
Reliability Prediction for Component-based Software Systems
with Architectural-level Fault Tolerance Mechanisms

(Extended Version)∗

Thanh-Trung Pham1†, François Bonnet1, Xavier Défago1,2

1 School of Information Science, JAIST, Nomi, Ishikawa, Japan
2 I3S, UNS, CNRS, Inria, Sophia Antipolis, France
{thanhtrung.pham, f-bonnet, defago}@jaist.ac.jp

Abstract

Reliability, one of the most important quality attributes of a software system, should be consid-
ered early in the development. Software fault tolerance mechanisms (FTMs) are often included in a
software system to improve the system reliability. Their reliability impact highly depends on the ap-
plication context. Existing reliability prediction approaches for component-based software systems
either do not support modeling FTMs or have a limited expressiveness of FTMs. In this paper, we
present a novel extension built upon the core model of a recent component-based reliability predic-
tion approach to offer an explicit and flexible definition of reliability-relevant behavioral aspects (i.e.
error detection and error handling) of FTMs, and an efficient evaluation of their reliability impact in
the dependence of the whole system architecture and usage profile. Our approach is validated in two
case studies, by modeling the reliability, conducting reliability predictions and sensitivity analyses,
and demonstrating its ability to support design decisions.

Keywords: component-based reliability prediction, software fault tolerance mechanisms, error de-
tection, and error handling.

1 Introduction

Techniques for analyzing properties of a software design or a software system are useful for both func-
tional properties (e.g. correctness) and quality properties (e.g. reliability, performance, security, etc.).
Predicting quality properties of a software system based on design models can help not only to make the
system more dependable but also to save costs, time, and efforts significantly by avoiding implementing
software architectures that do not meet the quality requirements.

Reliability, one of the most important quality attributes of a software system, can be defined as the
probability of failure-free operation in given time span. Software fault tolerance mechanisms (FTMs) are
often included in a software system and constitute an important means to improve the system reliability.
FTMs provide the ability to mask faults in systems, prevent them from leading to failures, and can be
applied on different abstraction levels (e.g. source code level with exception handling, architecture level
with replication) [2]. Analyzing the impact of architectural-level FTMs on the reliability of a component-
based software system is a challenge because:

• FTMs can be employed in different parts of a system architecture.

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, volume: 5, number: 1, pp. 4-36
∗This paper is an extended version of the work originally presented at the 8th International Conference on Availability,

Reliability and Security (ARES’13), Regensburg, Germany, September 2013 [1].
†Corresponding author: 1-1 Asahidai, Nomi, Ishikawa Prefecture 923-1211, Japan, Tel: +81-761-51-1111

4

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

• Usually, in a system architecture, there are multiple points which can be changed to create archi-
tecture variants, e.g. substituting components with more reliable variants, running components
concurrently to improve performance.

• Besides the reliability of its components, the system reliability depends on the system architecture
and usage profile (i.e. component services, control flow transitions between them and sequences
of component service calls) [3]. For example, under a certain usage profile, if faulty code is never
executed, then no failures occurs, and the system is perceived as reliable by its users.

Existing reliability prediction approaches for component-based systems often do not allow modeling
FTMs (e.g. [4–6]) or have limited expressiveness of FTMs (e.g. [7, 8]). These approaches lack flexible
and explicit expressiveness of how error detection and error handling of FTMs influence the control and
data flow within components. For example, an undetected error from a component’s provided service
leads to no error handling, which in turn influences the control and data flow within component services
using this provided service. As a result, these approaches are limited in combining modeling FTMs with
modeling the system architecture and usage profile.

Further approaches provide more detailed analysis of individual FTMs (e.g. [9–11]). But these
so-called non-architectural models do not reflect the system architecture and usage profile. As a con-
sequence, they are not suitable when analyzing how individual FTMs employed in different parts of a
system architecture influence the overall system reliability, especially when evaluating for architecture
variants under varying usage profiles.

Contribution: The contribution of this paper is a novel extension built upon the core model (i.e.
fundamental modeling steps and basic modeling elements) of our former work [12] to offer an explicit
and flexible definition of reliability-relevant behavioral aspects (i.e. error detection and error handling)
of software FTMs, and an efficient evaluation of their reliability impact in the dependence of the whole
system architecture and usage profile. Our approach offers a reliability modeling schema with developer-
friendly modeling elements (e.g. provided/required services, components, connectors, etc.). We provide
a reliability prediction tool for an automated transformation from models based on the schema into
Markov models for reliability predictions and sensitivity analyses. We validate our approach in two case
studies and demonstrate its applicability in supporting design decisions.

Structure: The rest of this paper is organized as follows. Section 2 surveys related work. Sec-
tion 3 describes the steps in our approach. Section 4 describes in detail our reliability modeling schema.
Section 5 describes the transformation to create Markov models for reliability predictions. Section 6
demonstrates our approach with case studies. Section 7 discusses our assumptions and limitations and
Section 8 concludes the paper.

2 Related Work

Our approach belongs to the field of architecture-based software reliability modeling and prediction
which treats software systems as a composition of software components. It is related to approaches on
architectural-level fault tolerance modeling and reliability modeling of individual FTMs.

The field of architecture-based software reliability modeling and prediction has been surveyed by
several authors [13–15]. One of the first approaches is Cheung’s approach [3] that uses Markov chains.
Recent work extends Cheung’s work to combine reliability analysis with performance analysis [16], and
to support compositionality [6], but does not consider FTMs. Further approaches such as Cheung et al.
[17] focusing on the reliability of individual components, Zheng et al. [18] aiming at service-oriented
systems, Cortellessa et al. [4] and Goseva et al. [5] applying UML modeling language, also do not
consider FTMs.

5

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

Several approaches in the field consider explicitly error propagation to relax the assumption that a
component failure immediately leads to a system failure [19–22]. To model the possibility of propagating
component failures, they introduce error propagation probabilities. The complement of these probabil-
ities can be used to express the possibility of masking component failures. However, FTMs with their
error detection and error handling cannot be considered explicitly by these approaches.

Some approaches step forward and deal with the problem of incorporating architectural-level FTMs
into architecture-based reliability prediction models. Sharma et al. [7] allow modeling component
restarts and component retries. Wang et al. [8] support different architectural styles including fault
tolerance architectural style. However, these approaches do not consider the influences of both error
detection and error handling of FTMs on the control and data flow within components. Brosch et al. [23]
offer a flexible way to include FTMs but do not consider the influences of error detection of FTMs on
the control and data flow within components. Ignoring the influences of either error detection or error
handling of FTMs on the control and data flow within components can lead to incorrect prediction results
when the behaviors of FTMs deviate from the specific cases mentioned by the authors.

A great deal of past research effort focuses on reliability modeling of individual FTMs. Dugan
et al. [9] aim at a combined consideration of hardware and software failures for distributed recovery
blocks (DRB), N-version programming (NVP), and N self-checking programming (NSCP) through fault
tree techniques and Markov processes. Kanoun et al. [11] evaluate recovery blocks and NVP using
generalized stochastic Petri nets. Gokhale et al. [10] use simulation instead of analysis to evaluate DRB,
NVP, and NSCP. Their so-called non-architectural models do not reflect the system architecture and the
usage profile. Therefore, although these approaches provide more detailed analysis of individual FTMs,
they are limited in their application scope to system fragments rather than the whole system architecture
(usually composed of different structures) and not suitable when evaluating architecture variants under
varying usage profiles.

Preliminary Work

In [12], we presented a reliability prediction approach for component-based software systems that consid-
ers error propagation for different execution models including sequential, parallel, and primary-backup
fault tolerance executions. However, our support for fault tolerance modeling was limited to primary-
backup FTM, while in this paper, we are able to support modeling large classes of existing FTMs (e.g.
exception handling, restart-retry, primary-backup, recovery blocks, etc.).

Furthermore, this paper goes beyond our work published in [1] through extended fault tolerance
modeling support for multi-version programming FTM, supports for modeling composite components
and looping structures with discrete probability distributions of loop counts, a more extensive validation,
and a far more elaborate detailed description and discussion of the approach.

3 Component-Based Reliability Prediction

In component-based software engineering (CBSE), there exists a strict separation between component
developers and software architects. Component developers implement components and provide compo-
nent functional specifications and component quality specifications (i.e. models). Component functional
specifications are sufficient for software architects to assemble components and check their interoper-
ability. However, in order to reason about quality attributes such as reliability, performance, or security
of a component-based software architecture, software architects need to use component quality specifi-
cations.

In our approach, component developers are required to create component reliability specifications,

6

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

Component

developers

Software

architects

A reliability

prediction tool

Modeling components,

services, service

implementations

Modeling failure models

for internal activities in

service implementations

Modeling fault

tolerance structures

Modeling system

architecture

Modeling usage

profile

System

reliability model
Transforming

model

Analyzing

Markov models

Reliability

Predictions

Sensitivity

analyses
Result OK?

Yes

Assembling actual

component implementations

6

NoRevising components,

architecture, usage profile

5

Creating/updating a

system reliability model

Creating/updating component

reliability specifications

1

2

3

4

Component reliability

specifications Markov

modelsA reliability modeling schema

Figure 1: Component-based reliability prediction.

by describing how provided services of a component call required services in terms of probabilities,
frequencies, and parameter values. From that, software architects can create a model of flow and data
control throughout the entire architecture for reliability predictions, by simply incorporating these spec-
ifications, without referring to component internals.

Fig. 1 shows six steps in our approach. In Step 1, component developers create component reliability
specifications. Component developers model components, services and service implementations, and
then failure models (i.e. different failure types with their occurrence probabilities) for internal activities in
service implementations. Component developers/software architects can include different fault tolerance
structures (FTSs), e.g. RetryStructures, MultiTryCatchStructures, or MVPStructures (see Section 4.2.3),
either directly into service implementations of already modeled components or as additional components.
FTSs support different configurations, e.g. the number of times to retry in a RetryStructure, the number
of replicated instances for handling certain failure types in a MultiTryCatchStructure, or the number of
versions executed in parallel in a MVPStructure.

In Step 2, software architects create a system reliability model. Software architects model the system
architecture and then the usage profile. In Section 4, we introduce our reliability modeling schema that
supports creating component reliability specifications and system reliability models.

7

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

In Step 3, the system reliability model, combined with the component reliability specifications, is
transformed automatically into Markov models. In Step 4, by analyzing the Markov models, a reliability
prediction and sensitivity analyses can be deduced. To support Step 3 and 4, we provide a reliability
prediction tool whose transformation for reliability prediction is explained in Section 5. With the tool
support, sensitivity analyses can also be derived, e.g. by varying reliability-related probabilities of com-
ponents inside the system architecture to obtain corresponding reliability predictions.

If the predicted reliability does not meet the reliability requirement, Step 5 is performed. Otherwise,
Step 6 is performed. In Step 5, there are several possible options: component developers can revise
the components, e.g. changing the configurations of FTSs; software architects can revise the system
architecture and the usage profile, e.g. trying different system architecture configurations, replacing some
key components with more reliable variants, or adjusting the usage profile appropriately. Sensitivity
analyses can be used as a guideline for these options, e.g. to identify the most critical parts of the
system architecture which should receive special attention during revising. In Step 6, the modeled system
is deemed to meet the reliability requirement, and software architects assemble the actual component
implementations following the system architecture model.

