10%≤ x≤ 100%

simulator. As discussed experiments have been run varying both the attacker percentage and aggressive-
ness. This last parameter, in particular, characterizes the behavior of attackers, stating their percentage
of malicious reports among all the ones that release during the simulation. The rationale behind this
parameter is the possibility of attackers wishing to conceal their actions, presenting some correct reports
in order to increase their reputation before performing the attack. All simulations have been run with
the four distinct attacker models described in Section 3.5, i.e. all attackers of any simulation behave
according to the same model. From all experiments the extracted results are the reputation for good and
malicious testers, their revenue and the percentage of the apps correctly classified by D-BRIDEMAID.

5.2 Results

Table 3 schematically reports the classification results of D-BRIDEMAID at the variation of the afore-
mentioned parameters. In particular the table shows the percentage of apps correctly classified, according
to the received reports. Results are reported by varying the percentages by 10% at each experiment.
As shown for the majority of configurations, the percentage of correctly classified apps is higher than
90%. There is a degradation of the accuracy of the framework only when the malicious tester colludes
and they are a consistent percentage of all testers. In particular the attackers are able to defeat the good
users exploiting the Persistent Liar attacker model, with a strong aggressiveness (higher than 60%) and
when they sum to more than 30% of all users in the system. This is due to the fact that normal users may,
provide wrong reports, or reports with a low reliability that are not taken in consideration by the system,
whilst the malicious users are colluding to provide a fake report. We recall, in fact, that malicious users
always show high reliability in their reports. It is possible to notice a low accuracy also for the case of
Malicious App Preacher and Reputation Tamperer. Again this is due to the high reliability given to these
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Table 3: Percentage of apps correctly classified.

Aggressivity PM 10% PM 20% PM 30% PM 40% PM 50%

C
oi

n
Fl

ip
pe

r

10% 100% 100% 100% 100% 100%
20% 100% 100% 100% 100% 100%
30% 100% 100% 100% 100% 100%
40% 100% 100% 100% 100% 99.997%
50% 100% 100% 100% 99.997% 99.987%
60% 100% 100% 100% 99.994% 99.95%
70% 100% 100% 99.995% 99.974% 99.873%
80% 100% 100% 99.994% 99.94% 99.661%
90% 100% 100% 99.993% 99.859% 99.059%

100% 100% 100% 99.977% 99.577% 94.622%

Pe
rs

is
te

nt
L

ia
r

10% 100% 100% 100% 100% 100%
20% 100% 100% 100% 100% 99.996%
30% 100% 100% 99.999% 99.989% 99.953%
40% 100% 100% 99.995% 99.944% 99.703%
50% 100% 100% 99.988% 99.55% 94.626%
60% 100% 100% 99.766% 90.003% 59.206%
70% 100% 99.999% 97.181% 56.19% 12.131%
80% 100% 99.992% 86.102% 16.586% 1.031%
90% 100% 99.979% 58.813% 2.071% 0.091%

100% 100% 99.858% 18.109% 0.069% 0.004%

M
al

ic
io

us
A

pp
Pr

ea
ch

er

10% 100% 100% 100% 100% 100%
20% 100% 100% 100% 100% 99.996%
30% 100% 100% 100% 99.991% 99.938%
40% 100% 100% 99.997% 99.945% 99.675%
50% 100% 100% 99.967% 99.442% 96.703%
60% 100% 99.999% 99.92% 93.068% 61.658%
70% 100% 99.999% 98.213% 60.881% 25.813%
80% 100% 99.988% 88.361% 30.206% 20.29%
90% 100% 99.984% 60.978% 21.375% 20.002%

100% 100% 99.863% 31.441% 20.003% 20%

R
ep

ut
at

io
n

Ta
m

pe
re

r

10% 100% 100% 100% 100% 100%
20% 100% 100% 100% 100% 100%
30% 100% 100% 100% 100% 100%
40% 100% 100% 100% 99.998% 99.991%
50% 100% 100% 99.998% 99.986% 99.925%
60% 100% 100% 99.991% 99.917% 99.524%
70% 100% 100% 99.97% 99.597% 98.053%
80% 100% 99.994% 99.904% 98.759% 93.961%
90% 100% 99.992% 99.745% 96.413% 86.861%

100% 100% 99.99% 99.282% 91.394% 81.168%

reports which become more influential in the case of malicious app, that, by configuration, are 80% of
the share of all apps. It must be noticed, however, that the reported performance support the validity
of the proposed model, which in the worst setting, is able to be resilient up to 20% of malicious and
colluding attackers.

