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Abstract

Mobile devices, with particular regard to the ones equipped with the Android operating system,
are currently targeted by malicious writers that continuously develop harmful code able to gather
private and sensitive information for our smartphones and tablets. The signature provided by the
antimalware demonstrated to be not effective with new malware or malicious payload obfuscated
with aggressive morphing techniques. Current literature in malware detection proposes methods ex-
ploiting both static (i.e., analysing the source code structure) than dynamic analysis (i.e., considering
characteristics gathered when the application is running). In this paper we propose the representation
of an application in terms of image obtained from the system call trace. Thus, we consider this repre-
sentation to input a classifier to automatically discriminate whether an application under analysis is
malware or legitimate. We perform an experimental analysis with several machine and deep learning
classification algorithm evaluating a dataset composed by 6817 real-world malware and legitimate
samples. We obtained an accuracy up to 0.89, showing the effectiveness of the proposed approach.

Keywords: mobile security, malware analysis, system call, dynamic analysis, Android, machine
learning, deep learning, classification

1 Introduction

Malware detection is referring to the process of detecting the presence of malware, which is malicious
code developed by attackers with the purpose of creating damage (for instance, to silently exfiltrate
sensitive and private information of unaware users), within a system.

Malware detection is a growing problem and it is mainly applying to mobile platforms due to their
spread. In addition to the spread of mobile devices, we have a huge amount of applications published on
(official and unofficial) stores, which is too large to allow to manually scan each application for malware
behavior [20].

There are two main technologies to defend unaware users against this phenomenon: signature-based
approach and malware detection through behavior analysis. Signature-based malware detection is used
to identify malware that security analysts already know. This technique, therefore, is not able to identify
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new versions of malicious code, as it does not know their signature. Newly released forms of malware
can only be distinguished from benign files and activities by behavioral analysis [4].

Behavior-based malware detection analyzes an object based on a well-defined sequence of actions,
which is characteristic of a type of malware. Then the object behavior is analyzed for suspicious activ-
ity: attempting to perform abnormal or unauthorized actions (i.e., disabling security checks, installing
rootkits, etc.) indicates that the object is malicious.

The assessment of malicious behavior can be done by running a dynamic analysis during its execu-
tion, or, an alternative to detect the potential threat can be the static analysis, which looks for dangerous
functionality by analyzing the code and structure of the object. The static analysis technique, relatively
to Android environment, is based on reverse engineering of the Android application package (.apk). This
procedure involves scanning AndroidManifest.xml and classes.dex files for malicious code without hav-
ing to install and run the application. Dynamic analysis, on the other hand, examines the behavior of the
application during its execution, for this reason the intrusion detection system in Android analyzes lists
of processes, system call, network traffic and other features that allow the detection of intrusions [[19].

Behavioral analysis for malware detection evaluates the application when it is running: it checks all
requests for access to files, processes and connections. This identifies all suspicious activities, which
allow us to understand if a file is malicious in advance, before it is released on the network and performs
a malicious action.

Among the targets at the highest risk of being hit by malware we find unattended personal comput-
ers: the risk of infection is especially for those connected to a computer network, since it is possible
to propagate the attack to all computers connected to that network. In recent years, however, smart-
phones and tablets have spread rapidly; these devices contain a huge amount of personal information
(i.e., photographs, financial data, messages, emails, etc.), probably much more than that contained on
computers.

Following the spread of these devices, malware writers have started migrating their attacks to new
platforms. Among the most popular operating systems on mobile platforms we find Android: in fact in
October 2020 it recorded a market percentage of 72.92%, followed by iOS with 26.53%, the remaining
percentage is occupied by less known systems (i.e., KaiOS

In addition to its diffusion, which allows malicious code writers to be able to launch attacks on a
large number of devices, the nature of Android also arouses their attention, as we are talking about an
open operating system: yes, it allows for user customization, but on the other hand it makes the attackers’
job much easier.

The number of malware attacks is always on the rise, just consider that in May 2020, 430,000 attacks
were launched and that in the space of a month the number increased by 3.6%, recording an increase of
6.26% between July and August 202 These numbers refer only to attacks targeting Android devices,
not counting those targeting other platforms and other types of devices.

The approach we propose is based on dynamic techniques for the detection of malicious behavior by
Android applications. The approach considers the system call sequences. Usually, the malware evolution
process is based on changes made to existing malware. Malware writers use obfuscation techniques or
payloads already implemented in previous malware, to improve infection mechanisms or tend to combine
them [6]].

Dynamic analysis versus static analysis takes longer, as expecting applications to run for threat de-
tection requires a longer amount of time to apply. Its slowness is the price to pay which however allows
dynamic analysis to identify malware that could not be identified with static analysis, such as those that
change during their execution.