4 Reliability Modeling

4.1 Basic Concepts

According to Avizienis et al. [24], an error is defined as the part of the system state that may lead to
a failure. The cause of the error is called a fault. A failure occurs when the error causes the delivered
service to deviate from correct service. The deviation can be manifested in different ways, corresponding
to the system’s different failure types.

In the same paper, the authors describe in detail the principle of FTMs. A FTM is carried out
through error detection and system recovery. Error detection is to determine the presence of an error.
Error handling followed by fault handling together form system recovery. Error handling is to eliminate
errors from the system state, e.g. by bringing the system back to a saved state that existed prior to error
occurrence. Fault handling is to prevent faults from being activated again, e.g. by either switching in
spare components or reassigning tasks among non-failed components. Error detection itself also has two
different failure types: (1) signaling the presence of an error when no error has actually occurred, i.e.
false alarm, (2) not signaling the presence of an error, i.e. an undetected error.

From that, to model and predict better the reliability of component-based systems with architectural-
level FTMs, it is necessary to support multiple failure types of a component service and different failure
types of different component services, and to consider both the influences of error detection and error
handling of FTMs on the control and data flow within components.

In the next section, we introduce our reliability modeling schema for describing reliability-relevant
characteristics of component-based systems. It would have been possible for us to build our approach
upon UML. However, by introducing our reliability modeling schema, we avoid the complexity and the
semantic ambiguities of UML which make it hard to provide an automated transformation from UML to
analysis models. With regard to our specific purposes, our schema is more suitable than UML extended
with MARTE-DAM profile [25]1 because our schema is reduced to concepts needed for reliability pre-
diction, and therefore our approach can support an automated transformation for reliability prediction for
the general case.

1This profile provides a very comprehensive reliability modeling but its authors do not target an automated transformation for
reliability prediction for the general case.

8

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

ComponentInstanceComponentConnector

SystemArchitecture

1..*0..*

UserInterface
1..*

-probabilities

-distributions

-averages

UsageProfilePart
Modeling elements for system reliability models

UsageProfile
1..*

Service

ProvidedService

RequiredService

(Abstract)

Component

1..*

0..*

ServiceImplementation

1..*

(Abstract)

Activity
-calledService

CallingActivity

InternalActivity

FailureType

-probability

OccurringFailureType

0..*

ThrownFailureType

0..*

(Abstract)

Structure

SequentialStructure

BranchingStructure

-loopCount

LoopingStructure

ParallelStructure

-errorDetectionMatrix

-handledFailureTypes

-retryCount

RetryStructure

RetryPart

-errorDetectionMatrices

MultiTryCatchStructure

-handledFailureTypes

MultiTryCatchPart

2..*

[...]
[...]

[...]

[...]

[...]

[...]

CompositeComponent

PrimitiveComponent

-maxToleratedIncompletion

-minMajoritySize

-undetectedFailureType

-detectedFailureType

-agreementOfErrorsVector

-errorPropertyVectors

MVPStructure

3..*

[...]MVPPart

[...]

M
o

d
e

lin
g

 e
le

m
e

n
ts

 fo
r c

o
m

p
o

n
e

n
t re

lia
b

ility
 s

p
e

c
ific

a
tio

n
s

Figure 2: Modeling elements in our reliability modeling schema.

4.2 Component Reliability Specifications

4.2.1 Components, services, and service implementations

In our approach, component developers are required to provide component reliability specifications.
Fig. 2 shows an extract of our reliability modeling schema with modeling elements that supports compo-
nent developers to create component reliability specifications. Component developers model components
and services via modeling elements: Component and Service, respectively. A component can be either
a primitive component (PrimitiveComponent) or a composite component (CompositeComponent) which
is hierarchically structured with nested inner components. Components are associated with services via
RequiredService and ProvidedService.

Example 1. Fig. 3 shows an example of components and services, including seven services (from S0 to
S6), one composite component (C8) which contains three nested primitive component (C5, C6, and C7),
and four separated primitive components (from C1 to C4).

To analyze reliability, component developers are required to describe the behavior of each service
provided by a component, i.e. describe the activities to be executed when a service (Service) in the

9

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

<<Primitive

Component>>

C1

<<Primitive

Component>>

C2

<<Primitive

Component>>

C3

<<Primitive

Component>>

C4

S0

S6

S5

S1

S1

S5

S6

S4S3S2

<<Composite

Component>>

C8

<<...>>

C5

<<...>>

C6

<<...>>

C7

S2

S3

S4

S4

S3

S2

Figure 3: Example of components and services.

provided services of the component is called. Therefore, a component can contain multiple service im-
plementations. A service implementation (ServiceImplementation) can include activities (Activity) and
structures (Structure). There are two activity types: internal activities (InternalActivity) and calling ac-
tivities (CallingActivity). An internal activity represents a component’s internal computation. A calling
activity represents a synchronous call to other components, that is, the caller blocks until receiving an
answer. The called service of a calling activity is a service in the required services of the current com-
ponent and this referenced required service can only be substituted by the provided service of other
component when the composition of the current component to other components is fixed. Four stan-
dard types of control flow structures are sequential structures (SequentialStructure), branching structures
(BranchingStructure), looping structures (LoopingStructure), and parallel structures (ParallelStructure).
For branching structures, branching conditions are Boolean expressions. For looping structures2, the
number of loops is always bound, infinite loops are not allowed. Looping structures may include other
looping structures but cannot have multiple entry points and cannot be interconnected. For parallel struc-
tures, parallel branches are supposed to be executed independently.

4.2.2 Failure Models

Component developers model failure models (i.e. different failure types with their occurrence probabil-
ities) for internal activities of service implementations via an association between InternalActivity and
FailureType. Different techniques such as fault injection, statistic testing, or growth reliability modeling
can be used to determine these probabilities [13, 17].

Example 2. Fig. 4 shows an example of service implementations. The service implementation Svc1
includes one internal activity. The failure model of the internal activity shows that during the execution
of the internal activity, failure type F2 can occur with probability 0.001617.

The service implementation Svc2 contains two internal activities (with their failure models), four call-
ing activities (to call required services: Svc3, Svc4, and Svc5), one branching structure (with branching
conditions: [Y = true] and [Y = f alse]), one looping structure (with loop count: Z).

4.2.3 Fault Tolerance Structures

Error detection To support modeling FTMs, our reliability modeling schema provides fault tolerance
structures (FTSs). In FTMs, correct error detection is the prerequisite condition for correct error han-

2In our model, an execution cycle is also modeled by a looping structure with its depth of recursion as loop count.

10

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

<<ServiceImplementation>>

Svc2

[Y=true]START

END
[Y=false]

calledService: Svc3

<<Calling

Activity>>

<<Internal

Activity>>

1

Z

<<Internal

Activity>>

2

failureType: F3

probability: 0.0000946

<<OccuringFailureType>>

calledService: Svc4

<<Calling

Activity>>

calledService: Svc4

<<Calling

Activity>>

failureType: F3

probability: 0.0000896

<<OccuringFailureType>>

calledService: Svc5

<<Calling

Activity>>

<<Primitive

Component>>

Comp2
Svc2

Svc5

Svc4

Svc3
Svc1

<<ServiceImplementation>>

Svc1

START END

<<Internal

Activity>>

failureType: F2

probability: 0.001617

<<OccuringFailureType>>

Figure 4: Example of service implementations.

-possibleFailureTypes: F1, F2, F3

<<Activity>> i
ai

Success

(F0: FailureType)

F1: FailureType

F2: FailureType

F3: FailureType

F0

F1

Detected as F2

Detected as F3

F2

F3

Before detection

After detection

Figure 5: Error detection semantics for an activity example.

dling. On the contrary, an undetected error leads to no error handling and a false alarm leads to incorrect
error handling.

Example 3. Fig. 5 shows an activity with three possible failure types: F1, F2, and F3 (a new failure
type, F0, is introduced, corresponding to the correct service delivery). To provide error handling for
certain failure types, e.g. F2 and F3, it is necessary to detect them correctly. From that, for each Fi with
i ∈ {0,1,2,3}, fraction ci j of being detected as Fj with j ∈ {2,3} needs to be provided. Therefore, the

11

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

-possibleFailureTypes: F1, F2, F3

<<RetryPart>>

RetryPart

Success (F0)F1 F2 F3

RetryPart

(retry 1)

RetryPart

(retry 2)

-retryCount: 2

-handledFailureTypes: F1, F2

-errorDetectionMatrix:

<<RetryStructure>>

01 02

11 12

21

1 2

0

1

22

31

2

3 32

c c

c c

c

F F

F

F

F c

c cF

Detected as F1

Detected as F2

Detected as F1

Detected as F2

Figure 6: Semantics for a RetryStructure example.

error detection can be described by the following matrix:

F2 F3
F0
F1
F2
F3

c02 c03
c12 c13
c22 c23
c32 c33

 ,∑
j

ci j ≤ 1

Elements c0 j correspond to false alarms. Elements ci j with i 6= j correspond to false signaling of
failure type. In case of perfect error detection, the error detection matrix has c j j = 1 and ci j = 0 for
i 6= j.

RetryStructure An effective technique to handle transient failures is service re-execution. A RetryS-
tructure is taking ideas from this technique. The structure contains a single RetryPart which, in turn, can
contain different activity types, structure types, and even a nested RetryStructure. The first execution of
the RetryPart models normal service execution while the following executions of the RetryPart model
the service re-executions.

Example 4. Fig. 6 shows a RetryStructure with a single RetryPart. During the execution of the RetryPart,
failure types F1, F2, and F3 can occur (the field possibleFailureTypes). The field handledFailureTypes of
this structure shows that only failure types that are detected as F1 and F2 lead to retry the RetryPart. This
is repeated with the number of times equal to the field retryCount (2 times in this example).

MultiTryCatchStructure A MultiTryCatchStructure is taking ideas from the exception handling in
object-oriented programming. The structure consists of two or more MultiTryCatchParts. Each Mul-
tiTryCatchPart can contain different activity types, structure types, and even a nested MultiTryCatch-
Structure. Similar to try and catch blocks in exception handling, the first MultiTryCatchPart models the
normal service execution while the following MultiTryCatchParts handle certain failure types and launch
alternative activities.

12

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

-possibleFailureTypes: F1, F2, F3, F4

<<MultiTryCatchPart>> 1

-errorDetectionMatrices

<<MultiTryCatchStructure>>

0 02 03

1 12 13

2 22 23

3 32 33

2 3 4

04

14

24

34

41 42 434

F c c

F F F

c

cF c c

F c c

F c c

F

c

c

c c c

-handledFailureTypes: F2, F3

-possibleFailureTypes: F2, F3

<<MultiTryCatchPart>> 2

3

0 03

2 23

333

'

'

'

F

F c

F c

cF

-handledFailureTypes: F3, F4

-possibleFailureTypes: F4

<<MultiTryCatchPart>> 3

MultiTryCatchPart 1

Success (F0)F1 F2 F3

MultiTryCatchPart 2 MultiTryCatchPart 3

F4

Detected as F2

Detected as F3

Detected as F4

Detected as F3

Figure 7: Semantics for a MultiTryCatchStructure example.

