
Anomaly Detection for Industrial Control Systems Through
Totally Integrated Automation Portal Project History

Laura Hartmann1,2∗ and Steffen Wendzel1,2

1Fernuniversität in Hagen, Hagen, Germany
steffen.wendzel@fernuni-hagen.de

2University of Applied Sciences Worms, Worms, Germany
hartmann@hs-worms.de, wendzel@hs-worms.de

Received: May 25, 2022; Accepted: August 22, 2022; Published: September 30, 2022

Abstract

Attacks on industrial control systems (ICS) have been intensively studied during the last decade.
Malicious alternations of ICS can appear in several different ways, e.g., in changed network traffic
patterns or in modified data stored on ICS components. While several heuristics and machine learn-
ing methods have been proposed to analyze different types of ICS data regarding anomalies, no work
is known that uses the data of Totally Integrated Automation (TIA) Portal for anomaly detection. TIA
Portal is a popular software system for organizing the ICS, with which configuration and program-
ming data can be viewed, changed and deleted. By saving the single project datasets historically, old
versions of the current system configurations can be restored. This work extends our previous work
[1], in which we started to examine real TIA Portal project data of an automotive manufacturer’s pro-
duction line, covering a period of about three years of historical data, for various features that may
indicate anomalies. We therefore proposed heuristics that detect timing- and size-based anomalies
in the TIA Portal data. Our initial approach is extended by applying machine learning algorithms on
top of our built heuristics to improve our detection results. We have also added more details of the
given dataset. Additionally, we investigate a further feature set consisting of the different types and
a varying amount of code blocks of our given dataset. Our approach covers both, changes to the data
caused by infiltrated attacks as well as malicious changes made by employees who have direct access
to the machines.

Keywords: Industrial Control Systems (ICS), Anomaly Detection, Cyber Physical Systems (CPS)
Security, Intrusion Detection Systems (IDS), Machine Learning (ML)

1 Introduction

Since cyber security is important in the area of Industrial Control Systems (ICS), many researchers
are concerned with the challenge of protecting these. Nevertheless, mistakes made by employees and
malicious manipulations by attackers or saboteurs, who have gained access to the machines, can cause
harm to people and companies. Exemplary, despite of other factors, people might be harmed by an axis
for which the angle at which an axis pivots is manipulated. Noteworthy attacks in the past that could
have been detected through a data-based approach include Stuxnet in 2010, Havex in 2013, Irongate in
2016, and Industroyer as well as Triton in 2017. Recently, the possibility of a malignant change was

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), 13(3):4-24, Sept. 2022
DOI:10.22667/JOWUA.2022.09.30.004
∗Corresponding author: Center for Technology and Transfer (ZTT), University of Applied Sciences Worms, Worms, Ger-

many, Tel: +49-(0)6241-509-255, Web: https://www.hs-worms.de/hartmann/

4

https://www.hs-worms.de/hartmann/


Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

demonstrated once again by a series of explosions at the nuclear energy facilities in Iran from June to
October 2020 where, in total, 25 explosions and fires mainly on nuclear facilities have been registered12.

Our project MADISA3 focuses on anomaly detection for data of ICS, i.e., code and configurations
as well as their metadata within ICS. In this initial study, we aim to identify anomalies in the data
stored on ICS with heuristics and machine learning. Therefore we analyze Totally Integrated Automation
(TIA) Portal project data. In detail, we investigate the alternations performed by the programmable logic
controller (PLC) programmers of TIA Portal projects over time.

We provide the first analysis of TIA Portal project data for the purpose of anomaly detection and
build heuristics based on our investigation. We apply an approach based on data history analysis in the
sense that we evaluate new configuration changes on the basis of previous data modifications. Therefore,
in this work, we will introduce some stealthy attacker scenarios for TIA Portal data and evaluate the dif-
ferent timestamps and storage variables contained in our data on basis of these scenarios. The extension
of this work over [1] also handles the usage of machine learning algorithms in addition to heuristics.
Furthermore, we describe another non-stealthy scenario for the given data: the insertion or deletion of
code blocks. Additionally, we provide more details of our given dataset.

The remainder of this paper is structured as follows: Sect. 2 describes the related work. Sect. 3
contains the explanation of the given datasets. Our examination of the features consisting of timing
and size related variables is placed in Sect. 4, including the attacker scenarios used for our examination
(Sect. 4.1) and the analysis of our data (Sect. 4.2). We extend the examination with the different blocks’
counts in Sect. 5, with an additional scenario for this feature set (Sect. 5.1) and an analysis of these
features (Sect. 5.2). Summarizing Sect. 6 is followed by the concluding Sect. 7, which also provides a
prospect of the future work.

2 Related Work

Anomaly detection based on historical data from ICS is mostly unexplored. According to an overview
of existing approaches by Feng et al. [2], there are different approaches for anomaly detection, but none
of them deals with the historical project data in form of code, configurations and the projects’ metadata.
For example, Kiss et al. [3] use network data from host and security equipment, and F. Zhang et al. [4]
and R. Zhang et al. [5] detect anomalies by investigating binary process data. Examining programmable
logic controller protocols is done by Yoo et al. [6], and text- and binary-based protocols by Wressnegger
et al. [7]. M. Zhang et al. [8] detect anomalies via time shifts of physical operations and executable paths.
Das et al. [9] use sensor data for behavior-based anomaly detection with an indication to the occurrence
by evaluating the historical sensor measurements. This approach is close to our work, but it only uses
historical sensor measurements for evaluation. We use code and configurations and the corresponding
metadata of these files, which are not considered in their approach.

It must be noted that this article is based on [1]. We extend the previous work by additional de-
scriptions of the given data, further evaluation of the chosen features of sizes and timings, as well as an
additional – non-stealthy – scenario for the different code blocks and their amount over time.

There are methods to detect attacks that have not yet been manipulated the TIA Portal project data:
those address the network. Anomaly detection can be performed in two modes here: the monitoring of
the traffic and the network protocol analysis. The approaches dealing with the detection of anomalous

1“Iran blasts: What is behind mysterious fires at key sites?”, https://www.bbc.com/news/

world-middle-east-53305940
2“Stuxnet 2? Iran Hints Nuclear Site Explosion Could Be A Cyberattack”, https://www.forbes.com/sites/

kateoflahertyuk/2020/07/04/stuxnet-2-iran-hints-nuclear-site-explosion-could-be-a-cyberattack/

?sh=6e5d323c25ad
3https://madisa.ztt.hs-worms.de/

5

https://www.bbc.com/news/world-middle-east-53305940
https://www.bbc.com/news/world-middle-east-53305940
https://www.forbes.com/sites/kateoflahertyuk/2020/07/04/stuxnet-2-iran-hints-nuclear-site-explosion-could-be-a-cyberattack/?sh=6e5d323c25ad
https://www.forbes.com/sites/kateoflahertyuk/2020/07/04/stuxnet-2-iran-hints-nuclear-site-explosion-could-be-a-cyberattack/?sh=6e5d323c25ad
https://www.forbes.com/sites/kateoflahertyuk/2020/07/04/stuxnet-2-iran-hints-nuclear-site-explosion-could-be-a-cyberattack/?sh=6e5d323c25ad
https://madisa.ztt.hs-worms.de/


Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

behavior after successful infiltration of an attack address the endpoints of malicious changes: the sensor
and process data which are secured by monitoring timing invariants, rules for physical states, watermark-
ing of data, and other detection methods [10] like the plausibility check by Krotofil et al. [11]. Intrusion
detection systems (IDS) were revised by several works (e.g., [12, 13]) in the near past. Gómez et al.
[12] propose a new learning dataset for IDS related to network traffic that is based on their methodol-
ogy consisting of attack selection, attack deployment, traffic capture, and feature selection. Rubio et
al. [13] discuss existing cybersecurity threats and various defense techniques, including anomaly-based
approaches using data mining, classification, clustering, and (machine) learning techniques, as well as
statistical, knowledge-based and time series analyses, to name a few. Afterwards they present IDS solu-
tions and research from the industrial as well as the academic sector. In their discussion section they name
research fields which are not fully examined until now such as advanced persistent threats’ behavior, or
a holistic defense solution.

A challenging part of research is the detection of stealthy attacks. For instance, Hu et al. [14] deal
with this topic based on a residual skewness analysis of process data. Genge et al. [15] investigate
stealth attacks on aging devices in the Industrial Internet of Things and include the decay of processes
in their statistical analyses. Sensor and actuator attacks were examined by Urbina et al. [16] assuming
that stealthy attacks evolve with the changes of the machine. Krotofil et al. [17] already examined
timestamps of processes to make DoS attacks more stealthy. Referring to this, it can be assumed that
the investigation of timestamps of TIA Portal data is a further step in detecting stealthy attacks, and thus
essential. Stealthy attacks are on the one hand characterized by perfectly timed malicious changes during
the working shifts in which employees are also making their legitimate changes. On the other hand they
are implemented with a low frequency of changes since in production one or fewer changes per day
are implemented. Such attacks are also characterized by the fact that they are usually implemented by
small manipulations in the data (most of the legitimate changes alter only a few bytes). Those attacks
match several characteristics of our legitimate data. They can potentially be detected by our approach
when looking at the code and configurations of our data, which we will address in future work. Another
stealthy approach by Alsabbagh and Langendörfer [18] also deals with TIA Portal code and content. The
authors propose an approach where they decompile the PLC’s Statement List source code and replace
instructions. To make it stealthy towards PLC programmers that compare local against PLC’s online
code, the authors propose to redirect the PLC programmer’s view to a fake PLC copy with uninfected
code by a redirect. They add that the PLC programmer can only recognize this if he would, in addition,
check the IP address of the PLC. The same scenario is used by the authors in their follow-up work [19],
where they decompile Ladder Diagram source code. Since our envisioned approach checks code and
content of projects, both of these scenarios would raise an alarm in our system (depending on where
one implements our heuristics (cf. Sect. 6, Deployment of heuristics.). A third paper by Alsabbagh and
Langendörfer [20] also deals with TIA Portal data, i.e., in this case they introduced an attacker’s code
to the main Organization Block of the TIA Portal. Also, they added another Organization Block to the
system that will be activated when the first block gives a signal at a specific time. Those blocks are
changed and inserted rarely as they handle startups, interruptions and other basic operations (in our data,
we had three new Organization Blocks in four projects over a period of three years in total). Moreover,
depending of the size and time of the change, our heuristics would raise an alarm in such a case.

3 Description of the Given Data

Our given datasets from a real-world environment – a German car manufacturer plant – contain four
projects of TIA Portal, a software to simulate, engineer and operate the ICS, where each project coor-
dinates the code and configuration of one machine. These projects contain archive and backup data for

6



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

four different components of the production where archives are long-term and backups are short-term
records of the TIA Portal projects.

The backup folders Three of our four projects include a backup folder with 40 backups where each day
of the last 40 days carries one backup. These daily backups were configured in a job (pre-set schedule
is daily) and can deviate if the company specifies other times. However, it is recommended by the
versiondog vendor to save them daily to ease data comparison. Some of the given backups are made
twice a day while some are left out on certain days, which shifts the time span of existing backups by
one day, i.e., some backups contain the last 39 or 41 days instead of 40. These shifts result from a
second manual backup – on top of the automatically created one – or the removal of one. Our approach
is able to handle these non-continuous backups. In total, there are 120 zip-folders that contain backups.

The archive folders Again, only three of the four projects include an archive folder. It consists of
project data over a period of about three years. The frequency of the occurrence of archives differs;
there are zero to six folders per day. In total, there are 566 zip-folders that contain an archive.

The car manufacturer uploaded these folders to the versioning tool versiondog4. Versiondog allows
to remotely save the ICS’ data and shows their historical modifications. The options chosen for our
uploaded data are: 1) Software Upload where a predefined job is uploading the backups automatically
with the storage strategy “Always save backup”, which allows us to compare the different backup folders
– even if they are the same as the previous one. 2) Since the car manufacturer changed its remote saving
storage options, the latest part of the data uses another option: the recommended latest version of Station
Upload where the different backup folder sizes are smaller than the ones of the software upload strategy.
However, this new strategy is supported only by TIA Portal V15.1 and newer, so it is not yet applicable
for anyone using older versions. Thus, we consider both upload strategies.

Despite the fact that the time span of existing backups is 40 days and the timestamps in them range
back to about three years, the single data entries in the backups and archives span back to 2012 with
some additional dates, which are fixed to the year 1601, because they were set in a standardized way
once at the beginning and have not changed anymore.

Each archive or backup folder contains a project file, which is also provided to us as a json
file. These files are structured as follows: There are seven main data paths, i.e., each of the files
contains data divided into seven substructures – ControllerDataTypeFolder, ControllerTagsFolder, De-
vice, ProgramBlockFolder, TechnologicalParamFolder, TextLists and TracesFolder – where, for ex-
ample, “Devices” includes both network and programmable devices, and “ProgramBlockFolder” con-
tains code. The main data paths are also separated into further data paths. Timestamps can be
found in two of them: programBlocksFolder/pro-gramBlocks/ID/Data and programBlocksFolder/Data-
Blocks/ID/PLC Data. In total, seven different timing variables were investigated during the work on [1].
Two variables dealing with the size of volatile and non-volatile storage were investigated in this work.
They are located under the same data paths as the timing variables.

All files include code blocks that are categorized into the following:

• Organization Blocks (OB) are responsible for functions such as startup, interruptions, error handling
and cyclic execution of code. (First data path)

• Function Blocks (FB) include the actual program. They can access internal storage. (First data path)

• Function Calls (FC) are also functions. In contrast to FB, FC only have temporary internal storage.
(First data path)

4versiondog, https://auvesy-mdt.com/en/versiondog

7

https://auvesy-mdt.com/en/versiondog


Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

• Data Blocks (DB) store the data for the code blocks. (Second data path)

The distribution of the blocks shown over all projects, clustered by DataBlocks (DB) and program-
Blocks (PB, namely FB, FC, OB), is as follows (Fig. 1):

0 200 400 600
File Number

0

100

200

300

400

500

N
um

be
r o

f B
lo

ck
s

(a) DataBlocks

0 200 400 600
File Number

0

100

200

300

400

500

N
um

be
r o

f B
lo

ck
s

(b) ProgramBlocks

Figure 1: Distribution of Data- and programBlocks.