Ihttps://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
Zhttps://news.drweb.com/show/review/?i=13991&1lng=en
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This approach represents an extension of the preliminary paper [7]] published in the International
Workshop on Security of Mobile Applications belonging to the 15th International Conference on Avail-
ability, Reliability and Security (ARES). We itemize the differences with respect to the previous work:

* the preliminary paper [7] is related only to malicious repackaged applications, while in this paper
we consider also Android malware with different installation methods (i.e., standalone, repackag-
ing and update attack);

» we consider different features with respect to the work proposed in [7]. As a matter of fact,
the paper in [7]] considers only four features, while the approach we propose takes into account
2141 features, extracted with five different feature extraction algorithms (GIST, Gabor, Autocolor
Correlogram, Color Layout and Simple Color);

* the preliminary method published in [7] considers static analysis, while in this paper we propose
an approach considering a dynamic analysis;

* the feature set considered in the preliminary work in [7]] is obtained by exploiting the Androguard
tool, working only on Android application. Differently the proposed approach, considering to
make the detection requires just the system call traces, is general purpose and thus not dependant
from the target operating systems of the applications to analyse;

* we represent an Android application as image obtained from the system call trace, while in the
preliminary work in [7] we propose an image based on the number of identical, similar, new and
deleted methods between two applications (we remark that these values are obtained with a static
analysis);

* we work on a larger dataset: in the method proposed in [[7] we evaluated 36 applications; dif-
ferently, we evaluate the proposed approach by exploiting more than 6000 real-world Android
applications. In detail we consider in the experimental analysis 3355 malware (belonging to 10
different malware families) and 3462 legitimate applications;

* in the evaluation of the workshop paper in [7] we consider only models built with machine learning
techniques, while in this work we experiment with machine learning (ML) but also with deep
learning (DL) techniques.

The paper proceeds as follows: in Section 2] are described the background notions about the techniques
used in the proposed work; in Section [3| current state-of-the-art literature is analyzed and commented; in
Section [4] we describe our method starting from the system call extraction to generate the PNG image
and then to feature generation and classification; in Section [5] are described the dataset used for the
experiment and the results obtained; finally conclusion and future research lines are drawn in Section [6]

2 Background

Our methodology relies on different ML, DL and feature extraction techniques. Briefly, we describe the
main functionalities and knowledge on these models and techniques, and we refer to the literature for
further information.

46



Dynamic Mobile Malware Detection through System Call-based Image representation  Casolare et al.

Table 1: Feature vector sizes with regard of the techniques taken into account.

Feature Extraction | No. Attributes
Autocolor 1024
GIST 960
Simple Color 64
Gabor 60
Color Layout 33

2.1 Feature Extraction

Feature extraction techniques are widely used in image classification tasks, also in malware detection
domain [25, 24} [11]. In our methodology, they serve two purposes: focus the analysis on specific de-
tails (i.e., features) and reduce the size of the images to fixed-size vector dimensions. The sizes of the
generated vector are reported in Table

As shown from Table [I]five different feature extraction algorithms are considered for a total of 2141
features obtained. Below we briefly describe the feature extraction algorithms exploited in this work:

GIST The GIST descriptor [27] extracts the gradient information of an image, such as orientations,
edges and scales, and summarizes them into a 960-length feature vector. It works analyzing spe-
cific areas of the image and summarized the information in a vector. Iteratively, the vector contains
an approximate description of the entire image.

Gabor The Gabor filters study the frequency of patterns in the image, moving trough the image by
region and point of analysis, and they are widely used for texture analysis [23]]. The filters used in
our approach generate a 60-length feature vector.

The images generated by the system call, similarly to any other image generated by malware or code
analysis, do not contain identifiable shapes because they are not related to real objects, as it happens
with photographs. On the contrary, the pixels of these images form mainly distribution of colours which
may look random noise to the human eye. Thus, colour-based feature extraction techniques may play a
fundamental role in improving the performance of the classification task. We tested some colour-based
feature extraction techniques, based also on our previous work [[11]].

Autocolor Correlogram The Autocolor Correlogram filters summarize information on the spatial dis-
tribution of the colours in an image [26]. It merges statistics from the colour histogram with spatial
similarities of image sub-areas. The vector extracted has size of 1024, the biggest one among the
features extraction techniques taken into account in our methodology.

Color Layout The Color layout filter extracts the MPEG7 features, the multimedia content description
standard [15]], which generate a 33-length features vector. The image is analyzed in blocks, and
colour distribution and averages are extracted to the output vector.

Simple Color The Simple Color Histogram filter is aimed to generate from an image under analysis
three histograms [31]]: the first one for the red color, the second one for the green color and the
third for the blue one. Each histogram is composed by 32 bins and Each bin contains a count of
the pixels in the image that fall into that bin.
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2.2 Classification Models

In this work we adopted some of the most used ML and DL models to provide a short but complete
overview of the classification for this kind of task. The classification models belong to the supervised
learning models, where the training phase is guided by the pair input-output, where output represent a
desired value (the class or label of the input sample).

