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Abstract

We present robust anomaly detection in multi-dimensional data. We describe information fusion
across multiple levels in a layered architecture to ensure accurate and reliable detection of anomalies
from heterogeneous data. We consider the problem of detecting anomalous entities (e.g., people)
from observation data (e.g., activities) gathered from multiple contexts or information sources over
time. We propose two anomaly detection methods. The first method seeks to identify anomalous
behavior that blends within each information source but is inconsistent across sources. A supervised
learning approach detects the blend-in anomalies manifested as across-information source inconsis-
tencies. The second method identifies unusual changes in behavior over time using a Markov model
approach. Finally, we present a fusion approach that integrates evidence from both methods to im-
prove the accuracy and robustness of the anomaly detection system. We illustrate the performance
of our proposed approaches on an insider threat detection problem using a real-world work-practice
data set.
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1 Introduction

Anomaly detection is a subfield of data analytics research, with theory routed in Al, data mining, and
machine learning. It aims at identification of data points (e.g., iterms, events, time series, and relational
data) that deviate from an expected norm state. Anomaly detection has a broad range of applications
including insider threat detection [1]], fault diagnostics in machine operation and fraud detection [2]. In
many practical situations, anomaly detection is a challenging problem because the datasets are big and
diverse. Existing anomaly detection systems however operate separately on individual homogeneous
components of the data and fail to suitably exploit and fuse the heterogeneous sources of information,
which results in lower precision (robustness) and lower recall (accuracy). In this paper, we propose a
layered architecture that simultaneously processes the heterogeneous information sources and fuses the
processed output to detect anomalies in a more robust and accurate manner.

1.1 Motivating anomaly detection problem: insider threat detection

This work presents general anomaly detection concepts that can apply in several contexts. We use in-
sider threat detection as a motivating example application to demonstrate the problem and our proposed
methods. Malicious insiders pose significant threats to information security, and yet detection of mali-
cious insiders is still an open problem. In this paper we report our effort on detecting malicious insiders
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from large amounts of work practice data comprising users’ IT traces on their workstations, recording
activities such as logging on/off, sending and receiving emails, accessing external devices or files, and
accessing web sites. Work practice data is remarkably diverse and heterogeneous. We refer to different
categories of data as “domains”, e.g., “logon domain” and “email domain”. The dataset is described in

section5.1]

1.2 Related work

There are many novel technologies for detecting malicious insider behavior. One of the most popular
approaches is based on hand-written rule-based filters [3 4, 5] but it is difficult to create rules with good
coverage and keep them up to date.

Instead of trying to exhaustively identify an open-ended set of behaviors, one could try to entrap
adversarial insiders with decoys [6, [7, [8]. The strategy is particularly effective for certain information
theft or espionage scenarios, but not as relevant for on-line vandalism.

Various models of adversarial insiders have been developed in an effort to identify outsiders from
more general observations that go beyond online work related behaviors. These models include physical
behaviors that are indicators of adversarial intent (e.g. foreign travel, signs of wealth) [9]], as well as
measurements related to motivation, personality, and emotion [10, [11} [12]]. Supervised learning tech-
niques that learn to identify malicious behavior from hand-labeled historical cases avoid the need for
infrastructure that measures behaviors, or to write explicit rules, or to develop comprehensive theories of
insider psychology. While all these models are valuable, none incorporate all of the possible situational
triggers, context variables and indicators. We believe such attributes are necessary to establish a close
connection between psychology and behavior.

The majority of learning-based methods assume homogeneous data is analyzed for a specific type of
anomaly [13]. For example, nearest neighbor and density estimation methods were proposed for low-
dimensional multivariate data. These techniques work well for structured data that can be summarized
in a small number of dimensions such as the well-known UCI Breast Cancer set with 30 real-valued
attributes [14], but fail when the data is unstructured and high-dimensional such as text, time-series [[15,
16], social networks, images, and video [[17]. Supervised methods also suffer generally from the problem
of being limited to detecting existing forms of fraud for which training data has been identified.