Results for reputation and revenue with different attacker models are reported in Figure 3. In Figure
3a it is represented the average reputation pattern for good and malicious testers, on the evaluation
of 100 apps, where all attackers follow the persistent liar model. For the sake of clarity have been
reported only the results related to the experiments with 10% and 20% as percentage of malicious users.
The reputation results confirm what shown in Table 3, in fact, it is possible to see that reputation of
malicious users immediately drops under the threshold, thus not giving the possibility to attackers to
send reports considered in the evaluation process. Concerning the revenue (Figure 3c) it is possible to
see that attackers do not receive any revenue for the first two experiments, whilst they become able to
control the system, thanks to collusion if they are more than 30% of selected testers. Figure 3b and
Figure 3d shows reputation and revenue when the attackers use the coin flipper attack model. As shown,
the reputation of coin flipper always remains for most of the time under the threshold of 0.5, for all
percentages up to 50%. The earned revenue is thus negligible and the system is slightly affected even
when the percentage of attackers reaches 50%.
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(a) Reputation Persistent Liar (b) Reputation Coin Flipper

(c) Revenue Persistent Liar (d) Revenue Coin Flipper

Figure 3: Revenue and reputation for different attacker models.

5.3 Collusion Management

As a further validation of the proposed framework, in addition to the four considered attack models, we
have run an additional set of experiments including the presence of colluding attackers. In the former
analysis, we have, in fact, considered malicious users acting according to a behavioral pattern as stan-
dalone, without any possibility of communication with other malicious users. Colluding attackers can
be more dangerous, since they can coordinate define strategies to cause the higher damage to the sys-
tem. In particular, we will consider a set of attackers which, in order to deceive the reputation system of
D-BRIDEMAID, will behave correctly, i.e. as a genuine user, in order to raise their reputation. Hence,
when their reputation is over threshold, they will perform a reputation tampering or an app-preaching
attack all together. More specifically, in our attack model colluders will not perform any attack if their
reputation is under the threshold. After reaching the threshold, if all other colluders have a score higher
than the threshold, they will perform the attack.

The experiments have been run with the same configuration of the experiments without collusion, for
what concerns the number of apps, users and epoch duration. The percentage of genuine users is varied
up to 50%. Of the malicious users, half are colluders, and the remaining half are malicious with an
aggressiveness of 1 (i.e. will always misbehave). Two set of experiments have been run, for two different
attack models: reputation tamperer and attack preacher. The analyzed apps are 75% genuine and 25%
malicious. Figure 4 reports the average revenue and reputation for genuine (good) users, colluders and
simply malicious attackers.

As shown, D-BRIDEMAID prove to be effective minimizing reputation and revenue of colluders
and malicious users for both attack types. The colluders manage to have a higher revenue and reputation
compared to normal attackers, due to the time spent trying to raise the reputation. Hence, the system
will provide revenue only for correct report, either if they are received from genuine or malicious users.
Finally Figure 5 shows the evolution over time of the reputation in average of genuine, colluder and
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(a) Reputation Preacher (b) Reputation Tamperer

(c) Revenue Preacher (d) Revenue Tamperer

Figure 4: Revenue and reputation for different attacker models with collusion.

(a) Reputation History Persistent Liar (b) Reputation History Coin Flipper

Figure 5: Revenue and reputation for different attacker models with collusion.

malicious users. It is worth noting how the reputation of colluders is always around the threshold as a
result of their behavior.

6 The Real-World Case Study

In this section we provide, in order to confirm the results obtained from the simulated environment, a real-
world scenario in order to show how the D-BRIDEMAID reputation algorithm is able to discriminate
between malicious users (i.e., users that attempt to push into the D-BRIDEMAID framework incorrect
results) and trusted ones (i.e., users that push results coherent with the BRIDEMAID report). We evaluate
the D-BRIDEMAID effectiveness through 10 volunteer participants that generated BRIDEMAID reports
related to well-known malware and trusted Android applications.
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User Sex Age Vendor Model O.S. version Smartphone Tablet
#1 F 20 Samsung S4 mini 4.4.2 X
#2 M 54 Samsung Galaxy J1 4.4.2 X
#3 F 30 Samsung Galaxy grand prime 5.1.0 X
#4 M 28 Samsung S6 6.0.1 X
#5 M 24 LG Nexus 5 6.0.1 X
#6 F 24 Asus Zenfone 2 5.1.0 X
#7 F 50 Asus Zenpad 7 4.4.2 X
#8 F 14 Samsung Tab 2 4.4.2 X
#9 M 55 Samsung Galaxy note 3 4.4.2 X
#10 M 27 Samsung S3 4.3 X

Table 4: Devices involved in the evaluation with owner characterization.