Random Forest The Random Forest (RF) is a decision tree model [[18]], which construct the tree graph
of decisions based on the training phase. The nodes of the tree contain conditional statements
while the leaves contain the output. The classification task is performed by traversing the decision
tree using the input and starting from the root node. The RF trees generation process produces
different trees, independently constructed by subsets of training data, and then aggregated them
based on their validation results.

Support-vector machine The Support-vector machine (SVM) [32] obtains maximum effectiveness in
binary classification problems although, it is also used for multiclass classification problems. The
SVM is based on the idea of finding a hyperplane that best divides a data set into two classes. For
a classification activity with only two spatial dimensions, a hyperplane is represented as a line that
separates and classifies a set of data. Support vectors are the data points closest to the hyperplane.
These points depend on the set of data being analyzed and if they are removed or modified they
alter the position of the dividing hyperplane. For this reason, they can be considered the critical
elements of a dataset.

Multi-layer perceptron The MLP [10] is one of the most used feedforward artificial neural network
models. It consists of, at least, three layers of nodes, namely input, hidden and output layers. In
the inference step, the data starting from the input layers flows trough all the nodes and reach the
output layers. Each node applies a nonlinear activation function, usually the Rectified Linear Unit
(Relu). In the training phase, a backward step (called backpropagation) changes the weights of the
connection of the neurons in order to minimize the error between the prediction and the correct
label and then train the model.

Convolutional Neural Network The CNN [[17]] are deep neural network models well-known for their
good results in image classification tasks. The key layers of these models are the convolutional
layers, which extract information from the input pixels in a structure called ’feature map’, that
gathers the relevant information. The convolutional layers are followed by series of dense layers
(similarly to the MLP), which perform the classification task.

3 Related Work

On the research area covered in this work, there are several studies, for example the researchers in [19]
have studied the behavior of 10 popular Android malware families by focusing on the system call pattern
of these families. They extracted the system call trace of 345 malicious applications from 10 Android
malware families, such as: Fakelnstaller, Opfake, BaseBridge, Iconosys, Plankton, DroidKungFu, Kmin,
Gappusin and Adrd using the strace Android tool and compared them with the system calls model of
300 benign applications to verify the behavior of malicious applications. The researchers observed that
malicious applications invoke certain system calls more frequently than benign applications.

In 6], the researchers designed a method for automatically selecting system calls by choosing them
from a very large set of sequences: the most useful ones were selected for malware detection. The
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method also, given the defined fingerprint in terms of frequencies of selected sequences of system calls,
classifies an execution trace as malware or non-malware.

DaVinci [9] is an Android kernel module for dynamic system call analysis. It provides pre-configured
high-level profiles to allow easy analysis of low-level system calls and runs on applications without
requiring reverse engineering.

The authors of [S]] have implemented an approach to perform dynamic analysis of Android appli-
cations and classify them as malicious or non-malicious. They have developed a system call capture
system that collects and extracts system call traces of the applications installed on the device during their
run-time interactions. Once data on system calls has been collected, it is analyzed in order to identify the
type of behavior of Android applications. 50 malicious applications obtained from the Android Malware
Genome Project and 50 benign applications obtained from the Google Play Store were analyzed. The
goal is to classify the applications’ behavior, considering the frequency of system calls made by each
application as the core feature set. For the classification of the application as harmful or benign, the J48
Decision Tree algorithm and the Random Forest algorithm were used.

The researchers in [[12] have thought instead, of detecting Android gaming malware with a dynamic
system, the method is based on the analysis of system calls to classify malicious and legitimate games.
The dynamic analysis was carried out during the runtime of the games, reporting the similarities and
differences between benign game system calls and malware. It shows how the behavior of malicious
activities via system calls during their activity allows an easier detection of malicious applications.

In [16]] using multimodal deep learning to study both statically and dinamically the application’s
behavior, researchers found valuable results in Android malware detections, bringing to light the effec-
tiveness of deep learning.

In DL-Droid [2] dynamic analysis is made extracting logs files directly from .apk installed on real
phones. The extraction is made two times for each applications because of the chosen test input gener-
ation (i.e. stateless and stateful). Than the features about system calls are extracted and ranked using
InfoGain (an algorithm used to gain informations about feature ranking). So the ranked list is classified
using a Deep Neural Network

In [1]] are compared differences between different machine learning techniques, such as input, analy-
sis, dataset type, performance evaluation critera and algorithms. About this last one the research highlight
some like Random Forrest, SVM and Naive Bayesian as the best ones to work with because of the higher
accuracy rate. However, it emphasize the lack of a proper general malware detection model for both
supervised and unsupervised machine learning classifiers.

DATDroid [30] a Dynamic Analysis Technique for Android malware detection, is composed by
three steps: feature extraction, features selection and classification. The features are extracted from
different sources (i.e. collection of system call, record of CPU and memory usage, collection of network
packets), than occur a selection on these features to optimize the malware detection performance, hence
a classification between benign application and malware is done using machine learning.