All of these code blocks carry the following time variables:

• ftCreation: Variable that represents the time of creation of the block.

• ftModified: Variable that indicates the modification time of the block, i.e., every change in code
(ftCodeModified), interface (ftInterfaceModified) or in a load-relevant field (ftLoadRelevantModified)
is mapped to this.

• ftCodeModified: Time variable representing the time of modifications in the code/data itself.

• ftInterfaceModified: Variable is updated when modifying the interface.

• ftLoadRelevantModified: By editing comment, author, block version, etc., this variable is set to a
new timestamp.

• compileTime: This indicates the last compilation time of the block.

• downloadTime: This value describes the time at which the block was latest loaded onto a device.

The distribution of the timing variables differs per variable and block type. Exemplary for OB and
DB, the following Fig. 2 displays the distribution of compileTime in the first of our four projects.

The dataset contains two storage variables:

• loadMemoryRequired: This represents the non-volatile storage of the blocks with DB storage being
always set to zero. When downloading the project to the CPU, it is first stored in here.

• workMemoryRequired: This variable represents the volatile storage of the executable OB, FB, FC
or DB; again with DB storage always set to zero. While running the project, this storage is used.

8



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

12 a.m.4 a.m. 8 a.m.12 p.m.4 p.m.8 p.m.
0

5

10

15

20

Time

A
bs

ol
ut

e
Fr

eq
ue

nc
y

of
E

ve
nt

s

(a) compileTime of OB

12 a.m.4 a.m. 8 a.m.12 p.m.4 p.m.8 p.m.
0

2k

4k

6k

Time

A
bs

ol
ut

e
Fr

eq
ue

nc
y

of
E

ve
nt

s

(b) compileTime of DB

Figure 2: Distribution of timing variables.

DB FB FC OB
Block Type

0

100k

200k

300k

400k

500k

M
em

or
y 

Si
ze

(a) Boxplot of loadMemoryRequired variable.

DB FB FC OB
Block Type

0

20k

40k

60k

80k

M
em

or
y 

Si
ze

(b) Boxplot of workMemoryRequired variable.

Figure 3: Boxplots of size variables.

Fig. 3 summarizes the load- and workMemoryRequired variables:
As one can recognize, and as mentioned, DBs always have their storages set to zero. FBs have the

highest usage of memory, followed by FCs. OBs use only a small amount of storage in comparison to
the other block types.

Fig. 4 summarizes the given data described. The gray-patterned paths will be investigated in future
work, the white ones are those that are considered in this work.

Other features that we can locate in the data, and that will be investigated in the future, are the
code languages (such as FUP (Function Plan) or SCL (Structured Control Language), the textual and
graphical code (investigated linguistically), and the configurations of the devices as well as the devices
themselves that can be found in the internal data. The sizes of the individual files in the zip-folders, the
encryption, file names and file types that we can pull from the external data will also be examined.

In this work, we decided to start with the examination of size- and time-based features, as well as
counts of blocks, as such features almost necessarily change when a manipulation in the data is made.

9



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

 

University of Applied Sciences Worms – Project MADISA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

German car manufacturer 

 

 

AUVESY GmbH 

 

 

Download and 
Convert to json 

Software - or 
Station Upload 

TIA Portal versiondog Given Project Data 

Extraction and processing 
of the various data 

using python 

 

 

 

 

 

DataBlocks 

 

 

programBlocks 

 

 

7 Timing & 2 
Storage Variables 

7 Timing & 2 
Storage Variables 

ControllerDataTypeFolder 

ControllerTagsFolder 

Device 

TechnologicalParamFolder 

TextLists 

ProgramBlockFolder 

Backup 

Archive 

Figure 4: Summary of the given dataset – gray-patterned paths will be investigated in future work, the
white ones are those that are considered in this work.

Code, configurations, names and other data is planned to be investigated in the future. Here, one will
need to linguistically analyze the data; that is why we delimit our work in this step from those features.

Another aspect of the data given is the target files. Here, one needs to examine existing attacks and
their main targets. This also leaves room for further work.

In a previous work [21], we already focused on the “Device” path, where we studied changes over
time. The values of features were rarely changing, rendering this path mostly unsuitable for information
hiding and stealthy attacks.

Features to be investigated in other work: Our examination shows that there are multiple features of
the given data that could be exploited and therefore should be investigated (Fig. 5): The gray-patterned
can be investigated in future work, or have already been examined in related work (e.g., “Devices” [21]).

4 Time- and Size-based Features Examination

This section handles the first of two feature sets that are examined in this work. First, we present attacker
scenarios for this evaluation, followed by the dataset analysis. The latter also includes the comparison of
results and the improvement of our results by applying a machine learning algorithm.

4.1 Attacker Scenario

For our examination, we simulated three different attackers:

a) PLC Programmer
The first attacker is an internal employee, a PLC programmer, that exactly knows the working shifts
and, thus, the timing of legitimate manipulations of the PLC code, since he himself programs the

10



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

 

H
is

to
ric

al
 d

at
a 

an
al

ys
is

Internal data

Metadata

Authors

Times & 
Frequencies

Compile Times

Creations

Modifications

Download Times

Sizes
Load Memory

Work Memory

Types
Blocks

Languages
Names

Counts
Blocks

Storages

Content

Devices

Code
Textual

Graphical
Configurations

Outlying data

Counts
Archives

Backups
Encryption

Duplications/Deletions

File Names

File Sizes
Zip-Folders

Single Files
File Types

Frequencies
Archives

Backups
Structure

Target Files

Figure 5: Features to be investigated – the gray-patterned features can be investigated in future work, or
have already been examined in related work (e.g., “Devices” [21]).

PLCs. The way legitimate PLC programmers work is as follows: If a programmer wants to change
something in an existing code, he can view the last backup in comparison to the current state – here
he can check if he overwrites something with his new code by mistake. Also he can directly view the
changes made since the backup.

If a malicious saboteur were to make changes during the working shifts and one of his colleagues,
who is ideally trained, and, thus, compares versions before editing the code or configurations, were to

11



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

access the code of the machine, he would most likely notice the malicious change. However, because
of this, the malicious programmer maintains a new piece of code that is not connected to a PLC.
The colleague would not recognize the new code due to unawareness of it and because the code is
not displayed for comparison since it is not connected to the device, and it would accordingly not be
noticed. The next day, this code snipped is in the backup – it is now seemingly a legitimate code
snipped. Since it includes a timer that connects it to the environment some days later at a legitimate
time, but shortly before the worker shift ends, almost no one would be able to detect the malicious code
which then executes itself. From this, the assumptions listed below can be assumed to be plausible:

– Timing: inserting malicious code in legitimate times — the PLC programmer has the ability to
insert the malicious code snippet during the work shifts, since he is working on the machines
at this time anyway. For activation of the snippets, he needs to insert the connection as late as
possible during the working shifts, as the possibility of another employee inserting something in
the code is lower during that time. Some of those late inserted changes might be recognizable by
our heuristic.

