Extraction of Platform-unique Information as an Identifier

Kangwon Lee, Kyungroul Lee, Jaecheon Byun, Sunghoon Lee
Soonchunhyang University
Shinchang, Asan, Republic of Korea
{paul, carpedm, apple } @sch.ac.kr, joyce2 @daum.net

Hyobeom Ahn Kangbin Yim*
Kongju National University Soonchunhyang University
Budae, Choenan, Republic of Korea Shinchang, Asan, Republic of Korea
hbahn @kongju.ac.kr yim@sch.ac.kr
Abstract

The Ethernet MAC address is known it is not changed and so highly considered as one of the
platform-unique information. Because of the reason, the MAC address has been used as a platform
identifier for several public services. This paper surveys, implements and analyzes the extraction
methods for the MAC address in different levels on the PC platform. The methods considered in-
clude reading the registry database, calling the dedicated API functions, polling the I/O controller
and communicating with external EEPROM. The result of the implementation will be helpful as a
reference for developers who need to have a simple platform identifier.

Keywords: platform-unique information, platform identifier, designated platform, MAC address,
hardware spoof.

1 Introduction

Most difficult thing in security area is to assure the entity’s identity. In many cases, string based pass
phrases are used for this purpose. However, this kind of pass phrases are easily sniffed by a sophisticat-
edly architected key logging malware. Because of the reason, the highly security-sensitive services such
as online finance and government issues are trying to restrict their operational environment in different
ways. As an emphatic example of such approaches, Korean government has introduced the designated
platform policy for online banking services where users are requested to use several limited number of
PCs for renewing their public certificates. The problem in this approach is how to prove that the PC
currently in use is one of the designated set of PCs. For this policy to be successful, it is essential to
achieve the uniqueness of a PC platform to register it as a designated one.

The uniqueness of a hardware platform can be achieved by deriving a platform-unique information
from one or a combination of several hardware-dependent unique values. The Ethernet MAC address
(MAC address hereafter) is considered the best one of such reasonable candidates as network IP ad-
dress, serial numbers of hard disks, identifiers and mapping addresses of periphery devices and etc.
because many people believe it is an unmodifiable and globally unique hardwired value. Although a
MAC address needs to be unique only in a network segment, manufactures produce the Ethernet card
with a pseudo globally-unique MAC address to eliminate the address conflicts when multiple cards are
randomly deployed.

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, volume: 3, number: 4, pp. 85
*Corresponding Author: LISA Laboratory, Soonchunhyang University, 9418 Engineering Building, 646 Eupnae, Shin-
chang, Asan, 336-745 Republic of Korea, Tel: +82-(0)41-530-1741, Web: http://lisa.sch.ac.kr

85

http://lisa.sch.ac.kr

Extraction of Platform-unique Information as an Identifier K. Lee et al.

The MAC address also can be targeted by adversaries in the form of MAC spoofing attack, which
is also known as ARP spoofing or ARP poisoning[[1]][2][3]]. The ARP spoofing redirects network traffic
and allows adversaries to sniff it as a result of the attack though many countermeasures against the ARP
spoofing already effectively applied. Moreover, the problem caused by the ARP spoofing absolutely has
no relation to the problem proving the platform-unique information. Therefore, we need to analyze and
rationalize the designated platform policy and its implementations to count potential vulnerabilities we
may face in the practices, especially related to the MAC address.

In case of the designated platform solution[4], it utilizes the MAC address as a factor for constructing
the platform-unique information. Therefore, this solution is somewhat for a kind of multi-factor authen-
tication because the platform-unique information is used as an additional factor in proving both of the
user identifier and the platform identifier. This approach can improve the security level of the services
such as the online games, file repositories, financial transactions, etc. by restricting the locations (authen-
ticated platforms) of the authenticated users. When a specific service is used, it registers the platform
identifier to the management server. When the user tries to use this service back, the trials issued only
on the platforms of which identifiers have registered are allowed and other requests are denied.

Practically, the MAC address is considered it should not be changed in an active service. Regarding
the wireless gateway, it allows only the registered specific MAC addresses for network connections
if configured especially in the case a mobile or vehicle machine makes an inquiry into a location in
the dedicated network[S]|[6]]. Finally, for the public certificate, a research on commercial designated
platform services shows that they add to the authentication server a limited number of MAC addresses
of the platforms for an authenticated user in a registration process[7]]. However, the simple extraction of
the MAC address is insufficient even though various services utilize the MAC addresses. Therefore, in
this paper, we investigate possible extraction methods for the MAC address and analyze safety of these
methods.

2 Extraction Methods for Platform-unique Information (MAC address)

Extraction of the MAC address can be done in several ways: reading the registry database, calling one
of the dedicated APIs, polling registers in the I/O controller of the network interface card (NIC) and
communicating with EEPROM in the NIC. This chapter shows how to implement them. The opera-
tional environment for each implementation includes Microsoft Windows XP service pack 3, Intel /O
controller hub 7 (ICH7) family and Realtek RTL8169/8110 family. Each code was programmed on
Microsoft visual studio 2005 with Winddk 3790.1830.