GSDroid [28] is a mechanism used to extract and represent low dimensional features. It can de-
tect malicious behaviors in Android applications through graph signal processing based on system calls
diagrams, this last one constructed considering the control dependency relations between system calls.
The features considered are part of an intelligent expert system that is based on the machine learning
technique, allowing to automate the malware detection.

In [29] researchers propose a new mechanism for detecting malware, based on TAN (Tree Augmented
naive Bayes) which uses conditional dependencies between the relevant static and dynamic characteris-
tics (i.e., system calls) useful for running applications. They trained three logistic regression classifiers,
one for API calls, another for permissions, and the last for application system calls. Their output rela-
tionships then has been modeled as a TAN to identify when an application is malicious.

Authors in [13]] have developed a new approach named Artificial Malware-based Detection (AMD)
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in which an innovative genetic algorithm is used to generate, in artificial way, malware models. So
the approach uses extracted malware models and also the artificial malware models. The evolutionary
algorithm also works on the API call sequences’ population to find new malware behaviors, applying
some well-defined evolution rules. The artificial malware models are inserted into the set of unreliable
behaviors, to create diversification between malware samples in order to increase the detection rate.

Researchers in [33] propose a new approach called Back-Propagation Neural Network on Markov
Chains from System Call Sequences (BMSCS), which exploits the back-propagation neural network
(BPNN) to perform the classification of the transition probability matrix of the Markov chain, which
is generated by the sequences of system calls for the detection of Android malware. In this paper, the
authors start from the thought that the probabilities of switching from one system call to another are
different between malicious and benign applications.

In [8] the authors use a static approach, based on formal methods, which exploiting the model check-
ing technique allows to perform a detection of the applications involved in colluding attacks. This attack
in order to be launched requires the communication of two or more applications through the use of covert
channels (i.e., unconventional communication channels such as Android shared preferences). Differently
in this paper, we propose an approach to dynamically detect Android malware through the analysis of
system calls. In detail we propose to represent applications in terms of images obtained from the system
call traces.

4 The Method

In this section we describe the proposed approach for malware detection in Android environment by
representing system call sequences in terms of images.
Figure 1| depicts our method, while the next subsections describe the methodology steps in details.

4.1 System Call Extraction

Below we explain how we gather the system call from an Android application. As a matter of fact, the
rationale behind this step is to capture and store, in a textual format, the system call traces generated by
running applications. For this purpose, the .apk file of each Android application is installed and initialised
on an Android device emulator. Successively, a set of 25 different operating system events [34, [14] is
generated (at regular time intervals equal to 10 seconds) and sent to the emulator and the correspondent
sequence of system calls is obtained. In Table 2] are shown the operating system events we consider for
this purpose.

We exploit a set of operating system events because several previous papers [34} [14] demonstrated
that these events are considered by malicious writers to activate the payloads in Android environment.
In Table [2| the first row shows the BOOT event i.e.,one of the most exploited operating system event to
activate Android malware. This is not surprising because the BOOT event is sent to all the applications in-
stalled on the Android device in the instant in which the operating system terminates its booting process:
this represents a perfect time for a payload to start its malicious action [21]. Malicious writers usually
exploits the BOOT events event, to make able a malicious payload to start itself without any intervention
or interaction of the unaware user with the Android operating system.

Other system events typically exploited by malicious writers are represented by the ACTION_ANSWER
and NEW_OUTGOING_CALL events (respectively in the second and third row in Table [2)): these events are
sent in broadcast to the operating system (and, consequently, to all the running applications) in the
moment in which a call phone is received or initialised by the unaware user.
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Figure 1: The proposed method for malware detection in Android using system call.

The system call retrieval from the Android application is performed by a shell script developed by
authors aimed to perform in sequence a set of actions below described:

initialisation of the target Android device emulator;
installation the .apk file of the application under analysis on the Android emulator;

wait until a stable state of the device is reached (i.e., when epoll_wait is received and the application
under analysis is waiting for user input or a system event to occur);

start the retrieve the system call traces;

send one event from the operating system events shown in Table 2}

send the choose operating system event to the application under analysis;
capture system calls generated by the application until a stable state is reached;

selection of a new operating system event (i.e., the operating system event following the one pre-
viously selected) and repeat the steps above to capture system call traces for this new event;

repetition of the step above until all 25 operating system events in Table [2] have been considered
(i.e., the Android application was stimulated with all the system events depicted in Table [2));

stop the system call capture and save the obtained the system call trace;
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Table 2: System events considered for the malicious payload activation.