Example 5. Fig. 7 shows a MultiTryCatchStructure with three MultiTryCatchPart(s). During the execu-
tion of MultiTryCatchPart 1, failure types F1, F2, F3, and F4 can occur. Because the field handledFail-
ureTypes of MultiTryCatchPart 2 includes F2, F3 and that of MultiTryCatchPart 3 includes F3, F4, only
failure types of MultiTryCatchPart 1 that are detected as F2, F3, and F4 lead to finding MultiTryCatch-
Parts to handle detected failure types. In particular, the failure types of MultiTryCatchPart 1 that are
detected as F2 and F3 lead to MultiTryCatchPart 2, the failure types of MultiTryCatchPart 1 that are
detected as F4 lead to MultiTryCatchPart 3.

Similarly, during the execution of MultiTryCatchPart 2, possible failure types are F2 and F3. More-
over, because the field handledFailureTypes of MultiTryCatchPart 3 includes F3 and F4, only failure
types of MultiTryCatchPart 2 that are detected as F3 lead to MultiTryCatchPart 3. Notice that error
detection cannot prevent failures and it should be followed by an error handling, therefore, in this case,
an error detection matrix for MultiTryCatchPart 3 is not required because there is no MultiTryCatchPart
to handle failures of MultiTryCatchPart 3.

MVPStructure Based on the concept of N-version programing (NVP) with majority voting decision,
we build our MVPStructure. A MVPStructure consists of three or more MVPParts. Each MVPPart can
contain different activity types, structure types, and even a nested MVPStructure. Similar to variants
(or versions) in NVP, these MVPParts are executed in parallel in the same environment: each of them
receives identical inputs and each produces its version of the outputs. The outputs are then collected by
the structure’s majority voter and the results of the majority are assumed to be the correct output used by
the system.

The voter has to determine the decision output from a set of results. If there is no agreement of the
majority results, the voter signals a detected failure. Otherwise, the voter produces an output which is the
result of the agreement (i.e. the consensus). The output of the voter is correct if the agreement is of the
majority correct results, otherwise the output of the voter is erroneous. In analogy to NVP, we assume
that the MVPStructure is not used in the situations that can have multiple distinct correct outputs. The
operation of a MVPStructure is depicted in Fig. 8.

13

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

Distribute

inputs

Execute

MVPParts

Collect

outputs

Majority
agrees?

Detected failure

Consensus
correct?

Correct output

Erroneous output

(Undetected failure)

Yes

Yes

No

No

Majority voter

Figure 8: The operation of a MVPStructure.

From the viewpoint of the majority voter, it distinguishes the result of a MVPPart’s execution in
terms of complete execution with an output (correct or erroneous) or incomplete execution. Therefore,
given that a MVPPart has failed with a given failure type, a fraction of the fact that it has not completed
its execution needs to be provided. With all the possible failure types of a MVPPart, there is a vector of
such fractions, called errorPropertyVector. And for all MVPParts of a MVPStructure, there is a list of
errorPropertyVectors.

The operation of the MVPStructure can also be configured via the following properties:

• maxToleratedIncompletion: the maximum number of incomplete executions of MVPParts the
voter can tolerate.

• minMajoritySize: the minimum number of the results of the executions of MVPParts required to
agree for the voter to produce an output (correct or erroneous).

• detectedFailureType: the failure type of detected failures for the voter to signal.

• undetectedFailureType: the failure type of erroneous outputs of the structure.

Let nMV ≥ 3 be the number of MVPParts of a MVPStructure, minMS be the value of minMajoritySize,
then it is required that minMS≥

⌈
(nMV +1)

/
2
⌉
.

Moreover, when there are at least minMajoritySize erroneous results in the set of the results of MVP-
Parts’executions, in order to distinguish whether the voter signals a detected failure or produces an erro-
neous output, a fraction of the fact that there is an agreement of the majority erroneous results also needs
to be provided. With all the possible number of erroneous results, there is a vector of such fractions,
called agreementOfErrorsVector.

Example 6. Fig. 9 shows a MVPStructure with three MVPParts. The execution of MVPPart 1 can either
succeed (F0) or fail with failure type F1. The error property vector for MVPPart 1 (the first elements of
the field errorPropertyVectors) shows that given that MVPPart 1 has failed with failure type F1, MVPPart
1 has not completed its execution with probability d1. In case failures of F1 are content failures (i.e. the
content of a system service’s output deviates from the correct one), d1 = 0; in case failures of F1 are
late timing failures (i.e. the delivery time of a system service is too late from the correct one), d1 = 1.
Similarly, there is an error property vector for each of the remaining MVPParts.

Based on the set of the results of the MVPParts’ executions, the majority voter of the MVPStructure
has to determine the decision output. Different possibilities for the set of the results are represented by
(#CorOut,#ErrOut,#IncExe) with #CorOut+#ErrOut+#IncExe = 3 where #CorOut is the number of
correct outputs, #ErrOut is the number of erroneous outputs, and #IncExe is the number of incomplete
executions. The voter has been configured to tolerate at most one incomplete execution from MVPParts

14

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

F0

F1

MVPPart 1

CorOut

IncExe

ErrOut

- maxToleratedIncompletion: 1 - minMajoritySize: 2

- undetectedFailureType: F1 - detectedFailureType: F3

- agreementOfErrorsVector: (p2, p3)

- errorPropertyVectors:

<<MVPStructure>>

-possibleFailureTypes: F1

<<MVPPart>> 1

-possibleFailureTypes: F1, F2

<<MVPPart>> 2

-possibleFailureTypes: F2

<<MVPPart>> 3

'

11

'

22

IncE

d

e

F

d

x

F

 1 1

IncExe

dF "

2 2

IncExe

dF

(3,0,0)

(2,1,0)

(2,0,1)

(1,2,0)

(1,1,1)

(1,0,2)

(0,3,0)

(0,2,1)

(0,1,2)

(0,0,3)

F0

F2

MVPPart 3

CorOut

IncExe

ErrOut

CorOut

ErrOut

(Undetected failure)

Detected failure F3

F1

Collect

outputs

F0

Majority voterExecute MVPParts

Distribute

inputs

1d

11 d

F0

F1

MVPPart 2

CorOut

IncExe

ErrOutF2

p2

1-p2

Legend:

 (# CorOut,# ErrOut,#IncExe)

Figure 9: Semantics for a MVPStructure example.

(the field maxToleratedIncompletion) and to require at least two results of the executions of MVPParts
to agree in order to produce an output (correct or erroneous) (the field minMajoritySize). Therefore, the
voter can determine the decision output for the following possibilities:

• Possibilities with #IncExe > 1 cause the voter to signal a detected failure of F3 (the field detected-
FailureType).

• Possibilities with #IncExe≤ 1 and #CorOut ≥ 2 make the voter to produce a correct output (F0).

• Possibilities with #IncExe ≤ 1, #CorOut < 2, and #ErrOut < 2 also cause the voter to signal a
detected failure of F3.

For the remaining possibilities with #IncExe ≤ 1, #CorOut < 2, and #ErrOut ≥ 2, the field agree-
mentOfErrorsVector shows that when there are two erroneous outputs, with probability p2 there is an

15

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

agreement of the majority erroneous outputs, and when there are three erroneous outputs, with proba-
bility p3 there is an agreement of the majority erroneous outputs. In case the executions of MVPParts
always produce distinct erroneous outputs when they fail, p2 = p3 = 0; in case the output domain of the
executions of MVPParts is a boolean domain (i.e. true/false), p2 = p3 = 1. Therefore, the voter can
determine the decision output for the remaining possibilities:

• For possibilities with #IncExe ≤ 1, #CorOut < 2, and #ErrOut = 2, the voter produces an er-
roneous output of F1 (the field undetectedFailureType) with probability p2, or signal a detected
failure of F3 with probability 1− p2.

• Similarly, for possibilities with #IncExe≤ 1, #CorOut < 2, and #ErrOut = 3, the voter produces
an erroneous output of F1 with probability p3, or signal a detected failure of F3 with probability
1− p3.

Remark FTSs support enhanced fault tolerance expressiveness in several aspects, including different
recovery behaviors in response to occurrences of failures, as well as multi-type and multi-stage recovery
behaviors. They can be employed in different parts of the system architecture and are quite flexible to
model FTMs because their inner parts (RetryPart, MultiTryCatchParts, and MVPParts) are able to con-
tain different activity types, structure types, and even nested FTSs. They allow modeling different classes
of existing FTMs, including exception handling, restart-retry, primary-backup, and recovery blocks, N-
version programming, and consensus recovery blocks. If a RetryPart, MultiTryCatchPart, or MVPPart
contains a CallingActivity, errors from the provided service of the called component (and any other com-
ponent down the call stack) can be handled. The case studies in Section 6 show different possible usages
of FTSs.

4.3 System Reliability Models

4.3.1 System Architecture

In our approach, software architects are required to provide a system reliability model. Fig. 2 shows an
extract of our reliability modeling schema with modeling elements that supports software architects to
create a system reliability model. Software architects model system architecture via modeling element
SystemArchitecture. Software architects create component instances (ComponentInstance) and assemble
them through component connectors (ComponentConnector) to realize the required functionality. Users
can access this functionality through a user interface (UserInterface).

4.3.2 Usage Profile

After modeling system architecture, software architects model a usage profile for the user interface of
the required functionality. A usage profile (UsageProfile) contains usage profile parts (UsageProfilePart)
with different probabilities which model different usage scenarios of the system. A usage profile part
must include sufficient information to determine the branching probabilities of branching structures, and
the discrete probability distributions (or the average values) of the loop counts of looping structures.

Example 7. Continuing with Example 2, Fig. 10 shows an example of system reliability model. The
system architecture includes instances of components Comp1, Comp2, and Comp3. They are connected
via component connectors. Provided service Svc0 of Comp1’s component instance is exposed as a user
interface for users.

The usage profile contains two usage profile parts with probabilities 0.4 and 0.6. This means that with
probability 0.4, users access with usage profile part 1 and with probability 0.6, users access with usage

16

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

<<SystemArchitecture>>

Svc1

Svc2

Svc0 <<Component

Instance>>

Comp1

<<Component

Instance>>

Comp3
<<Component

Instance>>

Comp2

Svc3

Svc4

Svc5

<<ServiceImplementation>>

Svc3

START END

<<Internal

Activity>>

failureType: F4

probability: 0.000246

<<OccuringFailureType>>

<<ServiceImplementation>>

Svc4

START END

<<Internal

Activity>>

failureType: F5

probability: 0.0000892

<<OccuringFailureType>>

<<ServiceImplementation>>

Svc5

START END

<<Internal

Activity>>

failureType: F6

probability: 0.0002365

<<OccuringFailureType>>

<<ServiceImplementation>>

Svc0

[X=0]

START END

[X!=0]
calledService: Svc2

<<Calling

Activity>>

calledService: Svc1

<<Calling

Activity>>

<<Internal

Activity>>

failureType: F1

probability: 0.0002455

<<OccuringFailureType>>

<<UsageProfile>>

p(X=0)=0.28

p(Y=true)=0.31

average(Z)=8

<<UsageProfilePart>>

UPP2

 probability =0.6

p(X=0)=0.15

p(Y=true)=0.46

<<UsageProfilePart>>

UPP1

 probability =0.4

()

7 0.19

8 0.73

9 0.08

Z p Z

Figure 10: Example of system reliability model.

profile part 2. Each usage profile part contains probabilities and a distribution (or an average) to deter-
mine the branching probabilities of the branching structures and the discrete probability distribution (or
the average value) of the loop count of the looping structure.