2.1 Reading the Registry Database

The entry CurrentControlSet in the system registry database includes the result of the last success-
ful hardware enumeration. This means that the I/O information for every PnP compliant hardware re-
sources resides as one of its key. The MAC address is also located at the NetworkAddress key in
My computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E972
-E325-11CEBFC1-08002bE10318}\0001. Figure[I|shows the registry state after the Ethernet card was
installed and its MAC address was added to the registry key. Thus, the MAC address is able to be ex-
tracted by reading the above registry key. Opening the registry key returns a handle and reading the
NetworkAddress field using the obtained handle returns the MAC address. Figure [2shows a part of the
implemented code and figure [3|shows the result[S[][9].

86

Extraction of Platform-unique Information as an Identifier K. Lee et al.

& dRAER| HAF| CEX
oy HEE) 20 SARII(E TSTH)
| 08 = OOl
[aB)(7122h REG_SZ (2 83 2UEN
[8%] Characteristics ~ REG_DWORD 000000022 (423
[ab] Componentld REG_SZ st {eeab7790-c514-11d1-b42h-00805fc 12702
[ap) DriverDate REG_5Z T-1-2001
[af] DriverDateData ~ REG_BINARY 00a0G2chedllcl M
[ab] DriverDesc REG_SZ RAS HIE2| HHEH
[ab] Driverversion REG-3Z 5,1,2536.0
[ab] InfPath REG_5Z netraga,inf
InfSection REG_5Z Mdi-tMp-Asynchac
[ab] MatchingDevic,,, REG_SZ st {eeab7730-c514-11d1-b42b-00805fc 1270
MetCfglnstanceld REG_SZ {0DB2E AZ7-6171-463E-8393-95066F0C 3AGC
Netwarkéddress REG_SZ 0023540F6I7F
o || [3B]PraviderMame REG_SZ Microgoft
i 1l £ | >
LH B EEWHKEY_LOCAL_MACHINEW SYSTEMWCurrentContral SetWControlWClass'W{4036ET72-E325-1

Figure 1: Registry state when MAC address is added

LONG Result = RegOpenKeyEx{HKEY_LOCAL_MACHINE,
“SystentCurrentCont rol Set®Cont rol 40 | assit] 4A036E972-E325-11CE-BFC1-08002bE1031 8 10001 ",
MULL .,
KEY_READ,
AhkResult

if(Result == ERROR_SUCCESS)
{

ReglueryValueEx(hkResult, "Metworkiddress”, NULL, &dwType, (LPBYTE)Data, &dwSize):

Figure 2: A part of implemented code by using the registry

£, GetMACAddressbyAeadingRegistry

MAC Address: 00-23-54-DF-63-7F

Figure 3: Implement result by using the registry

2.2 Calling the Dedicated APIs

Windows provides several API functions that enable to achieve the MAC address: UuidCreate, NetWk
staTransportEnum, GetAdaptersInfo, GetIfTable and Netbios.

2.2.1 UuidCreateSequential()

UUID (Universally Unique IDentifier) supports the unique designation of an object such as interfaces,
entry-point vectors, and client objects. The MAC address is stored in data4 which is the 4th member
of UUID structure. Two different versions UUIDCreate () and UUIDCreateSequential() provide
the same function. Figure []is shown for a part of implemented code and [5] shows the result of the

implementation [10][11][12].

2.2.2 NetWkstaTransportEnum()

NetWkstaTransportEnum() provides information about the transport protocols. The MAC address is
stored in one of the parameters named bufptr. after calling this function. Figure [6] shows a part of

87

Extraction of Platform-unique Information as an Identifier K. Lee et al.

uuiD wuaid:
ULOMG result = UnidCreateSequential{guuid)

iflresult == RFC_5_0K)
{

forfunsigned long index=2; index<8; index++)

MaCaddress[index-2] = uuid.Datad[index]:

Figure 4: A part of implemented code using UUIDCreate

£i GetMACAddresbyUuidCreate

MAC Address: 00-23-54-DF-69-7F

Figure 5: Result of the implementation using UUIDCreate

implemented code and figure[7]shows the result of the implementation[[13]].

HET_AP|_STATUS dwStatus = MetWkstaTransportEnum{
HULL,

0,

{LPBYTE+ J&pbData,
MaX_PREFERRED_LENGTH,
&dwEnt riesRead,
&dwTotalEntries,

HULL J;

ifidwStatus == NERR_Success)
pwkti = (WKSTA_TRANSPORT_IMFO_0O+jpbData;
for(OWORD index=1; index<dwEntriesRead: index++)

swscanf((wchar_t+Jpwktilindex] . wktil_transport_address,

LY E0ZhKEZhHEZNHEZhEEZNKE20E ",

&MACAddress[O],

iMACAddress[1],

&MACAddress[2],

&MACAddress[3],

GMACAddress[4],

GMACAddress[5])

}

Met4piBufferFreelpbbata

Figure 6: A part of implemented codes using NetWkstaTransportEnum

£ GetMACAddresbyNetWkstaTransportEnum

MAC Address: 00-23-54-DF-69-7F

Figure 7: Result of the implementation using NetWkstaTransportEnum

2.2.3 GetAdaptersInfo()

GetAdaptersInfo () extracts the adapter information of a local computer. Address field in pAdapterInfo
structure is one of the parameters and the MAC address is stored in this parameter after calling this func-
tion. Figure[§|shows a part of implemented code and figure 0] shows the implemented result[14][15][16].