# System Event Description

1  BOOT-COMPLETED Able to catch the boot completed

2  ACTION_ANSWER Incoming call

3 NEW_OUTGOING_CALL Outgoing call

4 ACTION_POWER_CONNECTED Battery status in charging

5 ACTION_POWER_DISCONNECTED  Battery status discharging

6  BATTERY OKAY Battery full charged

7  BATTERY_LOW Battery status at 50%

8 BATTERY_EMPTY Battery status at 0%

9 SMS_RECEIVED Reception of SMS

10 AIRPLANE _MODE The user has switched the phone into or out of Air-
plane Mode

11  BATTERY CHANGED Battery status changed

12 CONFIGURATION_CHANGED The current device Configuration (orientation, lo-
cale, etc) has changed

13 DATA_SMS_RECEIVED A new data based SMS message has been received
by the device

14 DATE_CHANGED Receives data changed events

15 DEVICE_STORAGE_LOW Free storage on device is less than 10% of total space

16 DEVICE_STORAGE_OK Free storage on device is adequate

17 INPUT_METHOD_CHANGED An input method has been changed

18 PROVIDER_CHANGED Providers publish new events or items that the user
may be especially interested in

19 PROXY_CHANGE Variation of proxy configuration

20 SCAN_RESULTS An access point scan has completed, and results are
available from the supplicant

21 SENDTO Send a message to someone specified by the data

22 SIM _FULL The SIM storage for SMS messages is full

23 SMS_SERVICE CDMA SMS has been received containing Service
Category Program Data

24 STATE_CHANGED The state of Bluetooth adapter has been changed.

25 WAP_PUSH_RECEIVED A new WAP PUSH message has been received by
the device

* kill the process of the Android application under analysis;
* stop the Android emulator;

* revert its disk to a clean snapshot (i.e., before the installation of Android application under analy-
sis).

Moreover we exploit the monkey tool belonging to the Android Debug Bridge (ADBEb version
1.0.32, to generate pseudo-random user events such as, for instance, clicks, touches, or gestures (with
the aim to simulate the user interaction with the Android application under analysis).

3https://developer.android.com/studio/command-1ine/adb
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[ ] liseek [ exit I getgid32 B mmap2 B recvmsg

. access D exit_group D getpid . mprotect D rename

. bind . fchmod . getpriority D mremap . rt_sigtimedwait

M brk [ fchown32 [ getrlimit [] msync [ sched_getparam

. cacheflush D fcntle4 . getsockname D munmap D sched_getscheduler

. chmod D fdatasync D getsockopt D nanosleep . sched_yield . sigprocmask
D clock_gettime . flock D gettid D open D select D socket

B clone [ fork B gettimeofday Ml pipe [ sendmsg B socketpair
. close . fstat64 . getuid32 D poll D sendto D state4

D connect D fsync D joctl D pretl . set_tls D statfs64
B dup [ ftruncate [ listen [] pread B setpgid B umask

D epoll_create . futex D Iseek D pwrite . setpriority D unlink

[ epoll_ctl []eetdentse4 [l Istate4 B read [ setsockopt M waita

[[] epoll_wait [ ] getegid32 B madvise [ readlink [ ] sigaction [ write

D execve D geteuid32 D mkdir D recvfrom . sigaltstack D writev

Figure 2: System call legend.

Listing 1: Snippet of code where system calls turns into single pixels.

To collect the syscall traces we consider straceﬂ a tool freely available on Linux operating systems.
In detail, we invoke the command strace -s PID to hook the running Android application process to
intercept only syscalls generated by the application under analysis process.

4.2 Image Generation

Basically, starting from a log of system calls, we extract one by one the single calls and respecting the
order given by the log we build the image. In Figure[I]we can see the code snippet with which we convert
system calls: giving in input the single system call, through static calculus we assign a portion to remove
(used at the moment we are going to compress the string). Than, in a loop, the system call turns into
a bit string, converting one by one every single letter. In the lasts rows the bit string is compressed in
order to became a string of 24 total bits that can identify uniquely the system call that it represent, hence
the compressed string is divided in 3 sub-strings, that are converted in decimal obtaining the values for
the RGB conversion used for the images representation as PNG file. Figure 2] shows the RGB value
associated to each system call, it is useful to quickly identify, which are the system calls that compose
an image.

As we can see, following are reported some image representation: in Figure [3] it is possible to see
an image conversion about a trusted application, that is composed by colored squares, where each color
is associated to the relative system calls. In particular both the malware samples, showed in Figure 4]
are belonging to the same family i.e., Plankton. In the right image in Figure @ﬂ and in the left image in
Figure we can see the representations about two different malware applications, that in this case they
look similar to each other but different from the trusted application representation. In fact, the malware
images have some common parts like the two brown bands, that on the contrary are absent in the trusted
image. In this way, we already have a visual impact that allows us to notice the differences between

4https://man7.org/linux/man-pages/manl/strace.l.html
Sidentified by the 0a3be4156b705957d201a86250d0d7f4¢5470f1737ed6d438a129a39b475397b hash
Sidentified by the Oubccadb6ac3523¢968c44dec57d7a7bd50400a55eba02dc37¢7c2f6e6a759292 hash
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Figure 3: Image representing a trusted application.

Figure 4: Images representing two different malware applications.

trusted and malware applications. Hence this method of representation through image generation, could
be used to discriminate quickly malware applications from trusted ones.