Since malicious behaviors are relatively rare in the broader population, unsupervised statistical
anomaly detection techniques which simply look for behavior outliers can be applied. For example,
some works use machine learning techniques to model user’s habitual information searching patterns on
their own [[18]. One can then recognize malicious masquerading users from the fact that they do not seem
to know their way around their own hard drives. The approach generates impressive results for scenarios
directly addressed by the approach, but is limited in the types of attacks it can handle. Similarly, spe-
cialized approaches can detect anomalies in analyst queries with respect to a Hidden Markov Model of
document content [19], and deviations from models of user processes [20].

Social network data is an increasingly important information source as social networks capture a
significant portion of people’s interaction with the external world. While the social network data is rich
and diverse, it introduces its own set of challenges for analysis [21]. Specialized techniques which can
exploit the correlations between people enmeshed in a network have been developed to identify key
individuals in organizations based on their communication patterns [22]. It has been fruitfully used by
the defense and intelligence community to study covert networks [23]] in an attempt to target the most
important enemies and disrupt their organization [24]].

40



Multi-source fusion for anomaly detection H. Eldardiry et al.

Despite these tools, the number of incidents of insider attacks continues to rise in the government and
commercial sectors. For example, a recent survey found that 28% of respondents would take sensitive
enterprise data to negotiate a new position in the event their employer terminated their current posi-
tion [25]. Indeed, insider attacks have been reported as the most frequent [26] or second most frequent
[27] source of security incidents in recent years in the United States.

Clearly new approaches are still needed. We observe that behavior in real world scenarios can often
be characterized by multiple heterogeneous data sources that include descriptive demographic data, time-
series behaviors, unstructured text, and images. If we can analyze multiple types of behavior jointly, we
could detect anomalous relationships that do not appear in any one source. Some existing work on
anomaly detection has attempted to handle multiple types of data, by trying to convert heterogeneous
data types into a common format that can be handled by a particular technique. However, state-of-the-
art results demonstrate that different kinds of data are best modeled by techniques specifically designed
for individual data types. In this paper we present an approach that can be used to integrate multiple
heterogeneous forms of analysis in rich ways to detect subtle violations in relationships across data

types.
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Figure 1: Anomaly Detection Framework

1.3 Problem framework

We consider the following generic setting. Our dataset is assumed to describe individual person, and we
observe information concerning each individual over several information channels or sources at several
instances in time. Given this data set, our goal is to accurately and robustly detect which of these entities
(or users) are anomalous, which information sources they are anomalous within, and at which time
instances the anomalous behavior occurred.

In particular, we assume that our data consists of measurements for N entities. For each of these N
entities, we assume that we observe F' different information sources (also interchangeably referred to as
features, channels, or domains) at any time-instance ¢. Finally, we assume that we observe a total of T
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time instances denoted by # = 1,..., 7. Our data can therefore be represented as a matrix of dimensions
N x F x T. Given this data cube, our goal is to detect anomalous behavior w.r.t. the N entities in a robust
manner by fully exploiting the heterogeneous nature of the data, both along the temporal dimension and
the multiple information source dimension.

1.4 Overview of proposed approach

We propose a layered architecture for heterogeneous anomaly detection which is illustrated in Figure|1.2
First, for each information source f, we use k-means clustering to model peer groups. We do not assume
peer group information is given. The N entities are clustered based on their behavior in f. We model
individual activity over time by clustering activity features at each time ¢ independent of the individual.
A cluster label ¢, , 1s generated for each individual » in each information source f at each time 7.

After the clustering stage, the layered architecture has two main components - one component for
detecting inconsistencies across information sources (or domains), and another for detecting inconsisten-
cies across time - which are then fused together to improve accuracy and robustness. These components
are briefly described next in the context of related work.