88

Extraction of Platform-unique Information as an Identifier K. Lee et al.

|P_ADAPTER- INFO Adapterinfo;
DWORD dwBuflLen = sizeof(Adapterinfol:

DWORD dwStatus = GetAdaptersinfol{&Adapterinfo, &dwBuflLen):

Figure 8: A part of implemented code using GetAdaptersInfo

£, GetMACAddresbyGetAdaptersinfo

MAC Address: 00-23-b4-DF-69-7F

Figure 9: Result of the implementation using GetAdaptersInfo

2.2.4 GetlfTable()

GetIfTable() returns MIB-II interface table. The bPhysAddr field in the pIfTable structure is one
of the parameters and this parameter includes the MAC address. Figure[I0]shows a part of implemented
code and figure |_1;1'| shows the result of the implementation[[17][18[][19].

OWORD sizeReg = 0;

PMIB_IFTABLE pMIE = MULL:

iGet|fTable(NULL, &sizeReq, FALSE) ;

pHIB = (PMIB_IFTABLE) new BYTE [sizeReg] :
memset {pMIB, 0, sizeReq) ;

DWORD sizeTolse = sizeReq

DWORD dwStatus = :iGet!|fTable({PMIB_IFTABLE)PHIB, &zizeTolse, FALSE);

Figure 10: A part of implemented codes using GetlfTable function

£ GetMACAddresbyGetlfTable

MAC Address: 00-23-54DF-69-7F | Get Address |

Figure 11: Result of the implementation using GetlfTable function

2.2.5 Netbios()

Netbios () interprets and executes the specified network control block(NCB). The adapter_address
field in the ncb_buffer of the pcnb structure is one of the parameters and the MAC address is found in
this parameter. Figure @ shows a part of implemented code and figure @ shows the result[20][121][22]].

2.3 Polling the I/O registers

Extracting the MAC address through the registers of the I/O controller is dependent upon the specific
hardware device. The input and output interfaces of a specific hardware device are allowed to be ac-
cessed through the PCI bus and thus HalGetBusData function can be used to extract the configuration
information of a specific I/O device. NIC is assigned to bus 2, device 5, and function O on the test system
and polling this address gives the NIC configuration information. Figure [T4] shows the NIC information
and Figure @ shows the extracted NIC information[23]][24]].

&9

Extraction of Platform-unique Information as an Identifier K. Lee et al.

HCE nchb:
LANA_ENUH | e:

nenset(&nch, 0500, size0f (NGB)
memset(#le, 0x00, sizeof(LANA_ENUN))
nchb.ncb_command = NCBEMUM:
nch.ncb_buffer = (UCHAR+)& le;
nch.ncb_length = sizeof(LANA_ENUM)

if{Metbios{ &nch)==NRC_GOODRET }
i

memset(dnch, 0200, sizeof(NCE)
nch.ncb_command = MCBRESET:
nch.oncbolana_num = le. lanal0];

if{Netbios{&nch)==MRC_GOOORET)
{

memnset (&nch, 000, sizeof (NGB .
memset{&nch.ncbocal lname, ', NCBNAWSZ 1
nch.oncbocal Iname[0] = "+
nch.ncb_command = MCBASTAT.
nch.oncb_lana_num = le.lanal0];
nch.ncb_buffer = (UCHAR+)gadapter;
nch.ncb_length = sizeof(tagADAPTER);

Figure 12: A part of implemented code using Netbios

i GetMACAddresbyNetbios

MAC Address: 00-23-b4-DF-69-7F

Figure 13: Result of the implementation using Netbios

Realtek BTLB169/8110 Family Gigabit Ethernet NIC S= ...

Yt (D2 | mEmE| oo | A | 2es T B

@] Realtek RTLB169/8110 Family Gigabit Ethermet NIC

T 9Eh HESI HHE

HZEH: Realtek Sermiconductor Corp,

23 PCIHA 2 BAE IS0
THT] LE

[OI ZF7F SHEH FE6D AUsL

[
O] ZEHH MO ZMEE [ZH sl 2]1S SE6HH =X 2 &
WIRLA 2,

FH M2
[0I =R AS NS Tt5) v

st
o
i
rs

Figure 14: NIC information

90

Extraction of Platform-unique Information as an Identifier K. Lee et al.