4.3 Features Extraction

The size of the images depends on the system calls extracted in the dynamic analysis. Even if the mal-
ware were run in the controlled environment for a fixed amount of time, each malware invokes different
combinations of system calls with different frequencies. Thus, the size of the images generated differs
from one malware to another (the average size in our dataset was around 180x180x3). Moreover, the mal-
ware do not exhibit malicious operations most of the time; hence, the images that collect the sequences
of system calls contain also legitimate operations, which result in noise for the malware detection task
and may mislead the classification.

Therefore, features were extracted by the images. This preprocessing step converts the images to
fixed-size vectors, compress the information and reduce the image size. Several features extraction
techniques were adopted and tested, the experimental results are reported in Section[5.2]

Unlike the standard image classification task such as animal/clothes or number detection task, the
images produced by the system calls do not contain recognizable shapes or object. They contain a
pixel distribution of colours that encode the dynamic analysis information. Intuitively, the colour-based
features extractor should produce more rich and useful features vectors than the ones focusing on edges
and borders. Nevertheless, we applied and combined many of them to find the most suitable one for our
classification task, to get the most from each descriptor techniques.

In detail, we collect vectors by combining the techniques and features reported in Table (4}

4.4 Classification

The image generated from the system calls and then vectorized, can be input in ML and DL models
to perform the classification tasks. Our interest mainly regards the feasibility of using the system calls

54



Dynamic Mobile Malware Detection through System Call-based Image representation  Casolare et al.

as images to distinguish between malware and trusted applications, thus we experiment with different
models and approaches. We tested both standard ML models (Random Forest and SVM) and also basic
DL models (MLP and CNN) to provide a rough overview and study the different results.

The classification task proceeds with a standard approach. The vectors coming from different feature
extraction techniques were grouped together in different datasets (see Table[d). The datasets are then split
into training and test sets, and the models are trained on the training sets. The results of the test sets are
collected and evaluated. The different dataset compositions and models applied provide an interesting
overview, which allows studying the robustness of a model with regards to the datasets. Moreover,
the experiments on different datasets provide information on the capabilities of the features extraction
techniques to summarize interesting information for the problem under analysis, and then the efficiency
of the features extraction techniques compared one to each other.

S Experiment

In this section we describe, respectively, the real-world dataset involved in the experimental analysis and
the results of the ML and the DL classifications.

5.1 The dataset

The dataset considered in the experimental analysis was gathered from two different repositories: relating
to the malicious samples we obtained real-world Android malware from the Drebin dataset [3, 22], a
very well-known collection of malware largely considered by malware analysis researchers, including
the most widespread Android families. The malware dataset is freely available for research purposes

The considered malware dataset consists of different Android malicious families characterized by
different installation methods: (i) standalone, applications that intentionally include malicious function-
alities; (ii) repackaging, known and common (legitimate) applications that are first disassembled, then
the malicious payload is added, and finally are re-assembled and distributed as a new version (of the
original application); and (iii) update attack, applications that initially do not show harmful behaviors
and download an update containing the malicious payload, at runtime.

The malware dataset is also partitioned according to the malware family; each family contains mali-
cious samples sharing several characteristics: the payload installation, the kind of attack and the events
triggering the malicious payload [34].

Table [3] shows the 10 malware families involved in the experiment (i.e., the most populous ones in
terms of malicious samples) with the details of the installation types, the kinds of attack, the events which
activate the payload, the discovery date and the number of malicious samples belonging to each family.

To gather legitimate applications, we crawled the official app store of Googleﬂ by using an open-
source crawlelﬂ The obtained collection includes samples belonging to all the different categories avail-
able on the market.

We analyzed the dataset with the VirusTotal service@ a web service able to run 61 commercial and
free antimalware: this analysis confirmed that the trusted applications did not contain malicious payload
while the malicious ones were actually recognized as malware.

The (malicious and legitimate) dataset is composed by 6817 samples: 3355 malicious (belonging to
10 different malicious families) and 3462 trusted.

Thttps://www.sec.cs.tu-bs.de/~danarp/drebin/
8https://play.google.com/store
nttps://github.com/liato/android-market-api-py
Whttps://www.virustotal.com/
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Table 3: The malware families.
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Family Description Inst. Events
Geinimi It has the potential to receive commands from a re- r MAIN
mote server that allows the owner of that server to
control the phone
Plankton Advance the update attack by stealthily upgrading u MAIN
certain components in the host applications, it does
not require user approval.
BaseBridge It sends information to a remote server running one r,u  BOOT, SMS, NET,
or more malicious services in background BATT
Kmin It is similar to BaseBridge, but does not kill antimal- s BOOT
ware processes
GinMaster It contains a malicious service with the ability toroot r BOOT
devices to escalate privileges, steal confidential in-
formation and install applications
Opfake It demands payment for the application content r MAIN
through premium text messages
Fakelnstaller ~ SMS trojan adding server-side polymorphism, ob- r BOOT, SMS
fuscation, antireversing techniques and frequent re-
compilation
DroidDream It is able to obtain root privileges, to obtain accessto r MAIN
SD files and to change the device settings
DroidKungFu 1Its payload is able to run along with the original ap- r BOOT, BATT
plication process. It steals theIMEI, the OS Version,
the device model and saves this information into a
local file
Adrd It uploads infected cell phone’s information to the r BOOT, NET, CALL

control server every 6 hours and receive its com-
mands, causing a great amount of network traffic

From the malicious and legitimate dataset we gathered the system call sequences with the procedure
explained in the previous section. Subsequently, from each system call trace we generated the relative
image representation and we extracted, for each image, the features with the GIST, the Gabor, the Auto-
color Correlogram, the Color Layout and the Simple Color feature extractors: at the end of this process,
for each image obtained from the system call traces, five different feature sets are obtained.