We observed 10 users: the evaluation time window began on August 25, 2017 and finished on Septem-
ber 1, 2017: in this 1-week time windows we asked to the participants to generate to push into the
D-BRIDEMAID framework their analysis.

Table 4 provides the details of the observed devices used to evaluate the proposed framework in the
real-world: in the evaluation both smartphones and tablets are used as experimental environments.

6.1 Dataset

The considered applications in the case study were obtained from the Drebin dataset [20, 21]: it rep-
resents a well known collection of mobile malicious samples used in several scientific works, which
includes 179 widespread Android families.

The malicious samples dataset comprise families characterized by different installation method i.e.,
(i)standalone (mobile applications developed with the aim to include malicious functionalities; (ii) repack-
aging (mobile applications that embed the malware into a trusted application and (iii) update attack (mo-
bile applications that include an update component able to download the malicious action at runtime).

Malware dataset is also partitioned according to the malware family; each family contains samples
which have in common several characteristics: the payload installation, the kind of attack and the events
that trigger malicious payload [14].

Table 5 shows the analyzed 5 malware families in our malware dataset with the details of the instal-
lation types, the kinds of attack and the events which activate the payload.

Table 5: Android malware families with details of the installation method (standalone, repackaging,
update), the kind of attack (trojan, botnet) and the events that trigger the malicious payload.

Family Installation Attack Activation
Opfake r t user
Moghava r t boot
DroidKungFu r t,b boot
KMin s t boot
Koler.C s,u t,b user

The malware belonging to Opfake, Moghava, DroidKungFu and Kmin families were retrieved from
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the Drebin project [20, 21], while we obtained the Koler.C samples from a collection1 of freely available
malware belonging to HelDroid dataset and appeared from December 2014 to June 2015.

We briefly describe the malicious payload action for the 5 considered families in the real-world
experiment.

1. The Opfake applications embed an algorithm able to change shape over time with the aim to evade
antimalware technologies. The Opfake malicious payload is triggered by the user i.e., by an UI
event, and it is able to send premium text messages. As a matter of fact, these messages are sent
when the wapxload.ru/opera/ web page is displayed on the infected device screen once the user
open it. The malicious payload application does not read the content of the HTTP response but it is
able to enables the JavaScript functionality in the browser and registers a callback method named
onJsPrompt.

2. The Moghava family emerged from third-party Iranian Android-Markets. Differently from others
malicious payload embedded in others widespread families, this mobile malware family was not
intended in order to extort money to the victim. Instead, this family represents another sample
from the side of politically-motivated hacking (the so-called hacktivism) which modifies images
that are stored on the device. Even if these malicious samples do not cause any financial loss to the
device user, all the pictures on the smartphone are compromised. The malware is able to perform
the harmful action when the smartphone receives a “boot completed” event, i.e. when the user
starts the device.

3. The DroidKungFu malicious payload is able to add into the infected application a service and a
receiver. The receiver is able to be notified when the system terminates the boot (in this way the
malicious payload is able to automatically launch the service without user interaction). Basically
the samples belonging to this family exhibit following behaviours: (i) silent mobile device rooting,
(ii) unlocks all system files and functions, (iii) install itself without any user interatction, while it
gathers from the infected devices following data: (i) IMEI number, (ii) phone model, (iii) Android
OS version, (iv) network operator and type and (v) User private and sensitive information from the
device and from the SD Card memory.

4. The KMin malicious payload is a trojan that to obtain root access to the infected devices. It
is executed each time that the infected devices are booted (as the DroidKungFu family) and it
attempts to download and install other malicious files without the consent of the user.

5. The Koler.C family is one of the newest threats in mobile environment: the ransomware. The
infections belonging to this emerging threat are able to request of a ransom in order to unlock the
infected device. They employ different techniques in order to lock the device and then ask for a
payment [22, 23], usually in bitcoin.