£ GetMACAddressbylOController

Driver function
Driver Status: Load Unload Driver‘ | Get MAC Addr |
PCl information
Default information Type O
VendorlD: 0x10ec BaseAddresses: 0x3b6c10
DevicelD: 0x8167 [00]: 0xe801
Command: 0x17 [0x1]: Oxfebffc00
Status: 0x2b0 [02]: 00
RevisionlD: 0x10 [03]: 0x0
Proglf: 0x0 [0x4]: 0x0
SubClass: 00 [05]: 00
BaseClass: 02 CIs: 00
CacheLineSize: 0=B Sub¥YendorlD: 01043
LatencyTimer: 04D SubSystemlD: 0xB20d
HeaderType: 0x0 ROMBaseAddress 0x0
BIST: 0x0 CapabilitiesPtr: Dxdc
Reservedl: 0x3b6c35
. [00]: ox0
IJO base address: Oxe 800 [0x1]; Ox0
[0x2]: ox0
Reserved2: 00
InterruptLine: 0x12
InterruptPin: 01
MinimumGrant: 020
MaximumLatency 0x40
MAC Address
MAC Address: MULL

Figure 15: Extracted NIC information

As shown in figure various PCI data such as vendorID, devicelD, and etc. can be extracted.
To access the NIC register, we have to obtain the base of the I/O address or memory address which is
mapped into the NIC registers. The BaseAddresses field is one of the extracted configuration information
and extracted value is OxE801, and OxFEBFFCO00. This information shows wether it is an I/O address
or a memory address. If the least significant bit is 0, it means that the address is an I/O address and if
not, this is a memory address. After extracting the address, you can access the NIC registers according
to the NIC specification as shown in figure[I6]in part. As shown in figure[16] a group of the six registers
from IDRO to IDRS is called ID register and this stores the MAC address. Therefore, the MAC address
is obtained by reading these six registers based on the extracted base address. Figure 17| shows a part of
the implemented code and figure |18|shows the implemented result.

2.4 Communicating with EEPROM

Even though the MAC address is collected by accessing the NIC registers directly, this MAC address
is just a copied content of the incorporated EEPROM in the NIC. These registers support accessing
the MAC address easily by loading the original MAC address from the EEPROM to these registers.
Hence, we can obtain the original MAC address by accessing the EEPROM contents directly. This is the
lowest level of the extracting methods for the MAC address. The NIC utilizes a flash memory and an

91

Extraction of Platform-unique Information as an Identifier K. Lee et al.

Offset R/W Tag Description

0000h R/W IDRO ID Register 0: The ID registers 0-5 are only permitted to write by
4-byte access. Read access can be byte, word, or double word access.
The initial value is autoloaded from EEPROM EthernetID field.

0001h R'W IDR1 ID Register 1
0002h R/W IDR2 ID Register 2
0003h R/'W IDR3 ID Register 3
0004h R'W IDR4 ID Register 4
0005h R/'W IDRS5 ID Register 5
0006h-0007h - - Reserved
0008h R'W MARO Multicast Register 0: The MAR registers 0-7 are only permitted to

write by 4-bye access. Read access can be byte. word. or double word
access, Driver is responsible for initializing these registers.

0009h R/'W MARI Multicast Register 1
000Ah R/W MAR2 Multicast Register 2
000Bh R'W MAR3 Multicast Register 3
000Ch R/W MAR4 Multicast Register 4
000Dh R'W MARS Multicast Register 5
000Eh R/W MARG6 Multicast Register 6
000Fh W MAR7 Multicast Register 7

Figure 16: A part of the NIC specification[25]]

IDo READ FORT_UCHAR((PUCHAR) PCI_Baselddress):

ID1 = READ PORT UCHAR((PUCHAR)PCI Baselddress+l):
IDZ = REALD PORT_UCHAR((FUCHAR)PCI_ Baselddress+i):
ID3 = READ PORT_UCHAR((PUCHAR)PCI_Baselddress+3):
ID4 = READ PORT_UCHAR((PUCHAR)PCI Baselddress+i):
ID5 = REALD PORT_UCHAR| (FUCHAR)PCI_Baselddress+5) :

Figure 17: A part of implemented codes polling I/O registers

EEPROM for storing its firmware and the configuration information. In case of Realtek NIC in this test
environment, 93C46 or 93C56 serial EEPROM is externally attached to the NIC and the NIC provides
registers to directly access this serial EEPROM. Figure [19| shows the address of the command register
for the EEPROM and and figure [20] shows the format of the command register.

As shown in these figures, six bits in the command register are meaningful. Bits 7:6 of the register
indicate the operation mode and each of bits 3:0 respectively indicates EECS, EESK, EEDI, and EEDO
meaning chip select, clock, data in and data out, which are directly connected to the dedicated pins to
control the EEPROM. Realtek NIC supports four different operational modes such as normal mode, auto-
load mode, programming mode, and configuration register write enable mode. The programming mode
setting enables to read or write the EEPROM by controlling the EECS, EESK, EEDI, and EEDO. The
actual access to a specific address of the 93C46 EEPROM is performed by sequentially controlling these
pins and transmitting the address bit by bit according to the timing diagram as shown in figure 21} The
MAC address can be obtained from the EEPROM by accessing the offset address Oeh-13h, the Ethernet
ID field as shown in figure 22] Figure 23]and figure [24] show a part of implemented code and the result
of the implementation, respectively.