– LoadMemory and WorkMemory: inserting malicious data with an overlap of 50% with the le-
gitimate sizes — since the programmer first inserts the malicious code without activating it, the
load and work storages are set to zero. By activating the next day, the sizes grow to a seemingly
normal value; however, since we measure the differences, the detection of the second step, the
embedding of the code to the system, is recognized by our heuristics.

b) Backup Coordinator
The second attacker is also an internal employee, who is responsible for the controlling of backups
and archives, and, thus, aware of the sizes of the backup and archive folders that are delivered by the
versioning tool (versiondog).

He places his attack with legitimate sizes — small changes spread over several days, but almost com-
pletely overnight and before the new backup is made for two reasons: a) the detection of a malicious
change can then not be detected by the employees working on the machines since the new backup is
the standard for comparison of the code by PLC programmers the next day; b) his office colleagues
are not around and accordingly do not notice anything. According to this, the following values can be
assumed plausible:

– Timing: inserting malicious data outside the legitimate times — as he wants his colleagues not to
recognize his malicious insertions, he starts his sabotage after they left. Another reason for the
late night insertions is the awareness of the saboteur that no one of the PLC programmers will
see his changes since he knows the timings by checking the earlier backup data. Thus, he inserts
his changes at 11 p.m. — right before the backups are saved.

– LoadMemory and WorkMemory: inserting malicious data in legitimate sizes — since the saboteur
is also aware of the sizes through the knowledge gained from the older backups, he is only
updating values in a limited manner, increasing their limit by 1 in every step, which prevents
load and work storage from being exceeded.

c) Various Attacker
We also designed a third, non-stealthy scenario in which the saboteur attacks evenly distributed and
multiple times throughout the day and does so at different sizes.

12



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

4.2 Dataset Analysis

This section analyzes the detectability of anomalies in the provided data. This is done based on the
distribution of the data within a feature for each block type and variable, which allows outliers to be
detected even in the legitimate given data (Sect. 4.2.1), and the differences of individual parameters for
the single blocks, with outliers considered as anomalous values (Sect. 4.2.2). Also, all heuristics are
combined (Sect. 4.2.3). Afterwards, in Sect. 4.2.4, we compare our results followed by an extension of
the features’ investigation by applying a machine learning algorithm instead of our heuristics to compare
results (Sect. 4.2.5).

The features studied were chosen for the following reasons: They are always present, i.e., no matter
whether code or configurations are considered. Another reason why we chose these metadata is that the
timing of an attack is crucial for its stealthiness. Thus, we try to detect attacks in temporal series or in
combination with other values, such as the examined sizes.

Our clustering of the timing- and size-based variables’ values into legitimate and anomalous times
and sizes is based on an analysis of the PLC programmers’ behavior in each project, i.e., the times
in which the PLC programmers are working and the sizes of data that are typically generated by the
PLC programmers. Our attackers were simulated closely to the given data to underline our behavioral
clustering and our resulting heuristics.

As a result of our clustering, we also have up to 19.87% false positives (feature-dependent) in our
legitimate data. Based on discussions with employees of the company who provided us with the data,
the presence of anomalous values for the representatively interrogated test nodes could be confirmed.
Nevertheless, we continued to treat these anomalies in our data as legitimate and did not categorize
them as true negatives to determine the performance of our heuristics under realistic conditions. In other
words, if we would remove all these anomalies to build our model and our heuristics, every user of it
would have to remove all anomalous values before using it, which would be impractical.

Dataset Training and Testing. To create our heuristics, we used the first and second project for
training. For testing, we applied the heuristics to projects 3 and 4.

4.2.1 Time-based Anomalies

Starting with the time variables of the first project, the first data path contains FB, FC and OB, the second
one carries the DB. Based on the distribution of the individual time variables, ranges can be defined for
which changes in the data are permitted. For FB, all variables are set from 12:00 a.m. to 1:59 a.m. or
8:00 a.m. to 8:59 p.m. The FC are mainly in the processing period from 7:00 a.m. to 9:59 p.m. OB starts
and ends for the 7 variables from 7:00 a.m. to 10:59 p.m. Five of seven DB variables are set between
7:00 a.m. and 8:59 p.m. as well as 12:00 a.m. to 1:59 a.m., but the compile- and downloadTime variables
are always set at exactly 12:53:28 a.m.

The knowledge gained from the distribution-based clustering of the first project (backup) and second
project (archive) was subsequently applied to the other data from projects 3 and 4 (each project con-
sisting of backup and archive files). To present the results, we use Receiver Operating Characteristic
(ROC) curves, which illustrate the false positive rate versus the true positive rate calculated with differ-
ent thresholds in different attacker scenarios, and Area Under Curve (AUC), which is used to express a
value for the area that lies under the ROC curve and implies that the closer the area to 1.0, the better the
detection of the anomalies.

Fig. 6 illustrates the different ROC curves, where the timings were clustered using various narrow
and broad ranges of times, see Tab. 1 for the clustering details.

For scenario c) (Various Attacker), the narrower times clustering provides us slightly better values in
comparison to our preferred clustering (F-Measure +0.017), but also doubles the false positives. There-

13



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

Threshold Times
narrower FB 12:00 a.m. to 1:59 a.m. and 9:00 a.m. to 7:59 p.m.

FC 8:00 a.m. to 8:59 p.m.
OB 8:00 a.m. to 9:59 p.m.
DB 12:00 a.m. to 1:59 a.m. and 7:00 a.m. and 8:59 p.m.
and compile- and downloadTime at 12:00 a.m. to 12:59 a.m.

our FB 12:00 a.m. to 1:59 a.m. and 8:00 a.m. to 8:59 p.m.
clustering FC 7:00 a.m. to 9:59 p.m.

OB 7:00 a.m. to 10:59 p.m.
DB 12:00 a.m. to 1:59 a.m. and 8:00 a.m. and 7:59 p.m.
and compile- and downloadTime at 12:00 a.m. to 12:59 a.m.

broader FB 12:00 a.m. to 1:59 a.m. and 7:00 a.m. to 9:59 p.m.
FC 6:00 a.m. to 9:59 p.m.
OB 6:00 a.m. to 10:59 p.m.
DB 12:00 a.m. to 1:59 a.m. and 6:00 a.m. and 9:59 p.m.
and compile- and downloadTime at 12:00 a.m. to 12:59 a.m.

even FB 12:00 a.m. to 1:59 a.m. and 6:00 a.m. to 10:59 p.m.
broader FC 5:00 a.m. to 10:59 p.m.

OB 5:00 a.m. to 10:59 p.m.
DB 12:00 a.m. to 1:59 a.m. and 5:00 a.m. and 10:59 p.m.
and compile- and downloadTime at 12:00 a.m. to 12:59 a.m.

broadest 12:00 a.m. to 10:59 p.m. for all block types

Table 1: Thresholds for time variable clustering.

fore, our clustering is preferable. Our time-based clustering shows us that the detection with only this
feature, i.e., the timing variables, is not sufficient for scenarios a) (PLC Programmer) and c) at this point.
Only for scenario b) (Backup Coordinator) we are able to detect the attack with an AUC of 0.999.