If a user browsing online using an Android device lands on a malicious web page, they will be
prompted to download an application. Unlike similar attacks against users browsing on a PC or
Mac machine, download of the file is neither silent nor automatic; the user must confirm the down-
load and manually install the application. To encourage download and installation, the ransomware
is promoted as providing access to adult materials. On installation the infected application opens
a browser page that displays a notice over the Home screen showing that the device has been
’locked due to security violations and all files have been encrypted’. The specific wording of the
message varies depending on the user’s geographical location. For instance, users in Italy will see
an Italian-localized message while users in the UK or US will display English text.

1http://ransom.mobi/
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In order to obtain trusted applications we crawled the Google’s official store2 using an open-source
crawler3. The downloaded dataset includes 5 samples belonging to different categories available on the
market.

The legitimate applications were collected in July 2017.
We analyzed the dataset with the VirusTotal web service4, able to run 57 antimalware technologies

(i.e., Symantec, Avast, Kasperky, McAfee, Panda, and others): the analysis confirmed that the obtained
applications were trusted while the malware ones were really malicious.

In addition we evaluate the 10 applications under analysis (the 5 malware and the 5 genuine) using
the the BRIDEMAID framework and we highlight that the reports confirm the results obtained by the
VirusTotal antimalware about the maliciousness of the malware samples and the trustworthiness of the
legitimate ones (as a matter of fact, the aim of the case study is to evaluate the D-BRIDEMAID reputation
algorithm, not the BRIDEMAID analysis).

6.2 Results

Each users involved in the evaluation analyzed 10 app (5 malware, one for each considered family and 5
genuine).

In order to evaluate the effectiveness of the D-BRIDEMAID reputation algorithm effectiveness with
real-world (user and) devices, we consider in the case study the attack scenarios previously analyzed with
the simulated environment: the Reputation Tamperer, the Malicious App Preacher, the Persistent Liar and
the Coin Flipper. With regards to the Reputation Tamperer we consider the malicious user that marks as
malicious a genuine application, while relating to the Malicious App Preacher we consider the malicious
user that push the system in considering as legitimate an application which is malicious. The Persistent
Liar is represented by the user that try to maximize the system damage producing always the opposite
decision with respect to the BRIDEMAID report. The Coin Flipper attack represents a random decision
about the trustworthiness of the application under analysis. We highlight that in a real-world scenario
it may happen that a malicious application is reported by the BRIDEMAID framework as genuine: this
may happens when the user does not run the application under analysis for a considerable time-window
or when the events able to activate the malicious payload (as described in Table I) are not sent by the
real user device (in this case the BRIDEMAID generated report will mark the application under analysis
as genuine and the user will submit to the D-BRIDEMAID system this result). For instance, when the
user analyzes a malware belonging to the Opfake family, whether he/she does not click on the button
in order to download the fake version of the Opera browser, the malicious payload will not installed on
the device: for this reason the BRIDEMAID report will not reflect the maliciousness of the application
under analysis. The same situation can happen when the user evaluates a malware belonging to the
DroidkungFu or Kmin family and the BOOT COMPLETED event was not received by the device in
order to activate the malicious payload.

Table 6 shows the results of the case study evaluation, with the details of the decision of each user
for each application under analysis. We label the malware applications with Mx where 1 <= x <= 5
identifies the i-th malware application, while we label the genuine applications with Tx where 1 <=
x <= 5 identifies the i-th trusted application evaluated.

We indicate with M the application under analysis submitted to the D-BRIDEMAID framework by
the user as malware, and with T the application submitted by the user to the framework as trusted.

Relating to the perpetrated attacks, we highlight that the user #1 exhibits the Coin Flipper attack
behaviour (i.e., he/she gives random decision): as we previously highlighted this behaviour is not always

2https://play.google.com/store
3https://github.com/liato/android-market-api-py
4https://www.virustotal.com/
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User/App M1 M2 M3 M4 M5 T1 T2 T3 T4 T5

#1 T M T M T M T M T M
#2 T T T T T M M M M M
#3 M M M M M M M M M M
#4 T T T T T T T T T T
#5 M M M M M T T T T T
#6 M M M M M T T T T T
#7 M M M M M T T T T T
#8 M M M M M T T T T T
#9 M M M M M T T T T T