3 Considerations on Safety of the Extraction Methods

Although the MAC address can be collected through the various extraction methods explained above,
safety of the obtained information should be considered. Because each of the methods has its own
different access level, they have a different safety level and it may affect the security level of the service
that the information supports. The detailed levels of the methods are shown in figure

92

Extraction of Platform-unique Information as an Identifier

Driver function
Driver Status:

PCl information

£ GetMACAddressbylOController

Load Unload Driver| Get PCI Information

Default information Type O
VendorlD: 0x10ec BaseAddresses:
DevicelD: 0x8167 [00]:
Command: 0x17 [0x1]:
Status: 0x2b0 [02]:
RevisionlD: 0x10 [03]:
Proglf: 0x0 [0x4]:
SubClass: 00 [05]:
BaseClass: 02 CIs:
CacheLineSize: 0=B Sub¥YendorlD:
LatencyTimer: 04D SubSystemlD:
HeaderType: 0x0 ROMBaseAddress
BIST: 0x0 CapabilitiesPtr:
Reservedl:
IJO base address: Oxe 800 [0x0:
[0x1]:
[0x2]:
Reserved2:

MAC Address
MAC Address:

InterruptLine:
InterruptPin:
MinimumGrant:
MaximumLatency

00-23-54-DF-693-7F

0x3b6c10
0xe801
Oxfebffc0D
00

0x0

0x0

0x0

0x0
0x1043
0x<B20d
0x0

Dxdc
03b6c35
0x0

0x0

00

0x0

0x12

0x1

020
0xA40

Figure 18: Result of the implementation polling I/O registers

K. Lee et al.

0050h R'W 9346CR. 93C46 (93C56) Command Register
0051h RW CONFIGO Configuration Register 0
0052h RW CONFIGI1 Configuration Register 1
0053h R/W CONFIG2 Configuration Register 2
0054h R/W CONFIG3 Configuration Register 3
0055h R'W CONFIG4 Configuration Register 4
0056h R/W CONFIGS Configuration Register 5§

Figure 19: Base address of 93C46 EEPROM[23]]

The method reading the registry database does not assure safety because the registry value is easily
compromised. Similarly, the method calling the API functions also does not assure safety because these
functions execute in the O/S layer and they are also fragile. It means that these methods can be hooked
by adversaries. In case of polling I/O controller and communicating with the EEPROM, an attacker and
a defender will compete for the information because they try to access I/O register or memory address
at the same time. In case of the Intel processor, it can prepare an exception handler for debugging to
be executed when a process accesses a specific memory address thus the attacker can utilize this facility
to change the MAC address. Nevertheless, the defender can detect whether debug trap handler is set or
not. On the other hand, the attack can also enable and disable the debug trap handler. This situation

93

Extraction of Platform-unique Information as an Identifier K. Lee et al.

Bit R/W Symbol Description
7:6 R'W EEM1-0 Operating Mode: These 2 bits select the RTL8169 operating mode.
EEM1 EEMO Operating Mode
0 0 Normal (RTL8169 network/host communication mode)
0 1 Auto-load: Entering this mode will make the RTL8169

load the contents of the 93C46 (93C56) as when the
RSTB signal is asserted. This auto-load operation will
take about 2 ms. Upon completion, the RTL8169
automatically returns to normal mode (EEM1 = EEMO0 =
0) and all of the other registers are reset to default values.

1 0 93C46 (93C56) programming: In this mode. both network
and host bus master operations are disabled. The 93C46
(93C56) can be directly accessed via bit3-0 which now
reflect the states of EECS, EESK, EEDI, & EEDO pins
respectively.

1 1 Config register write enable: Before writing to CONFIGx
registers, the RTL8169 must be placed in this mode. This
will prevent RTL8169 configurations from accidental

change.
5:4 - - Reserved
3 R/W EECS These bits reflect the state of the EECS, EESK, EEDI & EEDO pins in
2 R/W EESK auto-load or 93C46 (93C56) programming mode and are valid only
1 R'W EEDI when the Flash bit is cleared.
0 R EEDO Note: EESK, EEDI and EEDO is valid after boot ROM complete.

Figure 20: Command format for 93C46 EEPROM|[25]]
EECS i \=/"
EED!

EEDO I

Figure 21: EEPROM interface timing[25]

1

makes a kind of race condition. However, if the original MAC address in the NIC registers is directly
accessed then it is always fresh, which is the same as the one red when the system boots. Because of the
reason, the method directly communicating with the EEPROM is comparatively most safe. However, we
consider that this procedure may not exclude modifiability perfectly.