4.2.2 Size-based Anomalies

The second feature that we analyze in this work is the size-related variables. These are separated into
Load- and WorkMemory. The first aspect to notice is that DB always use zero bytes of both storage
types, therefore we would not see a malicious modification in this block type. Nevertheless, we also
simulated attacks on this type of data. For the other blocks (OB, FB, FC), we noticed that it is not
sufficient to divide them only by blocks. Here we also had to include the different names of the blocks.
For each name’s first appearance the difference is set to zero; for each following block with the same
name, we use Eqn. 1, with x being the load storage, n the new block, p the previous one. If px is 0, i.e.,
the loadMemoryRequired difference is null, the formula switches to Eqn. 2.

f (x) =

{
1 if

∣∣∣100
px
· (nx− px)

∣∣∣< 1

0 otherwise
(1)

f (x) =

{
1 if

∣∣100
1 · (nx− px)

∣∣< 1
0 otherwise

(2)

For the workMemoryRequired variable, the detection threshold shifts to 0.1 instead of 1. Exemplary
for both storage types, we examined the loadMemoryRequired blocks (Fig. 8) with the resulting ROC
curve shown in Fig. 8a with thresholds below following values 1) < 0.1, 2) < 1, 3) < 10, 4) < 50, and

14



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

PLC Programmer Backup Controller Various Attacker

(a) ROC curve
Scenario Prec. Recall Acc. F-Measure AUC
PLC Programmer 0.000 0.000 0.401 — 0.297
Backup Coordinator 0.834 1 0.901 0.910 0.999
Various Attacker 0.576 0.270 0.536 0.368 0.506

(b) Our preferred grouping

Figure 6: ROC curve for timing feature; underlying values for timing variables clustered by our preferred
grouping.

5) < 100. The given dataset contains 37,118 entries in the first project but only 682 entries that have
differences in their loadMemoryRequired variable, i.e., 36,436 entries do not have any changes in their
deposited load storage. Fig. 7 illustrates the different distributions.

1,055

7,225

8,067

8,885

8,998

9,037

9,089

9,150

9,185

1,055

6,170
842

818 113 39 52 61 35

0

2k

4k

6k

8k

10k

=0 <1 <5 <25 <50 <75 <100 <1K <8M >8M

F
re

q
u

en
cy

Percentage difference from the previous

(a) Partitioning of the loadMemoryRequired difference
values into ranges.

7,295

7,429

8,015

8,603

8,822

8,998

9,110

9,149

9,166

9,185

7,295 134
586

588 219 176 112 39 17 19

0

2k

4k

6k

8k

10k

=0 <0.1 <1 <5 <10 <25 <50 <75<100<8K >8K

F
re

q
u

en
cy

Percentage difference from the previous

(b) Partitioning of the workMemoryRequired differ-
ence values into ranges.

Figure 7: Partitioning of size variables’ difference values into ranges.

For this reason, we have based our formula on the modified entries of the legitimate data which is
illustrated in Fig. 8b. The values underlying the second plot for loadMemoryRequired and our Eqns. 1
and 2 are located in Tab. 8c.

By regarding the storage, it is possible to exactly remark from which block the anomalous value
comes from. Blocks that were recently inserted must be white-listed and can be neglected until they have
a modification within their data. As long as blocks have not changed, no previous block is given, so

15



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

PLC Programmer Backup Controller Various Attacker

(a) ROC curve for entire dataset

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

PLC Programmer Backup Controller Various Attacker

(b) ROC curve with load di f f erence = 0 excluded
Scenario Prec. Recall Acc. F-Measure AUC
PLC Programmer 0.994 0.375 0.686 0.545 0.683
Backup Coordinator 0.000 0.000 0.499 – 0.493
Various Attacker 0.995 0.474 0.736 0.642 0.812

(c) Eqn. 1/2

Figure 8: ROC curve for our entire dataset; ROC curve with di f f erences = 0 excluded; LoadMemo-
ryRequired difference for single blocks clustered by Eqn. 1/2 for ROC curve 8a.

the difference used for the formula is set to zero. Only with the 2nd, 3rd, ..., nth entry, differences to the
respective previous ones are taken into account. Nevertheless, it is not enough to consider this feature
alone for scenarios b) and c), since they are still able to insert malicious values and remain mostly
undetected. As with the previous feature, it is not recommended to use it as a stand-alone feature.

4.2.3 Combined Utilization of Features

In order to increase the quality of our heuristics, we now evaluate their combined utilization. None of
our two features (time and storage) was suitable to recognize stealthy attacks properly. Thus, we first
categorized them by their ability of identifying stealthy attacks: Since small changes like a 1-bit content
change are not detectable with only one of our two features, the timestamps and sizes combination are

16



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

important. A small change during an unusual time could still be recognized as well as a large change at
a legitimate time. For this purpose, we combined the timing and size variables with each other, i.e., we
tested how many anomalous values in one element of the dataset have to exist to raise an alarm. Fig. 9
exemplifies the ROC curves and metrics for the scenarios with 1) at least one feature is anomalous, 2) at
least two features are anomalous, 3) all three features are anomalous.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e
PLC Programmer Backup Controller Various Attacker

(a) ROC curve
Scenario Prec. Recall Acc. F-Measure AUC
PLC Programmer 0.652 0.375 0.587 0.476 0.624
Backup Coordinator 0.833 1 0.900 0.909 0.899
Various Attacker 0.792 0.763 0.781 0.777 0.834

(b) Underlying values of the feature combination

Figure 9: ROC curve for the combination of timing and sizes features; underlying values of the combined
heuristics.

One should choose our heuristics in combination, since an attack does not necessarily have to include
all three anomalies, e.g., an attacker implementing large changes at a legitimate time that can still be
detected in the LoadMemory. For the PLC programmer’s evaluation, when two features trigger an alarm
we obtain slightly better results than when one of three features is anomalous, since we have more false
positives in the second case. For the other two scenarios, the various attacker and the backup coordinator,
we obtain better results when already one anomalous feature triggers an alarm.

4.2.4 Comparison of Results

When we jointly utilized the heuristics, we were able to increase the AUC for scenario a) by 32.7%
instead of only using the timing feature. In case of scenario b), the AUC increased by 40.6% instead of
only using the loadMemoryRequired size variable. For scenario c), the AUC increased by 32.8% instead
of only using the timing feature, or 2.2% instead of only using the loadMemoryRequired size variable.
For the other constellations, i.e., the comparison of our combination to the storage clustering for scenario
a) and the timing clustering for scenario b), the AUC decreases which is caused by the increasing number
of false positives. We consider the combined utilization of features as slightly preferable.

17



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

4.2.5 Extended Examination of Features Using Machine Learning Algorithm

In this section, we investigate the performance of a machine learning classifier and compare the results
with the ones achieved using our heuristics. Therefore, we used the weka tool5.