5 Reliability Prediction

After the software architects provide a system reliability model, we can predict the system reliability
under the specified usage profile. The prediction process starts with the system reliability model and the
component reliability specifications, and ends with the system reliability prediction output. It includes
transformation for each usage profile part and an aggregation of results.

5.1 Transformation for each usage profile part

The transformation is to derive the reliability for the provided service for users which the current usage
profile part refers to. It starts with the service implementation of this provided service. By design, in our
reliability modeling schema: (1) a service implementation can contain a structure of any structure types
or an activity of any activity types, (2) a structure’s inner parts can contain structures of any structure
types and activities of activity types, and (3) a calling activity is actually a reference to another service
implementation. Therefore, the transformation is essentially a recursive procedure applied for structures
and internal activities.

For an internal activity (abbreviated as ia), its probabilities of different failure types are provided
as a direct input: fp j(ia). The success probability of the ia can be calculated by sp(ia) = fp0(ia) =
1−∑

m
j=1 fp j(ia) where m is the number of failure types.

17

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

a1 a2 an... S

(a)

a1

an -1

...

an

[bc1]

[bcn -1]

B

B

B

(b)

a1

lc

(c)

a1

a2

an

...

P

(d)

Figure 11: Example of structures: (a) Sequential structure, (b) Branching structure, (c) Looping structure,
and (d) Parallel structure.

For each structure, the transformation transforms it into an equivalent ia.

5.1.1 Sequential Structure

Considering a sequential structure with nS sequential parts a1, a2, ..., anS as in Fig. 11a, its equivalent ia
has:

sp = fp0 =
nS

∏
i=1

sp(ai) (1)

and for 1≤ j ≤ m

fp j =
nS

∑
i=1

((
i−1

∏
k=1

sp(ak)

)
fp j(ai)

)
(2)

Equation (2) can be obtained from the following disjoint cases:

• Part a1 fails with failure type j: fp j(a1).

• Part a1 succeeds, part a2 fails with failure type j: sp(a1)fp j(a2).

• ...

• Parts a1, a2, ..., anS−1 succeed, part anS fails with failure type j:
(

nS−1
∏

k=1
sp(ak)

)
fp j(anS).

5.1.2 Branching Structure

Considering a branching structure with nB− 1 if parts a1, a2, ..., anB−1 and a single else part anB as in
Fig. 11b, its equivalent ia has:

sp = fp0 =
nB−1

∑
i=1

p(bci)sp(ai)+

(
1−

nB−1

∑
i=1

p(bci)

)
sp(anB) (3)

and for 1≤ j ≤ m

fp j =
nB

∑
i=1

p(bci)fp j(ai)+

(
1−

nB−1

∑
i=1

p(bci)

)
fp j(anB) (4)

where p(bci) is the probability of the branching condition bci which is obtained from the current usage
profile part.

18

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

5.1.3 Looping Structure

Considering a looping structure with a single looping part a1 as in Fig. 11c, it can be seen as a sequential
structure of part a1 appearing lc times. Therefore, in case the current usage profile part contains the
average value of the loop count, i.e. average(lc) = v, the equivalent ia of the looping structure has:

sp = fp0 = sp(a1)
v (5)

and for 1≤ j ≤ m

fp j =
v

∑
i=1

sp(a1)
i−1fp j(a1) (6)

In case the current usage profile part contains the discrete probability distribution of the loop count,
i.e. all possible values for the loop count {v1,v2, ...,vt} ⊆ N0 and their occurrence probabilities {p(v1),

p(v2), . . . , p(vt)} such that
t
∑

i=1
p(vi) = 1, the equivalent ia of the looping structure has:

sp = fp0 =
t

∑
i=1

p(vi)sp(a1)
vi (7)

and for 1≤ j ≤ m

fp j =
t

∑
i=1

p(vi)
vi

∑
k=1

sp(a1)
k−1fp j(a1) (8)

5.1.4 Parallel Structure

Considering a parallel structure with nP parallel parts a1, a2, ..., anP as in Fig. 11d, to avoid introducing
additional failures types when the parallel parts fail in different failure types, it is assumed that the failure
types are sorted in a certain order (e.g. according to their severity). Therefore, when the parallel parts
fail in different failure types, the failure type of the parallel structure is the highest failure type of its
parallel parts. Without loss of generality, the failures types are assumed to be sorted in the following
order: F1 ≤ F2 ≤ . . .≤ Fm, then the equivalent ia of the parallel structure has:

sp = fp0 =
nP

∏
i=1

sp(ai) (9)

and for 1≤ j ≤ m

fp j =
nP

∑
i=1

(
i−1

∏
k=1

(
1−

m

∑
l= j

fpl(ak)

)
× fp j(ai)×

nP

∏
k=i+1

(
1−

m

∑
l= j+1

fpl(ak)

))
(10)

Equation (10) can be obtained from the following disjoint cases:

• Part a1 fails with failure type j, parts a2, a3, ..., anP do not fail with failure type l > j:

fp j(a1)
nP

∏
k=2

(
1−

m
∑

l= j+1
fpl(ak)

)
.

• Part a1 fails with failure type l < j, part a2 fails with failure type j, parts a3, a4, ..., anP do not fail

with failure type l > j:

(
1−

m
∑

l= j
fpl(a1)

)
fp j(a2)

nP

∏
k=3

(
1−

m
∑

l= j+1
fpl(ak)

)
.

19

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

RPi

Fi1 Fi2 Fim

fp1(RP)

fp2(RP)

fpm(RP)

...

1
1 ()

m

jj
fp RP

MM(RPi)

Fi0

(a)

MTCP2

F21 F22 F2m

fp1(MTCP2)

fp2(MTCP2)

fpm(MTCP2)

...

21
1 ()

m

jj
fp MTCP

MM(MTCP2)

MTCPn

Fn 1 Fn 2 Fn m

fp1(MTCPn)

fp2(MTCPn)

fpm(MTCPn)

...

1
1 ()

MT

m

j nj
fp MTCP

MM(MTCPn)

MTCP1

F11 F12 F1m

fp1(MTCP1)

fp2(MTCP1)

fpm(MTCP1)

...

11
1 ()

m

jj
fp MTCP

MM(MTCP1)

...

F10 F20 Fn 0MT

MT

MT MT MT

MT

MT

MT

MT

(b)

Figure 12: Markov models: (a) for i-th retry and (b) for MultiTryCatchParts.

• ...

• Parts a1, a2, ..., anP−1 fail with failure type l < j, part anP fails with failure type j:(
nP−1
∏

k=1

(
1−

m
∑

l= j
fpl (ak)

))
fp j(anP).

5.1.5 RetryStructure

Considering a RetryStructure, let rc be the number of times to retry, FH be the set of handled failure
types, C be the error detection matrix represented by {crs} with r,s ∈ {0,1, ...,m}. The failure model of
the RetryPart (abbreviated as RP) includes failure types F1,F2, ...,Fm and their occurrence probabilities
fp1 (RP) , fp2 (RP) , ..., fpm (RP).

In order to transform the RetryStructure into an equivalent ia, the transformation builds a Markov
model reflecting all of its possible execution paths and their corresponding probabilities, and then derives
the equivalent ia from this Markov model.

The i-th retry is represented by a Markov model MM (RPi) as in Fig. 12a. MM (RPi) has a state RPi

as an initial state, states Fi j with j ∈ {0,1, ...,m} as states of failure types. Therefore, with the number of
times to retry rc, there are rc+1 Markov models MM (RPi), with i ∈ {0,1, ...,rc}. The problem is how
to connect these Markov models into one Markov model representing all the possible execution paths of
the whole structure (following the semantics as illustrated in Fig. 6). To solve the problem, we add m+2
states, namely one state START and states Fj with j ∈ {0,1, ...,m}, and the following transitions:

• A transition from START to RP0 with probability 1.

• For MM (RPrc) (i.e. the Markov model of the last retry), transitions from Frc j to Fj with probability
1 for all j ∈ {0,1, ...,m}.

• For the other Markov models, i.e. MM (RPi) with i ∈ {0,1, ...,rc−1}: transitions from Fi j to
RPi+1 with probability ∑

Fk∈FH

c jk; transitions from Fi j to Fj with probability 1− ∑
Fk∈FH

c jk for all

j ∈ {0,1, ...,m}.

As the resulting Markov model is an absorbing Markov chain, the success probability of the equivalent
ia, which is the probability of reaching F0 from START , and the failure probability of failure type j of
the equivalent ia, which is the probability of reaching Fj from START , can be calculated [26].

20

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

5.1.6 MultiTryCatchStructure

For a MultiTryCatchStructure, let nMT be the number of MultiTryCatchParts, FHi be the set of han-
dled failure types of MultiTryCatchPart i with i ∈ {1,2, ...,nMT}, Ci be the error detection matrix for
MultiTryCatchPart i which is represented by

{
ci

rs
}

with r,s ∈ {0,1, ...,m}. The failure model of the
MultiTryCatchPart i (abbreviated as MTCPi) includes failure types F1,F2, ...,Fm and their occurrence
probabilities fp1 (MTCPi) , fp2 (MTCPi) , ..., fpm (MTCPi).

Similar to the case of RetryStructures, to transform the MultiTryCatchStructure into an equivalent
ia, the transformation builds a Markov model reflecting all of its possible execution paths and their
corresponding probabilities, and then derives the equivalent ia from this Markov model.

MultiTryCatchParts are represented by Markov models as in Fig. 12b. MM (MTCPi) has a state
MTCPi as an initial state, states Fi j with j ∈ {0,1, ...,m} as states of failure types. To connect these
Markov models into one Markov model representing all the possible execution paths of the whole struc-
ture (following the semantics as illustrated in Fig. 7), we add m+2 states, namely one state START and
states Fj with j ∈ {0,1, ...,m}, and the following transitions:

• An transition START to MTCP1 with probability 1.

• For MM (MTCPnMT) (i.e. the Markov model of the last MultiTryCatchPart): transitions from Fn j

to Fj with probability 1 for all j ∈ {0,1, ...,m}.

• For other Markov models, i.e. MM (MTCPi) with i ∈ {1,2, ...,nMT −1}: transitions from Fi j to
MTCPx with probability ∑

Fk∈FHix

ci
jk where FHix = FHx −

⋃
i<y<x

FHy is the set of failure types that

can not be handled by any MTCPy for i < y < x but can be handled by MTCPx; transitions from

Fi j to Fj with probability 1− ∑
i<x≤nMT

(
∑

Fk∈FHix

ci
jk

)
for all j ∈ {0,1, ...,m}.

With the Markov model representing all the possible execution paths of the whole structure, the prob-
ability of reaching F0 from START is the success probability of the equivalent ia and the probability of
reaching Fj from START is the failure probability of failure type j of the equivalent ia.

5.1.7 MVPStructure

Considering a MVPStructure, let nMV be the number of MVPParts, maxT I be the value of the field max-
ToleratedIncompletion, minMS be the value of the field minMajoritySize, FudFT ∈ {F1,F2, ...,Fm} be the
value of the field undetectedFailureType, FdFT ∈ {F1,F2, ...,Fm} be the value of the field detectedFailure-
Type, Di be the error property vector for MVPPart i with i ∈ {1,2, ...,nMV} which is represented by

{
di

r
}

with r ∈ {1,2, ...,m}, E be the value of the field agreementOfErrorsVector which is represented by {py}
with minMS ≤ y ≤ nMV . The failure model of the MVPPart i (abbreviated as MVPPi) includes failure
types F1,F2, ...,Fm and their occurrence probabilities fp1 (MVPPi) , fp2 (MVPPi) , ..., fpm (MVPPi).