#10 M M M M M T T T T T
D-BRIDEMAID M M M M M T T T T T

Table 6: Real-world case study results: the last row represent the D-BRIDEMAID final decision about
the trustworthiness of the applications under analysis performed by the reputation algorithm, while the
other ones the users decision basing on the BRIDEMAID report for each application analysed.

symptomatic of a malicious user, as a matter of fact it can be depending from an insufficient execution
time of the application or to the absence of the user interaction and/or system events able to activate the
malicious payload. The user #2 exhibits the Persistent Liar attack behaviour: the user #2 submits to the
D-BRIDEMAID framework the opposite decision with respect to the BRIDEMAID report. The user #3
behaviour is symptomatic of the Reputation Tamperer attack, as a matter of fact he/she aims at tampering
the reputation of the legitimate applications considering them as malicious. The user #4 is performing
the opposite behaviour with respect to the user #3: the Malicious App Preacher attack. He/she reports
that all the applications under analysis are genuine.

Relating to the user #5, #6, #7, #8, #9 and #10 we observe that the submitted decisions are coherent
with regard to the BRIDEMAID reports and this is the reason why we consider these users as trusted
ones.

We conclude that in the real-world analysis we take into account 4 malicious users (perpetrating
respectively 4 different types of attack) and 6 trusted ones: as shown in Table 6 in the real-world scenario
the D-BRIDEMAID reputation algorithm was always able to recognize the (malicious and genuine)
applications analyzed, making useless the malicious user actions (confirming the results obtained with
the simulation environment).

7 Related Work

In this section we review the current literature related to the malware detection collaborative approach.
Researchers in [24] proposed CloudAV, a system in which end hosts send suspicious files to a central

cloud-based antivirus service for scanning by several antimalware software. A threshold approach is con-
sidered in order to aggregate feedback from different antimalware. The CloudAV prototype is depicted
in [25].

The Social-AV tool [26] consider social collaboration and the hot set concept. The second one states
that not all malicious signatures are important in the same way. For instance, some signatures (i.e., the
so-called hot set) are more likely to be matched than othres malicious signatures. Social-AV only keeps
the hot set of signatures in the main memory, while the whole signature database is distributed among
devices belonging to the social group of the device owner.

The RAVE [27] collaborative malware scanning system consider emails that are sent to several agents
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for malware scanning. A voting based mechanism is take into account in order to make final decisions.
Using RevMatch [28] collaborative malware decisions are made based on labeled malware detection
history from participating antimalware. In this case the model is evaluated using malicious samples with
the aim to demonstrate that collaborative malware detector are able to improve the accuracy with respect
to single antiviruses. The main limitation of these approaches is represented by the usage of antimalware,
as matter of fact signature provided by free and commercial antimalware are easily evaded by zero-day
attacks or using trivial code obfuscation techniques, as demonstrated in [4, 29].

Researchers in [30] consider static analysis on the executables in order to extract function calls in
Android applications using the readelf command. Function call are compared with malicious samples in
order to classify them using PART i.e., Prism and Nearest Neighbor Algorithms. Our method performs
a deeper scan of the application under analysis extracting features using static and dynamic analysis, i.e.
BRIDEMAID runs the application in order to have more chances to stimulate the malicious payload.

Researchers in [31] designed a scalable mobile malware detection mechanism using multifeature
collaborative decision fusion. The considered features are the permissions and the API calls with the
aim to provide a detection by training several classifiers and combine the decisions using collaborative
approach (based on probability theory). Their approach is able to reach a precision of 0.989 and a recall
of 0.98 evaluating 1073 malicious files belonging to the Contagio project and 904 legitimate applications.
Our approach consider a more recent dataset of application, obtaining a precision and a recall higher.

Authors in [32] design an approach for monitoring variations on a mobile device with the aim to
detect anomalies. The variations can be caused for instance, by malicious software and attackers (e.g.,
flooding or network probing). The data monitored for this analysis are sent to a remote server able to
generate profiles of each monitored mobile device. The main difference with our method is represented
by the fact that this approach focused on network traffic (by WiFi, bluetooth) to detect anomalies and it
is applied to devices with Windows Mobile on board.

Researchers in [33] design a malware-detection framework able to monitors, detects, and analyzes
unknown threats. The designed framework is composed of a power monitor able to builds a power
consumption history from the analysed samples, and a data analyzer which generates a signature from
the constructed history. D-BRIDEMAID is able to extract a more extended set of features not only
energy-related in order to perform malware identification.