4 Conclusion and Future Work

In this paper, we survey various extraction methods for the MAC address that is being utilized in many
applications as a platform-unique information. To show the details of the methods we implemented a set
of sample software based on the surveyed extraction methods. Based on the result of the implementation,
we conclude that the safety level of the method directly communicating with the EEPROM is qualified
comparatively the best unless the content of the external EEPROM does not change. Additional research
should be required to approve feasibility of the method for practical security applications. Although
only the MAC address was analyzed in this paper due to its popularity, other hardware dependent values

94

Extraction of Platform-unique Information as an Identifier K. Lee et al.

Bytes Contents Description
00h 29h These 2 bytes contain ID code words for the RTL8169. The RTL8169 will load the
0lh 81h contents of the EEPROM into the corresponding location if the ID word (8129h) is

correct. Otherwise, the Vendor ID and Device ID of the PCI configuration space are
"10ECh" and "8169h".

2h-03h VID PCI Vendor ID: PCI configuration space offset 00h-01h.
04h-05h DID PCI Device ID: PCI configuration space offset 02h-03h.
06h-07h SVID PCI Subsystem Vendor ID: PCI configuration space offset 2Ch-2Dh.
08h-09h SMID PCI Subsystem ID: PCI configuration space offset 2Eh-2Fh.
0Ah MNGNT PCI Minimum Grant Timer: PCI configuration space offset 3Eh.
0Bh MXLAT PCI Maximum Latency Timer: PCI configuration space offset 3Fh. Set by software to
the number of PCI clocks that the RTL8169 may hold the PCI bus.
0Ch CONFIGx Bit3: EnTBI. When set, TBI mode is enabled. Otherwise. the RTL8169 operates in
GMII/MII mode.
Bit 7 6 5 4 3 2 1 0
- - - - | EnTBI (bit7, - - -
PHY Status)
0Dh CONFIG3 RTL8169 Configuration register 3: Operational register offset 59h.
0Eh-13h Ethernet ID Ethernet ID: After auto-load command or hardware reset. the RTL8169 loads Ethernet
ID to IDRO-IDRS of the RTL8169's I/O registers.
14h CONFIGO RTL8169 Configuration register 0: Operational registers offset 51h.
15h CONFIG1 RTL8169 Configuration register 1: Operational registers offset 52h.
16h-17h PMC Reserved: Do not change this field without Realtek approval.
Power Management Capabilities. PCI configuration space address 52h and 53h.
18h - Reserved
19h CONFIG4 Reserved: Do not change this field without Realtek approval.
RTL8169 Configuration register 4, operational registers offset 5Ah.
1Ah-1Eh - Reserved
1Fh CONFIG_5 Do not change this field without Realtek approval.

Bit7-2: Reserved.
Bitl: LANWake signal Enable/Disable
Set to 1: Enable LANWake signal.
Set to 0: Disable LANWake signal.
Bit0: PME Status bit property
Set to 1: The PME Status bit can be reset by PCI reset or by software if
D3cold support PME is 0. If D3cold support PME=1. the PME Status bit is a

sticky bit.
Set to 0: The PME Status bit is always a sticky bit and can only be reset by software.
20h-2Fh - Reserved
30h-31h CISPointer Reserved: Do not change this field without Realtek approval.
CIS Pointer.
32h-33h CheckSum Reserved: Do not change this field without Realtek approval.
Checksum of the EEPROM content.
34h-3Eh - Reserved: Do not change this field without Realtek approval.
3Fh PXE_Para Reserved: Do not change this field without Realtek approval.
PXE ROM code parameter.
40h-7Fh VPD Data VPD data field: Offset 40h is the start address of the VPD data.
80h-FFh CIS Data CIS data field: Oiffset 80h is the start address of the CIS data. (93C56 only).

Figure 22: EEPROM contents[235]]

95

Extraction of Platform-unique Information as an Identifier

WRITE PORT UCHAR|((PUCHAR)PCI_Baselddress+0x50), EECS DOWN_EESK DOWN_EEDI_ DOWN_EEDO DOWN); //

delay = RtlConvertLongToLargelInteger (DELAY BASE®TSEL) ;
KelelayExecutionThread (EernelMode,

FALSE, cdelay):

K. Lee et al.

WRITE_FORT_UCHAR(((PUCHAR)FCI_Baselddress+0x50), EECS_DOWN EESK UP_EEDI_DOWN EEDOQ DOWN) : // EESE UFP
delay = RtlConvertlongTolargeInteger (DELAY BASE+*TSEH) ;
KEelelayExecutionThread (KernelMode,

WRITE_PORT UCHAR(((PUCHAR)PCI_BaseAddress+0x50), EECS_DOWN EESK DOWN _EEDI_DOWN_EEDO DOWN): //

FALSE, &delay):

delay = RtlConvertLongTolargelInteger (DELAY BASE*TSKL_TC33)
EelelayExecutionThread (EKernelMode,

FALSE, £delay):

WRITE_PORT TCHAR(((PUCHAR) PCI_Basekddress+0x50), EECZ UP_EESK DOWN EEDI DOWN EEDC DOWN j; // EECS TP
delay = RtlConvertLongTolargeInteger (DELAY BASE*TCSS):
KelelayExecutionThread (EernelMode,