Sizes and Times In this section, we examine the combination of our features, i.e., sizes and timing
variables, using the IBk classifier6 in combination with the SpreadSubsample function7 and a 10-fold
cross-validation. The IBk classifier is a k-Nearest-Neighbor (kNN) algorithm which we deployed with
neighbors k = 1. More neighbors led to slightly worse results. We also tested the utilization of REPTree8,
a decision tree classifier which builds a pruned decision tree; it is faster on higher amount of data, and
insensitive to outliers. Our data used in this examination is: 400 entries of the data of PLC programmer
and backup coordinator. For the various attacker, we used 456 samples. For the legitimate data we have
37,118 entries, the timestamps and size variables of the first project (axis).

We used both classifiers on these data: 1) for 400 samples of each of the four classes, the legitimate,
the various, the PLC, and the backup data. By utilizing the SpreadSubsample functionality, the tool
creates random subsamples of our dataset; 2) with only two classes, the legitimate and the anomalous
data – here we have 1,256 subsamples each.

1) The best results were achieved by using kNN (IBk) with neighbors k = 1. The outcoming confusion
matrix and the calculated values look as follows (Tab. 2):

Classified as→ Legit. Various Att. PLC Progr. Backup Coord.
Legitimate 387 10 3 0
Various Attacker 6 377 10 7
PLC Programmer 0 0 400 0
Backup Coordinator 0 0 0 400

Scenario Prec. Recall Acc. F-Measure AUC
Legitimate 0.985 0.968 0.988 0.976 0.991
Various Attacker 0.974 0.943 0.979 0.958 0.960
PLC Programmer 0.969 1.000 0.992 0.984 0.992
Backup Coordinator 0.983 1.000 0.996 0.991 0.997

Table 2: Confusion matrix of sizes and timing variables clustered by type of attacker; supplementary
values.

In comparison to using weka’s REPTree, IBk (kNN) provides slightly better results.
As this clustering scenario means that we are aware of the type of attacker, in a further step we only

cluster for legitimate and anomalous data.

2) The best results for that mix of data was given by kNN (IBk) with k = 3 (cf. Tab. 3): These results
are significantly better then those without using machine learning algorithms, i.e., the kNN algorithm,
but come with higher computing cost for big datasets as used before where one single project already had

5weka tool: https://waikato.github.io/weka-wiki/
6IBk classifier: https://weka.sourceforge.io/doc.dev/weka/classifiers/lazy/IBk.html
7SpreadSubsample function: https://weka.sourceforge.io/doc.dev/weka/filters/supervised/instance/

SpreadSubsample.html
8REPTree classifier: https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/REPTree.html

18

https://waikato.github.io/weka-wiki/
https://weka.sourceforge.io/doc.dev/weka/classifiers/lazy/IBk.html
https://weka.sourceforge.io/doc.dev/weka/filters/supervised/instance/SpreadSubsample.html
https://weka.sourceforge.io/doc.dev/weka/filters/supervised/instance/SpreadSubsample.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/REPTree.html


Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

Classified as→ Legit. Anomalous
Legitimate 1,246 10
Anomalous 11 1,245

Scenario Prec. Recall Acc. F-Measure AUC
Legitimate 0.991 0.992 0.992 0.992 0.992
Anomalous 0.992 0.991 0.992 0.992 0.992

Table 3: Confusion matrix of sizes and timing variables clustered by legitimate or anomalous data;
supplementary values.

37,118 different data entries instead of using 400 in this part of the evaluation. In comparison to the above
heuristics, we used only one project here. The heuristics were built across all two given projects, tested
on all 4 afterwards. One should consider using kNN over heuristics but with more detailed segmentation
in advance (not over all projects but per unit) and longer times to build the output.

5 Examination of DataBlocks and ProgramBlocks

So far we have covered the first feature set consisting of timing and size variables. This section handles
the second of two feature sets that are examined in this work: the Data- and programBlocks’ counts.
Again, we first present an attacker scenario for this evaluation, followed by the dataset analysis.

5.1 Attacker Scenario

Another scenario – given by AUVESY GmbH – is one where we have given an attacker deleting or
inserting a huge amount of code blocks. This is no stealthy scenario, as it can easily be recognized –
but one has to monitor it. For this case, we extracted the programBlocks (PB, namely FB, FC, OB) and
DataBlocks (DB) counts for each file of all four projects. We decided not to further cluster by different
programBlocks as our results already are satisfying. Also, there were no big differences in the blocks
insertions and deletions.

5.2 Dataset Analysis

What we had to differentiate between are DB and PB as their values deviate considerably. In Fig. 1 we
already illustrated their counts per file. As one can recognize, the first files’ amount of blocks is much
bigger than the block count of the files. This is because the first bars reflect the first project - the axis -
where the other three projects are of the same kind (all soldering tips). This leads to the conclusion that
we have to differentiate between projects of different kinds. In the next steps, we therefore regard each
project separately.

If we now look at the changes in the number of blocks compared to the previous file, we can see that
the absolute number (mostly) only changes between 0 and 12 for DB and 0 to 10 for PB (exemplary for
two projects, see Fig. 10).

For each of the projects, i.e., axis and three soldering tips (ST), the values are shown in Tab. 4.
As one can see, the axis project (project 1) only has 40 backups wherein only three changes in

the amount of DataBlocks appeared. The number of programBlocks changed five times in the same
period. Changes in the number of DataBlocks > 10 should be considered anomalous here (Eqn. 3). For

19



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

0 10 20 30 40
File Number

40

20

0

20

40
D

iff
er

en
ce

 o
f B

lo
ck

s

(a) DataBlocks of project 1 (backup)

0 10 20 30 40
File Number

40

20

0

20

40

D
iff

er
en

ce
 o

f B
lo

ck
s

(b) ProgramBlocks of project 1 (backup)

0 50 100 150 200
File Number

40

20

0

20

40

D
iff

er
en

ce
 o

f B
lo

ck
s

(c) DataBlocks of project 4 (archive)

0 50 100 150 200
File Number

40

20

0

20

40

D
iff

er
en

ce
 o

f B
lo

ck
s

(d) ProgramBlocks of project 4 (archive)

Figure 10: Differences in block count.

Project Type |Value Changes| # of Changes Period Length
(DB / PB) (DB / PB) (Days)

Axis backup 0-12 / 0-10 3 / 5 40
ST 1 archive 0-5 / 0-8 12 / 26 190
ST 2 backup 0 / 0-1 0 / 1 40

archive 0-3 / 0-8 7 / 22 163
ST 3 backup 0 / 0-1 0 / 1 40

archive 0-11 / 0-10 (170*) 18 / 33 212
* If we ignore the four outbursts (-25, 27, 170, -170), the remaining are in between 0 to 10.