In order to transform the MVPStructure into an equivalent ia, the transformation calculates the prob-
abilities of the possibilities for the set of results of MVPParts’ executions (Step 1), and then the prob-
abilities for the voter to signal a detected failure or to produce a correct or erroneous output (Step 2)
(following the semantics as illustrated in Fig. 9). After that, the equivalent ia can be derived from the
probabilities for the voter by the transformation (Step 3).

Step 1, after the executions of the first n MVPParts, let (x,y,z)n be a possibility for the set of results
of these MVPParts’ executions where x is the number of correct outputs, y is the number of erroneous
outputs, and z is the number of incomplete executions such that x+y+z= n, let p((x,y,z)n) be the proba-
bility of the possibility (x,y,z)n. Therefore, there are (n+2)(n+1)

/
2 possibilities and the same number

of probabilities. At the beginning, there is one possibility (0,0,0)0 with probability p((0,0,0)0) = 1.

21

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

After the executions of the first n+1 MVPParts, the set of results of these MVPParts’ executions is
(x′,y′,z′)n+1 if (1) x′ > 0, the set of results of the executions of the first n MVPParts is (x′−1,y′,z′)n and
the (n+1)− th MVPPart produces a correct output, or (2) y′ > 0, the set of results of the executions of
the first n MVPParts is (x′,y′−1,z′)n and the (n+1)− th MVPPart produces an erroneous output, or (3)
z′ > 0, the set of results of the executions of the first n MVPParts is (x′,y′,z′−1)n and the (n+ 1)− th
MVPPart does not complete its execution. Therefore, the probability p

(
(x′,y′,z′)n+1

)
is calculated as

follows:

p
(
(x′,y′,z′)n+1

)
= p((x′−1,y′,z′)n)

(
1−

m
∑
j=1

fp j (MVPPn+1)

)∣∣∣∣∣x′ > 0

+ p((x′,y′−1,z′)n)

(
m
∑
j=1

fp j (MVPPn+1)
(

1−dn+1
j

))∣∣∣∣∣y′ > 0

+ p((x′,y′,z′−1)n)

(
m
∑
j=1

fp j (MVPPn+1)dn+1
j

)∣∣∣∣∣z′ > 0

(11)

By using Equation 11, the transformation recursively calculates the probabilities for all the possibil-
ities of the set of results of nMV MVPParts’ executions.

Step 2, with the probabilities p
(
(x′′,y′′,z′′)nMV

)
for all the possibilities of the set of results of nMV

MVPParts’ executions, the transformation calculates the probabilities for the voter as follows:

• The voter produces a correct output (F0) if in a possibility for the set of the results of MVPParts’
executions, the number of incomplete executions is at most maxT I and the number of correct
outputs is at least minMS:

p(F0) = ∑
(x′′,y′′,z′′)nMV

p
((

x′′,y′′,z′′
)

nMV

)∣∣∣z′′ ≤ maxIT,x′′ ≥ minMS (12)

• The voter produces an erroneous output of FudFT if in a possibility for the set of the results of
MVPParts’ executions, the number of incomplete executions is at most maxT I, the number of
correct outputs is less than minMS, the number of erroneous outputs is at least minMS, and there
is an agreement of the majority erroneous outputs:

p(FudFT) = ∑
(x′′,y′′,z′′)nMV

p
((

x′′,y′′,z′′
)

nMV

)
py′′

∣∣∣z′′ ≤ maxIT,x′′ < minMS,y≥ minMS (13)

• The voter signals a detected failure of FdFT with probability:

p(FdFT) = 1− p(F0)− p(FudFT) (14)

Step 3, the equivalent ia derived from the probabilities for the voter by the transformation has, with
0≤ j ≤ m:

f p j =

p(F0) if j = 0
p(FudFT) if j = udFT
p(FdFT) if j = dFT
0 otherwise

(15)

22

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

5.1.8 The reliability under the usage profile part

Finally, in our approach, we define the reliability as R = 1−POFOD, where POFOD is the probability
of failure on demand. Therefore, based on the described transformations, the reliability for the provided
service for users which the current usage profile part refers to is the success probability of the equivalent
ia of the service implementation of this service.

5.2 Aggregation of Results

The results of the reliability of provided services for users which the usage profile parts in the usage
profile refer to are aggregated as follows: Let R(UPPk) be the reliability of the provided service for users
which usage profile part UPPk refers to, ` be the number of usage profile parts in the usage profile, Pk

be the probability that users access with usage profile part UPP j such that
`

∑
k=1

Pk = 1, then the overall

system reliability can be determined as a weighted sum over all usage profile parts in the usage profile:

R =
`

∑
k=1

Pk R(UPPk) (16)

Example 8. Continuing with Example 7, the overall system reliability is determined as R= 0.4 R(UPP1)+
0.6 R(UPP2).

5.3 Proving the correctness of the transformation algorithm

The transformation algorithm described above is a matter of complicated bookkeeping, generating all
possible execution paths with their corresponding probabilities for a structure and computing the failure
model for the equivalent ia of the structure via summation of multiplied probabilities over the available
paths. Therefore, under all the stated assumptions, we argue for the correction of the algorithm as “by
construction”. This means that once the underlying ideas are understood, anyone would agree that the
algorithm can be made to work. A more formal proof could be given by induction on the size of the
instance (here possibly the number of inner parts of a structure and the number of called and nested
structures throughout the whole system model). However, we deem such a proof “uninformative”, i.e. it
does not help in understanding the algorithm.

5.4 Complexity

Regarding space-effectiveness, by transforming a structure into an equivalent ia, the transformation al-
gorithm no longer needs to store the structure with its inner parts in the memory, but can efficiently
transform the outer structure using the equivalent ia. Due to its recursive nature, the algorithm trans-
forms a structure as soon as its inner parts have been transformed into equivalent ia(s), therefore, can
efficiently reduce the possibility of state-space explosion.

At any point in time, the number of structures present in the memory is limited by the maximum
depth of the stack of called and nested structures throughout the whole system model. The amount of
memory required by the algorithm for a structure is almost equal to the amount of memory required to
store the equivalent ia(s) of its inner parts, apart from the fact that the algorithm requires an additional
amount of memory for (1) a Markov chain in case of a RetryStructure or a MultiTryCatchStructure,
or (2) the possibilities of the set of results of MVPParts’ executions and their probabilities in case of
a MVPStructure. The aggregation of results over all usage profile parts in the usage profile can be
calculated one after another, without the need to store each result separately.

23

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

Table 1: Running Times of the Transformation Algorithm for Different Structure Types.
Structure type Running time
Sequential structure O(mnS)

Branching structure O(mnB)

Looping structure O(mv) or O
(

m
t
∑

i=1
vi

)
Parallel structure O

(
m2n2

P
)

RetryStructure O
(
m3rc3

)
MultiTryCatchStructure O

(
m3n3

MT

)
MVPStructure O

(
nMV

(
m+n2

MV
))

Regarding time-effectiveness, it is assumed that the running time of the transformation algorithm
is a function of the structure type and the number of failure types. Based on Equations (1), (2),...,
(15), it is possible to obtain the running times of the algorithm for the sequential, branching, looping,
parallel, and MVPStructure structure types. The running times of the algorithm for a RetryStructure or
a MultiTryCatchStructure can be obtained from the process of creating and solving Markov chains (see
Section 5.1.5 or 5.1.6, respectively).

Table 1 shows the running times of the algorithm for structure types given that their inner parts
have been transformed into equivalent ia(s). The running time of the algorithm for any structure type is
polynomial time in the number of failure types and in the number(s) representing the characteristics of
the structure type, i.e. nS, nB, v (or {v1,v2, ...,vt}), nP, rc, nMT , or nMV . The aggregation of results over l
usage profile parts in the usage profile has a running time of O(l).

5.5 Implementation

We have implemented the transformation algorithm in our reliability prediction tool. The tool receives a
system reliability model as an input, validates this input against a set of predefined semantic constraints
in our reliability modeling schema (e.g. the total probability of all usage profile parts must be 1), and
produces the system reliability prediction as an output. This output includes not only the predicted
system reliability but also predicted failure probabilities of user-defined failure types.

Our reliability modeling schema and reliability prediction tool are open source and available at our
project website [27].

6 Case Study Evaluation

6.1 Case Study I: Reporting Service of a Document Exchange Server

6.1.1 Description of the Case Study

The program chosen for the case study is the reporting service of a document exchange server [12]. The
server is an industrial system which was designed in a service-oriented way. Its reporting service allows
generating reports about pending documents or released documents. This service was written in Java and
consists of about 2,500 lines of code.

By analyzing the code, it was possible to create the system reliability model of the reporting ser-
vice as in Fig. 13 using our reliability modeling schema. At the architecture level, the reporting service
consists of four components: ReportingMediator, ReportingEngine, SourceManager, and Destination-
Manager. Component SourceManager provides two services to get information about pending docu-

24

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

<<SystemArchitecture>>

<<Component

Instance>>

ReportingEngine

<<Component

Instance>>

DestinationManager

<<Component

Instance>>

SourceManager

<<Component

Instance>>

ReportingMediator

<<ServiceImplementation>>

getReleasedDocumentInfoFromDB

START END

<<Internal

Activity>>

failureType: InfoFromDBFailure

probability: ...

<<OccuringFailureType>>

<<ServiceImplementation>>

getReleasedDocumentInfoFromLogs

START END

<<Internal

Activity>>

failureType: InfoFromLogFailure

probability: ...

<<OccuringFailureType>>

<<ServiceImplementation>>

getAttachmentDocumentInfo

START END

<<Internal

Activity>>

failureType: AttachmentInfoFailure

probability: ...

<<OccuringFailureType>>

<<ServiceImplementation>>

getFileDocumentInfo

START END

<<Internal

Activity>>

failureType: FileInfoFailure

probability: ...

<<OccuringFailureType>>

<<ServiceImplementation>>

generateReport

[aboutPendingDocuments=true]

START END

[aboutPendingDocuments=false]

<<Internal

Activity>>

2

failureType:

 GeneratingReportFailure

probability: ...

<<OccuringFailureType>>

<<MultiTryCatchPart>>
1

errorDetectionMatrices:

<<MultiTryCatchStructure>>

handledFailures:

 InfoFromLogFailure

<<MultiTryCatchPart>>
2

calledService:

 getReleasedDocumentInfoFromDB

<<CallingActivity>>
calledService:

 getReleasedDocumentInfoFromLogs

<<CallingActivity>>

calledService:

 getAttachmentDocumentInfo

<<CallingActivity>>

calledService:

 getFileDocumentInfo

<<CallingActivity>>
<<Internal

Activity>>

1

failureType:

 GeneratingReportFailure

probability: ...

<<OccuringFailureType>>

<<ServiceImplementation>>

processReportRequest

[requestType=generate]

START END

[requestType=view]

calledService:

 generateReport

<<CallingActivity>>

calledService:

 viewRecentReports

<<CallingActivity>>

<<Internal

Activity>>

failureType:

 ProcessingRequestFailure

probability: ...