Miettinen et al. [34] propose framework for intrusion detection, which consideres host and network-
based detection. Whether an anomaly is detected, the device sends an intrusion alert to a server. The
server is able to collect information from sensors with the aim to generate network related intrusion
alarms. The researchers consider also a correlation engine with the aim to correlate the device and
network intrusion alarms. D-BRIDEMAID extracts a set of features, performing dynamic and static
analysis, not only related on network traffic in order to perform a more accurate analysis.

Colajanni et al. [35] propose an architecture with the aim to automate malware collection and classifi-
cation. Their architecture considers the cooperation of several sensors distributed over several networks.
The designed architecture is scalable because the number of component tiers can be adapted to the net-
work characteristics . Furthremore, their method is general and takes advantage of the knowledge of
each participant on its network part.

Authors in [36] discuss an anti-obfuscation and collaborative malware detector. Basically the pro-
posed solution identifies the program that behaves suspiciously in end-hosts and between a group of
suspicious programs. In order to represet the program behaviour they consider the Handle dependences
and Probabilistic Ordering Dependence technology.

NetBuckler [37] is a client application that employs collaborative intelligence in order to detect
Internet worms. NetBuckler is able to create a peer-to-peer network able to meet in custom peer groups
and communicate traffic information. Their final aim is to enforce security measures depending on the
information received.
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Lu et al. [38] present CCS, a collaborative online malware analysis framework. Each sensors in
the framework analysis is able to analyse malicious samples: CCS is able to aggregate those analyses
between different sensors. Authors implemented a CCS proof-of-concept version and evaluate their
approach considering 917 real-world malware samples. Our work is different because from these works
because is related to Android environment.

A collaborate mechanism proposal to anticipate Advanced Persistent Threat is described in [39].
The paper presents a design to detect zero day attack using windows function hooking that might help
the information security community to detect such malicious attacks well in time so the appropriate
defensive actions could be taken. This method is able to intercept the invocation of malicious DLLs
relating to Microsoft Windows environment, while our method is related to Android OS.

Sakib et al. [40] propose a combination of three models aimed to to capture the output of different
antimalware scanners. The adoption of the three models help to predict the accuracy level of each
antimalware combination to determine the optimal configuration of the multi-scanner detection system
in order to maximise the detection accuracy.

Belaoued et al. [41] present MACoMal, a decision mechanism aimed to assist antimalware to col-
laborate with each other with the aim to reach a consensual decision about the maliciousness of the
submitted suspicious applications.

A collaborative intrusion detection aimed to detect malicious behaviour on IoT and Cloud Networks
is discussed in [42]. The Bidirectional Long Short-Term Memory deep learning algorithm is employed
for detecting anomalies by analysing network data. The idea behind this method is to propose a decision
support system aimed to help cloud providers for secure migration.

Another collaborative intrusion detection framework is presented in [43]. Authors consider machine
learning, by applying disagreement-based semi-supervised learning algorithm and evaluating the pro-
posed framework by exploiting real IoT network environments, demonstrating the false alarm reduction
obtained by the proposed method.

Li and colleagues [44] adopt the blockchain paradigm to design a framework that aims to combine
blockchains with challenge-based trust mechanism. Authors evaluated the proposed method considering
random poisoning attack.

A distributed collaborative intrusion detection system for the detection of attacks focused on VANET
network is discussed in [45]. Basically this intrusion detection exploit a distributed collaborative detec-
tion framework aimed to implement the storage and computation of big data and the tracking of infor-
mation collection.

8 Conclusion and Future Work

Detecting new threats for mobile devices, is a challenging task which could benefit from cooperation of
several users, who actively discover and communicate app anomalies which might represent malicious
behaviors. Thus, in this work we have proposed D-BRIDEMAID, which is a distributed collaborative
framework for detecting malicious apps for Android devices. We have discussed the framework which
is based on the accurate and efficient BRIDEMAID framework for malware analysis, including mech-
anisms for distributed trust, resilient to different kind of attacks. Also a game theoretical analysis for
proposing an incentive mechanism, designed to incentivize user participation is presented, with a set of
simulated and real experiments that demonstrate the viability and effectiveness of the proposed approach.
The presented framework can be integrated, for increased accuracy with commercial antivirus engines,
or Google native security services, reporting also directly reports on apps deemed malicious by the user
community. We argue that this should strongly improve the effectiveness of tools such as the Google
Play Bouncer service.
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