FALSE, cdelay):

WRITE_FORT_UCHAR| ((PUCHAR)PCI_BaselAddress+0x50), EECS_UP_EESKE UP_EEDI_DOWN _EEDO DOWN); // EESE UP, EECS UF
delay = RtlConvertLongTolargeInteger (DELAY BASE*TSEH |
KEelelayExecutionThread (KernelMode,

Figure 23: A part of implemented code communicating with the EEPROM

FALSE, &delay):

i GetMACAddressbyEEPROM

Driver function

Driver Status:

MAC Address

MAC Address:

Load

X

Unload Driver

00-23-54-DF-63-7F

Figure 24: Result of the implement result communicating with the EEPROM

Appication

Registiy

4. EEPROM l

310
controller

e o]

2.API

Q/S

Device Driver

I/O Controller

NIC

Register

Figure 25: The extraction level of hardware unique information(MAC address)

96

x

1. Registry

— EEPROM

Extraction of Platform-unique Information as an Identifier K. Lee et al.

Hooking Handler Remarks

- + By access method of lowest level, Alteration can be
/O Controller/ = fo] difficult because approach to NIC's specification registry

EEPROM Can be vulnerable to alteration by using the Handler

Figure 26: The chart of hardware unique information(MAC address)

including hard disk serial number, I/O map status, BIOS checksum and etc. are required to be analyzed
as a future work.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]
[11]

[12]

[13]

[14]

[15]

S. Jung, J. Kim, and S. Kim, “A Study on MAC Address Spoofing Attack Detection Structure in Wireless
Sensor Network Environment,” Journal of Advanced Communication and Networking Communications in
Computer and Information Science, vol. 199, pp. 31-35, June 2011.

Y. Sheng, K. Tan, G. Chen, D. Kotz, and A. Campbell, “Detecting 802.11 MAC Layer Spoofing Using
Received Signal Strength,” in Proc. of the 27th IEEE Conference on Computer Communications (INFO-
COM’08), Phoenix Arizona, USA. 1EEE, April 2008, pp. 1768-1776.

W. Xing, Y. Zhao, and T. Li, “Reserch on the defense against ARP spoofing Attacks based on Winpcap,”
in Proc. of the 2nd International Workshop on Education Technology and Computer Science (ETCS’10),
Wuhan, China, vol. 1. 1EEE, March 2010, pp. 762-765.

K. Lee and K. Yim, “A Guideline for the Fixed PC Solution,” in Proc. of the 2012 International Conference
on Smart Convergence Technologies and Applications (SCTA ’12), Gwangju, Korea, August 2012, pp. 74-76.
K. R. P. Association, “WPAN Alliance,” September 2010.

M. Lei, Z. Qi, X. Hong, and S. V. Vrbsky, “Protecting Location Privacy with Dynamic Mac Address Ex-
changing in Wireless Networks,” in Proc. of the 2007 Intelligence and Security Informatics (ISI'07), New
Brunswick, New Jersey, USA. 1EEE, May 2007.

S. Hong, “Secure MAC address-based Authentication on X.509 v3 Certificate in Group Communication,”
Journal of Korea Society for Internet Information, vol. 9, no. 4, pp. 6977, August 2008.

Microsoft, “RegOpenKeyEx function,” http://msdn.microsoft.com/en-us/library/windows/desktop/
ms724897(v=vs.85).aspx, 2012.

_ “RegQueryValueEx function,” http://msdn.microsoft.com/en-us/library/windows/desktop/
ms724911(v=vs.85).aspx, 2012.

——, “UuidCreate structure,” http://msdn.microsoft.com/en-us/library/aa379358(v=vs.85).aspx, 2012.
——, “UuidCreate function,” http://msdn.microsoft.com/en-us/library/windows/desktop/aa379205(v=vs.85)
.aspx, 2012.

——, “UuidCreatesequential ~ function,” http://msdn.microsoft.com/en-us/library/windows/desktop/
2a379322(v=vs.85).aspx, September 2012.

——, “NetWkstaTransportEnum function,” http://msdn.microsoft.com/en-us/library/windows/desktop/
2a370668(v=vs.85).aspx, 2012.

——, “GetAdaptersInfo function,” http://msdn.microsoft.com/en-us/library/windows/desktop/aa365917(v=
vs.85).aspx, 2012.

——, “GetAdaptersAddresses function,” http://msdn.microsoft.com/en-us/library/windows/desktop/
2a365915(v=vs.85).aspx, 2012.

97

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724911(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724911(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa379358(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379205(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379205(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379322(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379322(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa370668(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa370668(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365917(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365917(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365915(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365915(v=vs.85).aspx

Extraction of Platform-unique Information as an Identifier K. Lee et al.

[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

——, “IP ADAPTER INFO structure,” http://msdn.microsoft.com/en-us/library/windows/desktop/
2a366062(v=vs.85).aspx, 2012.