<<OccuringFailureType>>

<<UsageProfile>>

p(requestType=view)

p(aboutPendingDocuments=false)

average(numberOfRecentReports)

<<UsageProfilePart>>

User

 probability =1.0

<<ServiceImplementation>>

viewRecentReports

<<RetryPart>>

retryCount: 1

handledFailures:

 ViewingReportFailure

errorDetectionMatrix:

<<RetryStructure>>

START END

numberOfRecentReports

<<Internal

Activity>>

failureType:

 ViewingReportFailure

probability: ...

<<OccuringFailureType>>

Figure 13: The system reliability model of the reporting service.

25

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

Table 2: Reporting Service: Different Failure Types and Their Symbols.
Failure Type Symbol
ProcessingRequestFailure F1

ViewingReportFailure F2

GeneratingReportFailure F3

AttachmentInfoFailure F4

FileInfoFailure F5

InfoFromLogFailure F6

InfoFromDBFailure F7

Table 3: Reporting Service: No. of Reinserted faults into Internal Activities.
Symbol Provided service/Internal activity (ia) No. of reinserted faults

a1 processReportRequest/ia 0
a2 viewRecentReports/ia 2
a3 generateReport/ia 1 0
a4 getAttachmentDocumentInfo/ia 1
a5 getFileDocumentInfo/ia 1
a6 getReleasedDocumentInfoFromLogs/ia 2
a7 getReleasedDocumentInfoFromDB/ia 1
a8 generateReport/ia 2 1

ments: getAttachmentDocumentInfo to get information about pending documents attached in emails and
getFileDocumentInfo to get information about pending documents stored in file systems. Component
DestinationManager provides two services to get information about released documents: getReleased-
DocumentInfoFromLogs to get the information from the logs, getReleasedDocumentInfoFromDB to get
the information from the database (DB). Component ReportingEngine provides two services: gener-
ateReport to generate a new report (either about pending documents (aboutPendingDocuments=true)
or about released documents (aboutPendingDocuments=false)) and viewRecentReports to view recently
generated reports (with the number of reports specified by numberOfRecentReports). Component Re-
portingMediator provides the service processReportRequest for handling incoming report requests from
clients. An incoming report request can be about generating a new report (requestType=generate) or
viewing recently generated reports (requestType=view).

There are different types of failures which may occur in the component instances during the operation
of the reporting service. For example, a ProcessingRequestFailure may occur during processing client
requests in service processReportRequest; bugs in the code of service generateReport may lead to a
GeneratingReportFailure. Table 2 shows different failure types and their symbols.

In the system reliability model, there are two FTSs. A RetryStructure in the implementation of service
viewRecentReports. This structure has the ability to retry in case there is a ViewingReportFailure (with
retryCount=1). And a MultiTryCatchStructure in the implementation of service generateReport. This
structure has the ability to handle a InfoFromLogFailure of service getReleasedDocumentInfoFromLogs
by redirecting calls to service getReleasedDocumentInfoFromDB.

The current version of the reporting service has been used without having new failures. We used this
gold version of the service as an oracle in our case study. We obtained a faulty version of the service by
reinserting faults discovered during operational usage and integration testing (Table 3 shows the number
of reinserted faults).

26

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

Table 4: Reporting Service: Failure Probabilities of Internal Activities
Symbol fp j (ai)

a1 fp j (a1) = 0 ∀ j
a2 fp2 (a2) = 0.26087; fp j (a2) = 0 ∀ j 6= 2
a3 fp j (a3) = 0 ∀ j
a4 fp4 (a4) = 0.111111; fp j (a4) = 0 ∀ j 6= 4
a5 fp5 (a5) = 0.0277778; fp j (a5) = 0 ∀ j 6= 5
a6 fp6 (a6) = 0.339286; fp j (a6) = 0 ∀ j 6= 6
a7 fp7 (a7) = 0.0909091; fp j (a7) = 0 ∀ j 6= 7
a8 fp3 (a8) = 0.0549451; fp j (a8) = 0 ∀ j 6= 3

Table 5: Reporting Service: Error Detection Matrices.
Provided service/FTS Error detection matrix

viewRecentReports/RetryStructure
F2

F0
F2

(
0.0

0.777778

)
generateReport/MultiTryCatchStructure

F6
F0
F6

(
0.0

0.578947

)

6.1.2 Parameter Estimation and Validity of Predictions

To validate the accuracy of our prediction approach, we estimated the input parameters of the model.
With the estimated input parameters, the system reliability model of the reporting service is complete
and can be transformed to compute the predicted reliability. The predicted reliability was then compared
with the actual reliability of the reporting service. Notice that the goal of our validation is not to justify
the input parameters of the model or to imply any accuracy in their estimates but to show that if the system
reliability model is provided accurately, our method gives a reasonably accurate reliability prediction.

The faulty version of the reporting service and the oracle were executed on the same test cases for
the reporting service. By comparing their outputs and investigating the executions of the test cases, we
were able to estimate the input parameters of the model. Faults have not been removed and the number
of failures includes recurrences because of the same fault.

We estimate the failure probability of failure type Fj (with j ∈ {1,2, ...,7}) of internal activity ai

(with i ∈ {1,2, . . . ,8}) as: fp j (ai) = f ji/ni where f ji is the number of failures of failure type Fj of the
internal activity ai and ni is the number of runs of the internal activity ai. Failure probabilities of different
failure types of internal activities are given in Table 4. Because no fault was injected into the two internal
activities a1 and a3, their failure probabilities are assumed to be 0.

The error detection matrix of a FTS was estimated as (crs) = (da frs/ fr);r,s = 0,1, ...7 where fr is
the number of failures of failure type Fr of the inner part of the FTS (i.e. RetryPart of the RetryStructure
or MultiTryCatchPart 1 of the MultiTryCatchStructure) and da frs is the number of failures of failure type
Fr of the inner part detected as failure type Fs. The error detection matrices for the two FTSs are given
in Table 5.

We considered the usage information obtained from the executions of test cases as being represented
by a single usage profile part. Therefore, the usage profile includes one usage profile part with probability
1.0. Within the usage profile part, branching probabilities of a branching structure was estimated as
p(bci) = ni/n where ni is the number of times control was transferred along the branch with branching

27

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

Table 6: Reporting Service: The Usage Profile Part.
Element Value
p(requestType=view) 0.178571
p(aboutPendingDocuments=false) 0.608696
average(numberOfRecentReports) 2

Table 7: Reporting Service: Predicted vs. Actual Reliability for the Faulty Version
Component Instance/ Predicted Actual Difference Error

Provided service reliability reliability (%)
ReportingMediator/processReportRequest 0.800261 0.794643 0.005618 0.707

condition bci and n is the total number of times control reached the branching structure; the average
value of the number of loops of a looping structure was estimated as average(lc) = nir/n where nir is
the number of runs of the inner part of the looping structure, n is the number of times control reached the
looping structure. The usage profile part including the branching probabilities of the branching structures
and the average value of the number of loops of the looping structure is given in Table 6.

We estimate the actual reliability of the reporting service as R = 1−F/N where F is the number of
failures of the reporting service in N test cases for the reporting service. Table 73 shows the comparison
between the predicted reliability and the actual reliability for the faulty version. From this comparison,
we deem that for the system reliability model described in this paper, our analytical method is sufficiently
accurate. The deviation comes from the modeling abstractions of our approach: (1) the Markov assump-
tion, (2) the assumption that components fail independently, and (3) the assumption that a component
failure, without FTMs to handle, leads immediately to a system failure (see Section 7 for more details).

6.1.3 Sensitivity Analyses and the Impact of FTSs

In this subsection, we first present the results of sensitivity analyses of the reliability of the reporting
service to changes of probabilities in the usage profile, to changes of failure probabilities of internal
activities, and to changes of error detection probabilities of FTSs. Then, we present the analysis of how
the predicted reliability of the reporting service varies for fault tolerance variants.

First, we conducted a sensitivity analysis modifying the usage probabilities (Fig. 14a). The reliability
of the reporting service is more sensitive to the portion of report types to generate (aboutPendingDocu-
ments=true or false) because its corresponding curve has the steepest slope.

Second, we conducted a sensitivity analysis modifying failure probabilities of the internal activi-
ties (Fig. 14b). The reliability of the reporting service is most sensitive to the failure probability of
ProcessingRequestFailure (F1) of the internal activity (a1) of service processReportRequest provided by
component instance ReportingMediator because its corresponding curve has the steepest slope. The re-
liability of the reporting service is most robust to the failure probabilities of the internal activities (a2,
a6, a7) of the services related to the two FTSs, namely service viewRecentReports containing the RetryS-
tructure; service getReleasedDocumentInfoFromLogs and service getReleasedDocumentInfoFromDB in
the MultiTryCatchStructure. Based on this information, the software architect can decide to put more
testing effort into component ReportingMediator, to exchange the component with another component
from a third party vendor, or run the component redundantly.

3Notice that different from our former work [12] which set the input parameters for illustrative purpose, in this paper, we
estimated the input parameters by using the method above. Therefore, these estimates and the predicted reliability are for the
faulty version. This means that our prediction result does not contradict the prediction result of our former work.

28

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

0.79

0.795

0.8

0.805

0.81

0.815

0 0.2 0.4 0.6 0.8 1

Se
rv

ic
e

re
lia

b
il

it
y

Usage probability

Service reliability vs. Usage probabilities

p(requestType=view)
p(aboutPendingDocuments=false)

(a)

0.63

0.68

0.73

0.78

0.83

0.88

0 0.05 0.1 0.15 0.2

Se
rv

ic
e

 r
el

ia
b

ili
ty

Failure probability

Service reliability vs. Failure probabilities

a₁ a₂
a₃ a₄
a₅ a₆
a₇ a₈

(b)

0.71

0.73

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0 0.2 0.4 0.6 0.8 1

Se
rv

ic
e

 r
el

ia
b

ili
ty

Error detection probability

Service reliability vs. Error detection probabilities

(1-c₀₂) of RetryStructure
c₂₂ of RetryStructure
(1-c₀₆) of MultiTryCatchStructure
c₆₆ of MultiTryCatchStructure

(c)

0.6

0.65

0.7

0.75

0.8

0.85

No FTSs Only RS Only MTCS RS and MTCS

Se
rv

ic
e

re
lia

b
ili

ty

System configurations

Service reliability vs. System configurations

(d)

Figure 14: Reporting Service: Sensitivity analyses.

Third, we conducted a sensitivity analysis modifying error detection probabilities of the two FTSs
(Fig. 14c). The reliability of the reporting service is most sensitivity to the element c66 of the error de-
tection matrix of the MultiTryCatchStructure (i.e. the probability to detect correctly InfoFromLogFailure
failures (F6) from service getReleasedDocumentInfoFromLogs) because its corresponding curve has the
steepest slope. This information may be valuable to the software architect when considering putting
more development effort to improve the correct error detections of the FTSs in the system.

Fourth, we conducted an analysis of how the predicted reliability of the reporting service varies for
fault tolerance variants. These variants include: without the FTSs (No FTSs), using only the RetryStruc-
ture (Only RS), using only the MultiTryCatchStructure (Only MTCS), and using both the FTSs (RS and
MTCS) (Fig. 14d). Variant RS and MTCS is predicted as being the most reliable. Comparing between
variants Only RS and Only MTCS shows that using the MultiTryCatchStructure brings higher reliability
impact than using the RetryStructure in this case. From the result of this type of analysis, the software
architect can assess the impact on the system reliability of fault tolerance variants and hence can decide
whether the additional costs for introducing FTSs, increasing the number of retry times in a RetryStruc-
ture, adding replicated instances in a MultiTryCatchStructure... are justified.