Table 4: Evaluation of DataBlocks and programBlocks.

programBlocks, we set the threshold to > 12 to be ranked as an anomalous change in numbers (Eqn. 4).
In both cases, the first block’s difference is set to zero.

f (x) =

{
1 if |(nx− px)|< 12
0 otherwise

(3)

20



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

f (x) =

{
1 if |(nx− px)|< 10
0 otherwise

(4)

If we look at the percentages of files with and without changes, we can recognize that for DB the
changes happen in up to 8.5% of the files. For PB, depending on the consideration of outbursts, it is
13.7% and 15.6% of the files that include a change in the block counts. For archives, it can be stated
that there is a change in PB every 7 to 8 files, and for DB a change after between 11 and 24 files. Since
backups do not provide us enough data (too few changes during 40 days), we cannot draw conclusions
here.

Note that the overall number of changes in the number of blocks over a period of three years (i.e., of
the archive files) is 37 for DataBlocks and 81 for programBlocks. This means, on average 1.03 changes in
DataBlocks per month, and 2.25 for programBlocks. Again, the data is not sufficient to draw a conclusion
about the backups.

By using the Decision Tree classifier, we achieved the following results (cf. Tab. 5) when classifying
the DB and PB for anomalous and legitimate block difference quantities:

Scenario Prec. Recall Acc. F-Measure AUC
legitimate 0.996 1.000 0.998 0.998 0.996
anomalous 1.000 0.996 0.998 0.998 0.996

Table 5: Decision Tree results for Data- and programBlocks.

At this point, we also experimented with the kNN classifier. We obtained one false negative result
instead of one false positive result mentioned above. The company that implements the classifier can
decide whether it prefers the risk of a false negative, and thus a potentially undetected malicious change,
or a false alarm due to a false positive. As we got an outburst of 170 for the PB, we recommend to use
the Decision Tree classifier over kNN.

6 Discussion of Detectability and Limitations

Timing and size-based features. Since attackers or saboteurs must not necessarily perform malicious
modifications outside the legitimate times, the approach of only using the time-based feature is limited.
At this point, we recommend a combination of the examined timing and size features, since the barrier to
stay stealthy is increased this way. Nevertheless, it is possible for the attacker to tailor his modifications
in a way perfectly fitting legitimate characteristics. In this case, the code and content must also be
taken into account. Even considering a saboteur who is equally proficient in all features, the use of the
combination is worthwhile, as this also increases the detection rate. Since this approach allows clustering
across all projects, there are no restrictions on inserting or changing the data, which means that even the
creation of a new project can be processed directly. For the storage-based features, individual blocks
must be considered, i.e., the creation of a new block is not sufficient, in order to directly recognize an
anomaly. At least one change must be made to be able to compare it with the previous block. Again, the
limits of detectability are set: If an attacker solely introduces minimal changes, reference must be made
to code and content. By combining the timing and sizes features, we obtain improved detection results.

Block counts. For the second examination, the DB and PB counts, it is clear that we can see larger
changes in the data. The insertion of only one new block cannot be recognized. Only if a sequence of

21



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

inserted blocks appears in short time, or if there are many blocks deleted or inserted, we can directly
recognize this anomalous behavior.

Combination of heuristics. The consideration of combining heuristics also shows that there is no
visible correlation between the variables, since an attack can match one of these features and still leave
the others unaffected. The data should thus be compared to the exact type of change (e.g., configuration
or code) in future work. By including the contents of the files for further investigation, it could become
feasible to detect historical attacks where, for example, only one limit value, e.g., the angle at which an
axis pivots, the rotor speed, or process pressure, is increased by one every day until it assumes a malicious
value. Also, we want to cover the case where a company’s PLC programmers are less well-trained, i.e.,
they do not compare the TIA Portal data for changes between current version and backup version when
inserting updates in code or content, which can make changes at work times unnoticeable. This task
should be simplified by examining code and content for anomaly detection.

Deployment of heuristics and machine learning algorithms. For every upload of short- or long-term
backups into the versioning tool, a validation of the data must be performed. This means that there is
no real-time check at this point, since, for example, short-term backups are typically saved once a day.
It would only be imaginable if every change would be uploaded into the tool in near real-time. This
would theoretically be possible via manually uploading backups or archives, i.e., long-term backups.
Another limitation of the data given by versiondog is that when a saboteur changes a value and reverses
the change before the new backup is made, we will not see this change in our data as the presented status
is the same as before the change was made. In such a case, one can consider implementing these checks
in the TIA Portal for each push and pull of data from PLC to TIA Portal and vice versa.

Transferring the heuristics and machine learning algorithms to other TIA Portal projects’ data.
In order to transfer our procedures of the timing variables to other companies’ data, they need to cluster
their data to their respective times. We are currently investigating whether the heuristics of the sizes can
be transferred directly and without further adjustments. For the blocks’ counts, there are no precautions
that need to be taken, despite one has to monitor new insertions/deletions over time and in their quan-
tity. Within the various given projects of the car manufacturer, we were able to transfer the procedures
successfully.

7 Conclusion

We presented extended initial results on an anomaly detection system using historical TIA Portal project
data. While the detectability of the provided stealthy attacker scenarios appears to be challenging, we
were able to gain utilizable results for the combined utilization of temporal and storage features. By
using the kNN classifier we further improved our results. In comparison to our heuristics, one has to
regard each project separately when applying machine learning algorithms. The non-stealthy scenario
for the DB and PC counts is easy to detect if it is monitored. Smaller changes in blocks’ quantity are not
recognizable at all. Large or high-frequently reoccurring changes can be detected properly.

Future work. Our work identifies some more features from TIA Portal project data that can be inves-
tigated (cf. Fig. 5). Exemplary, the examination of code and configuration data seems to be worthwhile,
although linguistic and graphical evaluation will require increased computational effort. For this reason,
we plan to investigate such additional features to further increase the detectability.

22



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

Acknowledgments

Part of this research was funded by the European Union from the European Regional Development Fund
(ERDF) and the State of Rhineland-Palatinate (MWG), Germany. Funding content: P1-SZ2-7 F&E:
Wissens- und Technologietransfer (WTT), Application number: 84003751 (MADISA); the Programm
zur Förderung des Forschungspersonals, Infrastruktur und forschendem Lernen (ProFIL) of the Univer-
sity of Applied Sciences Worms; AUVESY GmbH, Landau (Rhineland-Palatinate), which also provided
us the datasets; and the Center for Technology and Transfer (ZTT) at the University of Applied Sciences,
Worms.

References

[1] L. Hartmann and S. Wendzel. Detection of anomalous values within TIA project data history for industrial
control systems. In Proc. of the 2021 European Interdisciplinary Cybersecurity Conference (EICC’21),
Virtual Event, Romania, pages 91—-97. ACM, November 2021.

[2] C. Feng, V.R. Palleti, A. Mathur, and D. Chana. A systematic framework to generate invariants for anomaly
detection in industrial control systems. In Proc. of the 27th Network and Distributed System Security Sympo-
sium (NDSS’19), San Diego, California, USA, pages 1–15. NDSS, February 2019.

[3] I. Kiss, B. Genge, P. Haller, and G. Sebestyén. Data clustering-based anomaly detection in industrial control
systems. In Proc. of the 10th IEEE International Conference on Intelligent Computer Communication and
Processing (ICCP’14), Cluj-Napoca, Cluj, Romania, pages 275–281. IEEE, October 2014.