Once obtained the feature sets, we performed several combinations in order to obtain more complex
feature sets with the aim to better capture the differences between malicious and legitimate applications.
The list of feature set combinations is shown in Table

5.2 Results

In this section we present the classification results we obtained by evaluated the different feature sets
with different models built with machine and deep learning algorithms. We firstly present the machine
learning experimental results and, subsequently, the deep learning ones.

Four metrics are considered to evaluate the performance of the classification with machine and deep
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Table 4: Feature sets involved in the experimental analysis.

Feature Set GIST Gabor Autocolor Color Simple | Vector size
FS1 X 1024
FS2 X X 1088
FS3 X X 1084
FS4 X X X 1148
FS5 X X X X 1181
FS6 X X 1984
FS7 X X X 2044
FS8 X X X X X 2141

learning algorithms: Precision, Recall, F-Measure and Accuracy.

The precision has been computed as the proportion of the Android application that are truly belong-
ing to class (i.e., malware or legitimate) among all those applications which were assigned to the class. It
is the ratio of the number of relevant applications retrieved to the total number of irrelevant and relevant
applications retrieved:

tp

Precision =
tp+fp

where #p indicates the number of true positives and fp indicates the number of false positives.

The recall has been computed as the proportion of Android applications that were assigned to (mal-
ware or legitimate) class, among all the Android applications truly belonging to the class, i.e., how much
part of the (malware or legitimate) class was captured. It is the ratio of the number of relevant applica-
tions retrieved to the total number of relevant applications:

Recall = tpfffn

where #p indicates the number of true positives and fn indicates the number of false negatives.
The F-Measure represents a measure of a test’s accuracy. This score can be interpreted as a weighted
average between the precision and the recall metrics:

2 % PrecisionxRecall

F-Measure = Precision+Recall

The accuracy of a measurement system is the degree of closeness of measurements of a quantity to
that quantity’s true value: it represents the fraction of the classifications that are correct. It is the sum of
true positives and negatives divided all the evaluated Android applications:

tpt+in

ACCI/!racy = W

where fp indicates the number of true positives, tn indicates the number of true negatives, fi indicates
the number of false negatives, fp indicates the number of false positives.

With regard to machine learning experiment settings, for model building, we defined Tyeection as a
set of labeled messages {(Myerections ldetection) }» Where each M jerecrion 1 the label associated to a lyerection
€ { malware, legitimate}. For each M j.ection We built a feature vector F € Ry, where y is the number of
the features considered in training phase.
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Table 5: Machine learning experimental results.

Feature RandomForest SVM
Set Precision Recall F-Measure Accuracy | Precision Recall F-Measure Accuracy
FS1 0.885 0.885 0.885 0.885 0.837 0.836 0.836 0.836
FS2 0.894 0.894 0.894 0.894 0.850 0.850 0.850 0.850
FS3 0.845 0.844 0.844 0.844 0.837 0.836 0.836 0.836
FS4 0.865 0.865 0.865 0.865 0.846 0.846 0.846 0.846
FS5 0.861 0.861 0.861 0.861 0.849 0.849 0.849 0.849
FS6 0.812 0.810 0.810 0.811 0.820 0.819 0.819 0.819
FS7 0.807 0.805 0.805 0.806 0.822 0.822 0.822 0.822
FS8 0.822 0.821 0.821 0.821 0.854 0.854 0.854 0.854
AVG 0.849 0.848 0.848 0.848 0.839 0.839 0.839 0.839

With regard to the learning phase, a k-fold cross-validation is exploited: the dataset is randomly
partitioned into k subsets. A single subset is retained as the validation dataset for testing the model,
while the remaining k — 1 subsets of the original dataset are considered as training data. We repeated
the process for k£ = 10 times; each one of the k subsets has been used once as the validation dataset. To
obtain a single estimate, we computed the average of the k results from the folds.

We evaluated the effectiveness of the model method by exploiting following procedure:

1. build a training set TCD;
2. build a testing set 7/ = DT,
3. run the training phase on T;

4. apply the learned classifier to each element of 7’.

Each classification was performed using 90% of the dataset as training dataset and 10% as testing
dataset employing the full feature set.

Table 5| shows the experimental results we obtained from the machine learning models.