With this type of analysis, it is also possible to see the ability to reuse modeling parts of our approach
for evaluating the reliability impacts of fault tolerance variants or system configurations. For variant Only
MTCS, only a single modification to the RetryStructure is necessary (namely, setting the retryCount
of the structure to 0 to disable the structure). For variant Only RS, also only a single modification
to the MultiTryCatchStructure is necessary (namely, setting the value 0 to the elements c66 the error
detection matrix for the MultiTryCatchPart 1 to disable the structure). For variant No FTSs, the two
above modifications are included.

29

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

<<SystemArchitecture>>

<<Component

Instance>>

UI

<<Component

Instance>>

DataCaptureControl

<<Component

Instance>>

OCREngineManager

doOCRWithEngine3

doOCRWithEngine2

doOCRWithEngine1

<<ServiceImplementation>>

captureData

START

END

- maxToleratedIncompletion: 1 - minMajoritySize: 2

- undetectedFailureType: ContentOCRFailure - detectedFailureType: OCRFailure

- agreementOfErrorsVector: (…, …)

- errorPropertyVectors:

<<MVPStructure>>

<<MVPPart>> 1 <<MVPPart>> 2 <<MVPPart>> 3

<<Internal

Activity>>

2

failureType:

 CapturingDataFailure

probability: ...

<<OccuringFailureType>>

<<Internal

Activity>>

1 calledService:

 storeData

<<CallingActivity>>

calledService:

 doOCRWithEngine1

<<CallingActivity>>

calledService:

 doOCRWithEngine2

<<CallingActivity>>

calledService:

 doOCRWithEngine3

<<CallingActivity>>

failureType:

 CapturingDataFailure

probability: ...

<<OccuringFailureType>>

<<ServiceImplementation>>

doOCR

START END

<<Internal

Activity>>

failureType: ContentOCRFailure

probability: ...

<<OccuringFailureType>>

failureType: TimingOCRFailure

probability: ...

<<OccuringFailureType>>

<<Component

Instance>>

OCREngine1

<<Component

Instance>>

OCREngine2

<<Component

Instance>>

OCREngine3

<<Component

Instance>>

DataAccess

FaultTolerance

<<ServiceImplementation>>

storeData

START END

<<Internal

Activity>>

failureType: StoringDataFailure

probability: ...

<<OccuringFailureType>>

<<ServiceImplementation>>

compressData

START END

<<Internal

Activity>>

failureType: CompressingDataFailure

probability: ...

<<OccuringFailureType>>

calledService:

 compressData

<<CallingActivity>>[isLargeDocument=true]

[isLargeDocument=false]

<<ServiceImplementation>>

doOCR

START END

<<Internal

Activity>>

failureType: ContentOCRFailure

probability: ...

<<OccuringFailureType>>

failureType: TimingOCRFailure

probability: ...

<<OccuringFailureType>>

<<ServiceImplementation>>

doOCR

START END

<<Internal

Activity>>

failureType: ContentOCRFailure

probability: ...

<<OccuringFailureType>>

failureType: TimingOCRFailure

probability: ...

<<OccuringFailureType>>

<<ServiceImplementation>>

doOCR

START END

<<Internal

Activity>>

failureType: ContentOCRFailure

probability: ...

<<OccuringFailureType>>

failureType: TimingOCRFailure

probability: ...

<<OccuringFailureType>>

<<ServiceImplementation>>

handleClientRequest

START

calledService:

 captureData

<<CallingActivity>>

END
failureType:

 HandlingRequestFailure

probability: ...

<<OccuringFailureType>>

numberOfDocuments

<<Internal

Activity>>

<<Component

Instance>>

DataAccess

<<UsageProfile>>

average(numberOfDocuments)

p(isLargeDocument)

<<UsageProfilePart>>

Client

probability=1.0

<<ServiceImplementation>>

storeData

<<RetryPart>>

retryCount: 1

handledFailures:

 StoringDataFailure

errorDetectionMatrix:

<<RetryStructure>>

calledService:

 storeData

<<CallingActivity>>

START END

<<ComponentInstance>>

DataCompress

Figure 15: The system reliability model of the DataCapture system.

6.2 Case Study II: DataCapture System

As the second case study, we analyzed the reliability of a DataCapture system. The system allows clients
to capture data from printed texts such as documents, invoices, receipts, etc. using OCR (Optical Charac-
ter Recognition) technology. Different configurations are possible for the system by varying the number
of activated OCR engines. Fig. 15 shows the system reliability model for the system configuration of
three activated OCR engines.

The system functionality is provided through four separated primitive components (UI, DataCap-

30

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

Table 8: DataCapture System: Different Failure Types and Their Symbols.
Failure Type Symbol
HandlingRequestFailure F1

CapturingDataFailure F2

ContentOCRFailure F3

TimingOCRFailure F4

OCRFailure F5

CompressingDataFailure F6

StoringDataFalure F7

Table 9: DataCapture System: Error Property Vectors.
Provided service/FTS Error property vector

captureData/MVPStructure
IncExe

F3
F4

(
0
1

)

tureControl, DataCompress, and DataAccess) and one composite component (OCREngineManager)
containing three nested primitive components (OCREngine1, OCREngine2, and OCREngine3). Dur-
ing the system operation, different types of failures may occur in the involved component instances. For
example, a HandlingRequestFailure may occur during handling client requests in component UI. A Con-
tentOCRFailure or TimingOCRFailure may occur in component OCREngine1 due to bugs in the code
implementing the component. Bugs in the compressing algorithm of component DataCompress may
cause a CompressingDataFailure. Different failure types and their symbols are given in Table 8.

There is a FTS in the system, namely the MVPStructure in the implementation of service capture-
Data of component DataCaptureControl. This structure tolerates at most one incomplete execution from
three doOCR services and requires at least two results from these services to agree to produce an output.
Besides a correct output, the structure can produce an erroneous output of ContentOCRFailure or signal
a detected failure of OCRFailure. Because failures of ContentOCRFailure are content failures and fail-
ures of TimingOCRFailure are late timing failures, the error property vectors for the three MVPParts are
the same and given in Table 9. Another FTS can be optionally introduced into the system, in terms of
additional component which is shown in cross-hatched grey in Fig. 15. Component DataAccessFaultTol-
erance can be put in the middle of component DataCaptureControl and component DataAccess. It has
the ability to retry in case there is a failure of StoringDataFailure. The number of times to retry of this
structure is 1 (retryCount=1).

To observe the accuracy of our prediction approach, we conduct a reliability measurement on a
prototype implementation of the system, then compare the measurement to a reliability prediction to
observe if there is a significant deviation caused by the modeling abstractions. The implementation is
written in Java, using an Apache Derby database for storing the data and Java Native Access (JNA)
wrappers for accessing native OCR engines. For the measurement, the system is executed in a testbed
that triggers usage scenario runs and records the execution traces of all scenario runs.

To be able to conduct the measurements, several simplifications had to be included compared with
a real-world field experiment. First, the total number of scenario runs is limited to 4000. Each scenario
run consists of an average of 10 documents per call and a probability of 40% for the documents to be
large, i.e. requiring compression before storing. Second, the system reliability is not measured due to
real faults but rather to faults which have been injected in an artificial manner, with externally controlled
occurrence probabilities.

31

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

Table 10: DataCapture System: Failure Probabilities of Internal Activities.
Provided service/Internal activity (ia) fp j
handleClientRequest/ia fp1 = 0.00175; fp j = 0 ∀ j 6= 1
captureData/ia 1 fp2 = 0.00012747; fp j = 0 ∀ j 6= 2
captureData/ia 2 fp2 = 0.00012763; fp j = 0 ∀ j 6= 2
OCREngine1’s doOCR/ia fp3 = 0.01053007; fp4 = 0.00724102; fp j = 0 ∀ j 6= 3, j 6= 4
OCREngine2’s doOCR/ia fp3 = 0.00813340; fp4 = 0.00119834; fp j = 0 ∀ j 6= 3, j 6= 4
OCREngine3’s doOCR/ia fp3 = 0.00963769; fp4 = 0.02771474; fp j = 0 ∀ j 6= 3, j 6= 4
compressData/ia fp6 = 0.00151295; fp j = 0 ∀ j 6= 6
storeData/ia fp7 = 0.00196689; fp j = 0 ∀ j 6= 7

Table 11: DataCapture System: Predicted vs. Measured Reliability
Component Instance/ Predicted Measured Difference Error

Provided service reliability reliability (%)
UI/handleClientRequest 0.959148 0.9595 0.000352 0.037

By using a script, it is possible for us to calculate the failure probabilities of failure types for internal
activities (as in Table 10), the agreementOfErrorsVector of the MVPStructure: (p2 = 0.2, p3 = 0), and
the measured system reliability from the execution traces. For the predicted reliability of the system, a
system reliability model is created with the support from our reliability modeling schema and then used
as the input for our reliability prediction tool. Table 11 compares the predicted system reliability and
the measured system reliability. This comparison gives evidence that our approach give a reasonably
accurate reliability prediction in this case.

Fig. 16a provides more detail and shows the probability of a system failure due to a certain failure
type. Because the MVPStructure prevents TimingOCRFailures (F4) of services doOCR of components
OCREngines from manifesting as TimingOCRFailures after the MVPStructure’s execution, the probabil-
ity that the system fails with a TimingOCRFailure is 0. F7, F5, and F6 are the most likely failure types of
a system failure. Thus, the software architect can recognize the need to introduce FTSs for these failure
types. For example, the software architect puts an instance of component DataAccessFaultTolerance in
the middle of the instance of component DataCaptureControl and the instance of component DataAc-
cess as in Fig. 15. With this modification, the predicted system reliability increases by around 2%, from

0

0.005

0.01

0.015

0.02

0.025

F₁ F₂ F₃ F₄ F₅ F₆ F₇

Sy
st

em
 f

ai
lu

re
 p

ro
b

ab
ili

ty

Failure type

System failure probability per failure type

(a)

0

0.005

0.01

0.015

0.02

0.025

0.03

2 4 6 8 10 12 14

Sy
st

e
m

 f
ai

lu
re

 p
ro

b
ab

il
it

y

Number of documents

System failure probability vs. Number of documents

F₁

F₂

F₃

F₅

F₆

F₇

(b)

Figure 16: DataCapture System: Sensitivity analyses.

32

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

0.959148 to 0.978182 under the assumption of perfect error detection for failures of StoringDataFailure
(F7). Via this example, it is possible to see that a FTS can be introduced into the system without modify-
ing the existing service implementations and with just a few necessary changes while nearly all modeling
parts can be reused.

Fig. 16b shows the sensitivity of system failure probability per failure type to the number of docu-
ments (i.e. a change to the usage profile). The curve corresponding to TimingOCRFailure (F4) has not
been plotted because the values for it are always 0. As expected, the system failure probability rises with
the number of documents for all failure types excepting HandlingRequestFailure (F1). This is because
excepting HandlingRequestFailure, the other failure types are related to activities within the looping
structure with loop count numberOfDocuments.