——, “GetlfTable function,” http://msdn.microsoft.com/en-us/library/windows/desktop/aa365943(v=vs.85)

.aspx, 2012.

——, “MIB IFTABLE structure,” http://msdn.microsoft.com/en-us/library/windows/desktop/aa366842(v=
vs.85).aspx, 2012.

——, “MIB IFROW structure,” http://msdn.microsoft.com/en-us/library/windows/desktop/aa366836(v=vs.
85).aspx, 2012.

——, “Netbios function,” http://msdn.microsoft.com/en-us/library/bb870903(v=VS.85).aspx, 2012.
——, “NCB structure,” http://msdn.microsoft.com/en-us/library/bb870902(v=vs.85).aspx, 2012.
——, “ADAPTER STATUS structure,” http://msdn.microsoft.com/en-us/library/bb870890(v=VS.85).aspx,

2012.

——, “HalGetBusData function,” |http://msdn.microsoft.com/en-us/library/windows/hardware/ff546599(v=
vs.85).aspx, 2012.

Intel, “Intel(R) I/O Controller Hub 7(ICH7) Family Datasheet,” http://www.intel.com/content/www/us/en/io/
1-o-controller-hub-7-datasheet.html, 2007.

Realtek, “REALTEK GIGABIT ETHERNET MEDIA ACCESS CONTROLLER WITH POWER MAN-
AGEMENT RTL8169,” http://www.iitg.ernet.in/asahu/cs42 1/Real Tek.pdf, 2002.

& Kangwon Lee is currently working towards his B.S. in Information Security Engi-

neering at Soonchunhyang University, Republic of Korea. Also, he is a member of
the Lab. of Information Systems Security Assurance (LISA) led by Prof. Kangbin
Yim. His research interests include vulnerability analysis, obfuscation, kernel mode

" root kit and insider threats.

Kyungroul Lee received his B.S and M.S. degrees from Soonchunhyang University,
Republic of Korea in 2008 and 2010 respectively. As a member of the Lab. of In-
formation Systems Security Assurance (LISA), he is currently working towards his
Ph.D. degree in the same university. His research interests include vulnerability anal-
ysis, kernel mode root kit, obfuscation, platform security, access control and insider
threats.

Jaecheon Byun received his B.S. from Soonchunhyang University, Republic of Korea
in 2011 and he is currently working towards Master’s degree. Also, he is a member
of the Lab. of Information Systems Security Assurance (LISA) led by Prof. Kang-
bin Yim. His research interests include root kit, system security, access control and
reversing.

98

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366062(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366062(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365943(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365943(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366842(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366842(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366836(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366836(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb870903(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb870902(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb870890(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff546599(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff546599(v=vs.85).aspx
http://www.intel.com/content/www/us/en/io/i-o-controller-hub-7-datasheet.html
http://www.intel.com/content/www/us/en/io/i-o-controller-hub-7-datasheet.html
http://www.iitg.ernet.in/asahu/cs421/RealTek.pdf

Extraction of Platform-unique Information as an Identifier K. Lee et al.

' Sunghoon Lee was a researcher at Samsung Electronics Co., Ltd. from 1989 to
1994, the CEO at ELTO Co., Ltd. from 1994 to 2006, and the Suwon Vocational
College lecturer from 2007 to 2009. Since 2010, he has worked at EDA Korea co.,
Ltd as its CEO. In addition, he is now a member of the Lab. of Information Systems
Security Assurance (LISA) led by Prof. Kangbin Yim. He has published several
books on PCB design and H/W development. His research interests include secure
system architecture and secure SoC design.

HyoBeom Ahn received the B.S. in Computer Science and M.S., and Ph.D. in Com-
puter Science and Statistics from Dankook University, Korea in 1992, 1994 and 2002
respectively. Since then, he has been with the Dept. of Information and Telecommu-
nication, Kongju National University, Republic of Korea. His main research interests
include Computer Networks, Network Security and SmartGrid Security.

Kangbin Yim received his B.S., M.S., and Ph.D. from Ajou University, Suwon, Korea
in 1992, 1994 and 2001, respectively. He is currently an associate professor in the
Department of Information Security Engineering, Soonchunhyang University. He has
served as an executive board member of Korea Institute of Information Security and
Cryptology, Korean Society for Internet Information and The Institute of Electronics
Engineers of Korea. He also has served as a committee chair of the international
- conferences and workshops and the guest editor of the journals such as JIT, MIS and
JoWUA His research interests include vulnerability assessment, code obfuscation, malware analysis,
leakage prevention, secure platform architecture and mobile security. Related to these topics, he has
worked on more than forty research projects and published more than ninety research papers.

99

	Introduction
	Extraction Methods for Platform-unique Information (MAC address)
	Reading the Registry Database
	Calling the Dedicated APIs
	UuidCreateSequential()
	NetWkstaTransportEnum()
	GetAdaptersInfo()
	GetIfTable()
	Netbios()

	Polling the I/O registers
	Communicating with EEPROM

	Considerations on Safety of the Extraction Methods
	Conclusion and Future Work