[4] F. Zhang, H.A.D.E. Kodituwakku, J.W. Hines, and J. Coble. Multilayer data-driven cyber-attack detection
system for industrial control systems based on network, system, and process data. IEEE Transactions on
Industrial Informatics, 15(7):4362–4369, July 2019.

[5] R.B. Zhang, L.H. Xia, and Y. Lu. Anomaly detection of ICS based on EB-OCSVM. Journal of Physics:
Conference Series, 1267:012054, July 2019.

[6] H. Yoo and I. Ahmed. Control logic injection attacks on industrial control systems. In Proc. of the 34th IFIP
TC 11 International Conference on ICT Systems Security and Privacy Protection (SEC’19), Lisbon, Portugal,
pages 33–48. Springer, Cham, June 2019.

[7] C. Wressnegger, A. Kellner, and K. Rieck. Zoe: Content-based anomaly detection for industrial control
systems. In Proc. of the 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’18), Luxembourg City, Luxembourg, pages 127–138. IEEE, July 2018.

[8] M. Zhang, C.-Y. Chen, B.-C. Kao, Y. Qamsane, Y. Shao, Y. Lin, E. Shi, S. Mohan, K. Barton, J. Moyne,
and Z. M. Mao. Towards automated safety vetting of plc code in real-world plants. In Proc. of the 19th
IEEE Symposium on Security and Privacy (S&P’19), San Francisco, California, USA, pages 522–538. IEEE,
September 2019.

[9] T.K. Das, S. Adepu, and J. Zhou. Anomaly detection in industrial control systems using logical analysis of
data. Computers & Security, 96:101935, September 2020.

[10] C.M. Ahmed and J. Zhou. Challenges and opportunities in CPS security: A physics-based perspective. IEEE
Security & Privacy, 18(6):14–22, November–December 2020.

[11] M. Krotofil, J. Larsen, and D. Gollmann. The process matters: Ensuring data veracity in cyber-physical
systems. In Proc. of the 10th ACM Symposium on Information, Computer and Communications Security
(CCS’15), Singapore, Republic of Singapore, pages 133–144. ACM, April 2015.

[12] A.L. Perales Gómez, L. Fernández Maimó, A. Huertas Celdrán, F.J. Garcı́a Clemente, C. Cadenas Sarmiento,
C.J. Del Canto Masa, and R. Méndez Nistal. On the generation of anomaly detection datasets in industrial
control systems. IEEE Access, 7:177460–177473, December 2019.

[13] J.E. Rubio, C. Alcaraz, R. Roman, and J. Lopez. Current cyber-defense trends in industrial control systems.
Computers & Security, 87:101561, November 2019.

[14] Y. Hu, H. Li, H. Yang, Y. Sun, L. Sun, and Z. Wang. Detecting stealthy attacks against industrial control sys-
tems based on residual skewness analysis. EURASIP Journal on Wireless Communications and Networking,
74:1–14, March 2019.

23



Anomaly Detection for ICS Through TIA Portal Project History Hartmann and Wendzel

[15] B. Genge, P. Haller, and C. Enăchescu. Anomaly detection in aging industrial internet of things. IEEE
Access, 7:74217–74230, June 2019.

[16] D.I. Urbina, J.A. Giraldo, A.A. Cardenas, N.O. Tippenhauer, J. Valente, M. Faisal, J. Ruths, R. Candell, and
H. Sandberg. Limiting the impact of stealthy attacks on industrial control systems. In Proc. of the 2016
ACM SIGSAC Conference on Computer and Communications Security (CCS’16), Vienna, Austria, pages
1092–1105. ACM, October 2016.

[17] M. Krotofil, A. Cárdenas, J. Larsen, and D. Gollmann. Vulnerabilities of cyber-physical systems to stale
data—determining the optimal time to launch attacks. International Journal of Critical Infrastructure Pro-
tection, 7(4):213–232, December 2014.

[18] W. Alsabbagh and P. Langendörfer. A stealth program injection attack against S7-300 PLCs. In Proc. of the
21th IEEE International Conference on Industrial Technology (ICIT’21), Valencia, Spain, pages 986–993.
IEEE, June 2021.

[19] W. Alsabbagh and P. Langendörfer. A control injection attack against S7 PLCs -manipulating the decom-
piled code. In Proc. of the 47th Annual Conference of the IEEE Industrial Electronics Society (IECON’21),
Toronto, Ontario, Canada, pages 1–8. IEEE, November 2021.

[20] W. Alsabbagh and P. Langendörfer. Patch now and attack later - exploiting S7 PLCs by time-of-day block.
In Proc. of the 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS’21), Victoria,
British Columbia, Canada, pages 144–151. IEEE, July 2021.

[21] L. Hartmann and S. Wendzel. How feasible are steganographic and stealth attacks on TIA project metadata
of ICS: A case study with real-world data. In Proc. of the 21th European Interdisciplinary Cybersecurity
Conference (EICC’21), Virtual Event, Romania, pages 83––84. ACM, November 2021.

——————————————————————————

Author Biographies

Laura Hartmann is a Ph.D. student at FernUniversität in Hagen, Germany, since
2019. She worked for the project MADISA (Machine learning for attack detec-
tion using data of industrial control systems) (till 2021) and is now a researcher at
the Center for Technology and Transfer (ZTT). Her research interests include net-
work steganography and anomaly detection for data of industrial control systems.
Laura (co-)authored eight publications so far. Website: https://madisa.ztt.

hs-worms.de.

Steffen Wendzel is a professor of information security and computer networks at
Hochschule Worms, Germany, where he is also the scientific director of the Center
for Technology and Transfer (ZTT). In addition, he is a lecturer at the Faculty of
Mathematics & Computer Science at the FernUniversität in Hagen, Germany, from
which he also received his Ph.D. (Dr. rer. nat., 2013) and Habilitation (2020). Be-
fore joining Hochschule Worms, he led a smart building security research team at
Fraunhofer FKIE in Bonn, Germany. Steffen (co-)authored more than 170 publica-

tions. He served as the chair for IWSMR’19-’22 and other workshops, was PC co-chair for EICC’20
and ’22 as well as GI Sicherheit’16, and served as a guest editor for special issues of major jour-
nals, such as IEEE Security & Privacy (S&P), IEEE Transactions Industrial Informatics (TII) and
Future Generation Computer Systems (FGCS). He is editorial board member for the Journal of Uni-
versal Computer Science (J.UCS) and the Journal of Cybersecurity & Mobility (JCSM). His website:
https://www.wendzel.de.

24

https://madisa.ztt.hs-worms.de
https://madisa.ztt.hs-worms.de
https://www.wendzel.de

	Introduction
	Related Work
	Description of the Given Data
	Time- and Size-based Features Examination
	Attacker Scenario
	Dataset Analysis
	Time-based Anomalies
	Size-based Anomalies
	Combined Utilization of Features
	Comparison of Results
	Extended Examination of Features Using Machine Learning Algorithm


	Examination of DataBlocks and ProgramBlocks
	Attacker Scenario
	Dataset Analysis

	Discussion of Detectability and Limitations
	Conclusion