7 Assumptions and Limitations

Similar to some related approaches (e.g. [3,6,16,18], we assume that components fail independently and
a component failure, without FTMs to handle, leads to a system failure. This means that the impact of the
error propagation among components is neglected. We refer to our former work [12] for an analysis of
the influence of the error propagation in reliability prediction of component-based software systems with
different execution models, including sequential, parallel, and primary-backup fault tolerance executions.

Our approach assumes that control transitions between components have the Markov property. This
means that operational and failure behaviors of a component are independent of its past execution his-
tory. This Markovian assumption limits the applicability of our approach in different application do-
mains. However, many real-life applications have been proved to satisfy this Markovian assumption at
the component-level [3]. Our approach can be adapted to any higher order Markov models to increase
the applicability scope. We confirm this because the problem of Markovian assumption in reliability
modeling and prediction was treated deeply by Goseva et al. [14]. In their paper, the authors point out
that a higher order Markov chain (i.e. the next execution step depends not only on the last step but also
on the previous n steps) can be mapped into a first order Markov chain.

Another assumption lies in the estimation of failure probabilities for internal activities, error detection
matrices for FTSs, and usage profile. No methodology is always valid to deal with the problem. Most of
the approaches are based on setting up tests to achieve a statistically significant amount of measurement
which the estimation can be based on [28]. Besides, component reuse may allow exploiting the historical
data which the estimation can be based on. In early design phases, the estimation can be based on
the available specification and design documents of the system [17]. In the late phases of the software
development, when testing or field data become available, the estimation can be based on the execution
traces obtained using profilers and test coverage tools [14].

Currently, the parameter values in our approach are fixed constants. They cannot be adapted to take
into consideration factors such as component state or system state at run-time. Such considerations are
left as a topic for future work.

8 Conclusion

In this paper, we presented our extended model for an explicit and flexible definition of reliability-
relevant behavioral aspects (i.e. error detection and error handling) of software FTMs, and an efficient
evaluation of their reliability impact in the dependence of the whole system architecture and usage profile.
To apply our approach, component developers create component reliability specifications and software
architects create a system reliability model using our reliability modeling schema. Then these artifacts
are transformed automatically to Markov models for reliability prediction and sensitivity analyses by our

33

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

reliability prediction tool. Via two case studies, we demonstrated our approach’s applicability, especially,
the ability to support design decisions and reuse modeling parts for evaluating architecture variants under
the usage profile. This kind of helps can lead to more reliable software systems in a cost-effective way
because potentially high costs for late life-cycle changes for reliability improvements can be avoided.

We plan to completely integrate with our former work [12], to extend with the more complex er-
ror propagation for concurrent executions, to include more software FTSs, and to validate further our
approach. These extensions will further increase the applicability of our approach.

Acknowledgments

This work was supported by 322 FIVE-JAIST (Vietnam-Japan) program and JSPS KAKENHI Grant
Number 23500060.

References

[1] T.-T. Pham and X. Défago, “Reliability prediction for component-based software systems with architectural-
level fault tolerance mechanisms,” in Proc. of the 8th International Conference on Availability, Reliability
and Security (ARES’13), Regensburg, Germany. IEEE, September 2013, pp. 11–20.

[2] L. L. Pullum, Software Fault Tolerance Techniques and Implementation. Artech House Publishers, 2001.
[3] R. C. Cheung, “A user-oriented software reliability model,” IEEE Transactions on Software Engineering,

vol. 6, no. 2, pp. 118–125, March 1980.
[4] V. Cortellessa, H. Singh, and B. Cukic, “Early reliability assessment of UML based software models,” in

Proc. of the 3rd International Workshop on Software and Performance (WOSP’02), Rome, Italy. ACM, July
2002, pp. 302–309.

[5] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez, D. E. M. Nassar, H. Ammar, and A. Mili,
“Architectural-level risk analysis using UML,” IEEE Transaction on Software Engineering, vol. 29, no. 10,
pp. 946–960, October 2003.

[6] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo, “Reliability prediction for component-based software
architectures,” Journal of Systems and Software, vol. 66, no. 3, pp. 241–252, June 2003.

[7] V. S. Sharma and K. S. Trivedi, “Reliability and performance of component based software systems with
restarts, retries, reboots and repairs,” in Proc. of the 17th International Symposium on Software Reliability
Engineering (ISSRE’06), Raleigh, NC, USA. IEEE, November 2006, pp. 299–310.

[8] W.-L. Wang, D. Pan, and M.-H. Chen, “Architecture-based software reliability modeling,” Journal of Systems
and Software, vol. 79, no. 1, pp. 132–146, January 2006.

[9] J. B. Dugan and M. R. Lyu, “Dependability modeling for fault-tolerant software and systems,” in Software
Fault Tolerance, M. R. Lyu, Ed. John Wiley and Sons, 1995, pp. 109–138.

[10] S. S. Gokhale, M. R. Lyu, and K. S. Trivedi, “Reliability simulation of fault-tolerant software and systems,”
in Proc. of the Pacific Rim International Symposium on Fault-Tolerant Systems (PRFTS’97), Taipei, Taiwan.
IEEE, December 1997, pp. 167–173.

[11] K. Kanoun, M. Kaâniche, C. Béounes, J.-C. Laprie, and J. Arlat, “Reliability growth of fault-tolerant soft-
ware,” IEEE Transactions on Reliability, vol. 42, no. 2, pp. 205–219, June 1993.

[12] T.-T. Pham and X. Défago, “Reliability prediction for component-based systems: Incorporating error prop-
agation analysis and different execution models,” in Proc. of the 12th International Conference on Quality
Software (QSIC’12), Xi’an, Shaanxi, China. IEEE, August 2012, pp. 106–115.

[13] S. S. Gokhale, “Architecture-based software reliability analysis: Overview and limitations,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 4, no. 1, pp. 32–40, January–March 2007.

[14] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture-based approaches to software reliability prediction,”
Computers and Mathematics with Applications, vol. 46, no. 7, pp. 1023–1036, October 2003.

34

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

[15] A. Immonen and E. Niemelä, “Survey of reliability and availability prediction methods from the viewpoint
of software architecture,” Software and Systems Modeling, vol. 7, no. 1, pp. 49–65, February 2008.

[16] V. S. Sharma and K. S. Trivedi, “Quantifying software performance, reliability and security: An architecture-
based approach,” Journal of Systems and Software, vol. 80, no. 4, pp. 493–509, April 2007.

[17] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early prediction of software component relia-
bility,” in Proc. of the 30th International Conference on Software Engineering (ICSE’08), Leipzig, Germany.
ACM, May 2008, pp. 111–120.

[18] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of service-oriented systems,” in Proc. of the
32nd ACM/IEEE International Conference on Software Engineering (ICSE’10) Cape Town, South Africa.
ACM, May 2010, pp. 35–44.

[19] P. Popic, D. Desovski, W. Abdelmoez, and B. Cukic, “Error propagation in the reliability analysis of com-
ponent based systems,” in Proc. of the 16th International Symposium on Software Reliability Engineering
(ISSRE’05), Chicago, IL, USA. IEEE, November 2005, pp. 53–62.

[20] V. Cortellessa and V. Grassi, “A modeling approach to analyze the impact of error propagation on reliability
of component-based systems,” in Proc. of the 10th International Conference on Component-based Software
Engineering (CBSE’07), Medford, MA, USA. Springer-Verlag, July 2007, pp. 140–156.

[21] A. Mohamed and M. Zulkernine, “On failure propagation in component-based software systems,” in Proc.
of the 8h International Conference on Quality Software, (QSIC’08), Oxford, UK. IEEE, August 2008, pp.
402–411.

[22] A. Filieri, C. Ghezzi, V. Grassi, and R. Mirandola, “Reliability analysis of component-based systems with
multiple failure modes,” in Proc. of the 13th International Conference on Component-Based Software Engi-
neering (CBSE’10), Prague, Czech Republic. Springer-Verlag, June 2010, pp. 1–20.

[23] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner, “Reliability prediction for fault-tolerant software ar-
chitectures,” in Proc. of the 7th International Conference on the Quality of Software Architectures (QoSA’11),
Boulder, CO, USA. ACM, June 2011, pp. 75–84.

[24] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of dependable and
secure computing,” IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33,
January 2004.

[25] S. Bernardi, J. Merseguer, and D. C. Petriu, “A dependability profile within MARTE,” Software and Systems
Modeling, vol. 10, no. 3, pp. 313–336, July 2011.

[26] K. S. Trivedi, Probability and Statistics with Reliability, Queueing, and Computer Science Applications (Sec-
ond Edition). John Wiley and Sons, 2001.

[27] “Reliability modeling and prediction,” http://reliabilitymodeling.codeplex.com, November 2013.
[28] M. R. Lyu, Handbook of Software Reliability Engineering. McGraw-Hill, 1996.

35

http://reliabilitymodeling.codeplex.com

Reliability Prediction for Component-based Software Systems Pham, Bonnet, and Défago

Author Biography
Thanh-Trung Pham is a PhD student in School of Information Science, Japan Ad-
vanced Institute of Science and Technology (JAIST). He received his M.Sc. in In-
formation Technology in 2007 from Hanoi University of Science and Technology.
His research interests include model-driven software development, service-oriented
architectures, component-based software engineering, software reliability modeling
and prediction.

François Bonnet is an assistant professor in the School of Information Science at
the Japan Advanced Institute of Science and Technology (JAIST) since 2013. He
obtained his M.S. from the ENS Cachan at Rennes, France in 2006 and his Ph.D. from
the University of Rennes 1 in 2010. From 2011 to 2012, he was a JSPS postdoctoral
fellow at JAIST. His research focuses mainly on theoretical distributed computing and
robot computing.

Xavier Défago is an associate professor at the Japan Advanced Institute of Science
and Technology (JAIST) since 2003. He obtained his Ph.D. in Computer Science
in 2000 from the Swiss Federal Institute of Technology in Lausanne (EPFL, Switzer-
land). In addition, from 1995 to 1996, he also worked at the NEC C&C Research Labs
in Kawasaki (Japan), and has been a researcher for the PRESTO program “Informa-
tion and System” of the Japan Science and Technology Agency (JST) from 2002 to
2006. He was an invited researcher for CNRS in France, both at LIP6, UPMC, Paris,

and at I3S, UNS, Inria Sophia Antipolis in 2013. He is a regular member of the IFIP working group 10.4
on dependable computing and fault-tolerance. He is also a member of ACM, IEEE, IPSJ, EATCS. His re-
search interests include distributed algorithms, fault-tolerance and dependability, group communication
and middleware, and cooperative autonomous mobile robot networks.

36

	Introduction
	Related Work
	Component-Based Reliability Prediction
	Reliability Modeling
	Basic Concepts
	Component Reliability Specifications
	Components, services, and service implementations
	Failure Models
	Fault Tolerance Structures

	System Reliability Models
	System Architecture
	Usage Profile

	Reliability Prediction
	Transformation for each usage profile part
	Sequential Structure
	Branching Structure
	Looping Structure
	Parallel Structure
	RetryStructure
	MultiTryCatchStructure
	MVPStructure
	The reliability under the usage profile part

	Aggregation of Results
	Proving the correctness of the transformation algorithm
	Complexity
	Implementation

	Case Study Evaluation
	Case Study I: Reporting Service of a Document Exchange Server
	Description of the Case Study
	Parameter Estimation and Validity of Predictions
	Sensitivity Analyses and the Impact of FTSs

	Case Study II: DataCapture System

	Assumptions and Limitations
	Conclusion