Similar experiments were performed using the MLP and CNN models, whose layers architectures are
reported in Table[6] The parameter column refers to the percentage of neurons deactivated in the Dropout
layers. The output shape of the Convolutional layers (layers 1-8 of the CNN) depends on the input shape,
which differs from the feature set under analysis.

The MLP takes as input vectors in one dimension, thus the dataset of vectors directly applied on the
model. On the other hand, the CNN requires images (matrices of pixels) as input, then the 1D vectors
were reshaped into 2D matrices and 0-paddings were added, if necessary, to create squared matrices.
Table [/|shows the results obtained from the deep learning experiments.

The performance results in test, reported in Table[S|and Table[7] lead to some interesting evaluations.
First of all, the “colour-related” features (namely, the Autocolor Correlogram, the Color Layout and the
Simple Color) perform better than the other features. Indeed, the feature sets on which the colour-related
features are predominant (FS1-5) achieved better results than the FS6 and FS7, based on GIST and Gabor
features. This difference is consistent on the ML models, especially for the Random Forest model, while
the results gap is smaller in the DL models. We expected this outcome because the input images are
simply a distribution of colours, with no detectable shape or object, thus the colour features can extract
more useful information than features extractor based on edges, rotations and shapes features.
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# Layer MLP CNN
Type Output Shape Parameter Type Output Shape Parameter

1 Dense 500 - Convolutional X1,X1,32 -

2 Dense 700 - MaxPooling X5,X>,32 -

3 Dropout 700 0.5 Convolutional X3,X3,64 -

4 Dense 1000 - MaxPooling X4, X4,64 -

5 Dense 500 - Convolutional X5,X5,128 -

6 Dropout 500 0.5 MaxPooling X6,X6,128 -

7 Dense 250 - Flatten X7 -

8 Dense 100 - Dropout X7 0.5

9 Dropout 100 0.5 Dense 512 -

10 Dense 50 - Dropout 512 0.5

11 Dense 2 - Dense 256 -

12 - - - Dropout 256 0.5

13 - - - Dense 2 -

Table 7: Deep learning experimental results.
Feature MLP CNN

Set Precision Recall F-Measure Accuracy | Precision Recall F-Measure Accuracy
FSI 0.879 0.879 0.879 0.879 0.828 0.828 0.828 0.828
FS2 0.884 0.884 0.884 0.884 0.846 0.846 0.846 0.846
FS3 0.866 0.866 0.866 0.866 0.846 0.846 0.846 0.846
FS4 0.833 0.833 0.833 0.833 0.821 0.821 0.821 0.821
FS5 0.87 0.87 0.87 0.87 0.835 0.835 0.835 0.835
FS6 0.86 0.86 0.86 0.86 0.855 0.855 0.855 0.855
FS7 0.868 0.868 0.868 0.86 0.855 0.855 0.855 0.855
FS8 0.87 0.87 0.87 0.87 0.854 0.854 0.854 0.854
AVG 0.866 0.866 0.866 0.866 0.843 0.843 0.843 0.843

One more insightful consideration regards the averages of the results, reported in the last row of
Table [5| and Table [7] The DL models seem to be more robust in the results with regard to the different
features set, and achieve higher average results than the ML models. Probably, the higher complexity of
the DL models architecture is able to better generalize the problem and then produce acceptable results
with any kind of features. On the other hand, the ML models needs a feature set properly descriptive of
the problem (i.e. colour-feature for our images) to produce the best results, but then are able to produce
higher absolute value in performance. As a matter of fact, the Random Forest applied on the Autocolor
Correologram and Simple Colo filter achieved the highest value in test, 0.894 in accuracy.

6 Conclusion and Future Work

Currently malware detection represents an open issue, considering the inability of signature-based free
and commercial antimalware to detect new malicious payload and the ability of malware writers to
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develop malicious code. To mitigate the spread of malicious code, with particular regard to Android
environment, in this paper we propose a technique to automatically detect whether an application under
analysis is malicious or legitimate. A dynamic analysis is considered i.e., we execute the application
under analysis to extract the system call trace, that is used to generate an image of the application ex-
ecution. Thus, once an image is obtained from each application, several machine and deep learning
supervised classification algorithms are exploited to evaluate if this representation can be useful to dis-
criminate between legitimate and malware Android applications. The experimental analysis, conducted
on a real-world dataset of (legitimate and malware) 6817 Android applications show that all the consid-
ered classification obtained an accuracy up to 0.89, confirming the effectiveness of the proposed method
in Android malware detection.

As future work, we plan to explore if the proposed representation of an Android application in terms
of image can be helpful to identify also the belonging malware family. The experimental results are
promising, the approach seems feasible for a quick preliminary evaluation on semi-realtime data, but
needs to be improved to achieve higher results. It could benefit to insert this approach in a multi-level
classification architecture, where the most interesting applications are filtered by our methodology; then,
a more expensive but precise evaluation perform a static final analysis only on the subset of pre-selected
applications. Furthermore, we will explore whether formal verification techniques can help us to reach a
better accuracy in the malware detection task.
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