Across-domain behavior inconsistency detection to identify blend-in anomalies - from unsuper-
vised learning to supervised. A blend-in anomaly is a point that fits well w.r.t. each individual infor-
mation source, but does not fit well when all the sources are considered jointly. For example, an engineer
who logs on to multiple computers, exhibiting logon activity similar to network administrators, and not
engineers, is considered a blend-in anomaly. Note that this user’s activity w.r.t. logging into machines is
consistent with network administrators, but her browsing activity will significantly differ from theirs.

To detect blend-in anomalies, we use a multi-view learning approach in which we leverage informa-
tion from multiple activity domains. We assume peer-group consistency across domains. Going back
to our example, a user that behaves like engineers in one activity domain (e.g., web browsing) should
behave like engineers in all other activity domains (e.g., logons). The problem of detecting suspicious
activity without any given ground truth has been conventionally formulated as an unsupervised learning
problem. However, we formulate it as a supervised learning problem as follows. To detect across-domain
inconsistency, we assume a user’s behavior in one domain can be predicted from the same user’s behavior
in other domains and identify users with unpredictable behavior as anomalous.

Unusual change detection. Temporal anomaly detection methods focus on identifying changes in ac-
tivities of a user compared to that user’s past activities. The problem with this approach is that it treats
any change as suspicious. Back to our running example, an employee who starts working on a new
project or takes up a new role will change her activities, but this change is not suspicious.

To counter this, we define a new type of anomalous activity and refer to it as unusual change, which
is a change that is not common to observe over the entire population. Instead of analyzing users inde-
pendently, we use a Markov model approach to capture the transition probability of changing activity
(or state) and declare a change as anomalous when a user exhibits changes in activities that are unusual
compared to the user’s peers or the rest of the population.

Multi-source information fusion. Our goal is to combine suspicion/anomaly scores that have been
generated from each of the aforementioned methods to detect anomalies. We note that in a more general
analytics framework, the same technique can be used to combine scores based on relative importance or
surprise/risk levels.

42



Multi-source fusion for anomaly detection H. Eldardiry et al.

In anomaly detection, an individual can be anomalous in one domain or at a time instance, but not in
another. Also, the relative suspicion of an individual can vary from one indicator (or information source)
to another. However, most anomaly detection applications require a single overall conclusion about the
relative suspicion of each individual. Therefore, we developed a technique to combine multiple sources
of evidence from multiple domains. In a broad sense, each source of information provides a suspicion
score and the goal is to combine these scores in order to identify anomalies with greater accuracy. Going
back to our insider threat detection example, we combine the predictability score of each activity domain
and each time instance to compute a single, combined suspicion score for each user. These combined
scores are subsequently used to identify the anomalous individuals.

Automatic threshold selection. After identifying anomalous individuals, we use an automatic entropy-
based threshold selection method for outlier identification to identify the specific time instances as well
as the particular anomalous events (i.e., information sources) responsible for the anomalous individuals.
In particular, given a set of anomaly scores S, this method defines a corresponding threshold 7'(S) such
that all the points beyond this threshold are anomalous w.r.t. the score set S.

1.5 Outline

In section [2] we define the concept of blend-in anomalies, and present the technique we developed to
detect this kind of anomaly. We define the second type of anomaly, unusual change, in section [3| and
present a Markov Model approach to discover this type of anomalies. We describe our information
fusion technology in detail in sectiond] We next describe our proposed entropy-based staistical outlier
detection technique in section [#.3.1] and use this technique to identify individual events that contributed
to the anomaly scores of individuals. Experimental results are described in section[5} Finally, we present
our conclusions in section [6l
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Figure 3: Detection of inconsistencies

2 Approach 1: Multi-domain cross validation (MDCYV)

Given a population distribution, a blend-in anomaly is a point that blends within the distribution such
that it is not a statistical outlier, but this point fits in the wrong group of points so it is not an outlier to
that group. However, it can be discovered using deeper analysis of group associations.

In an insider threat detection context, the intuition is that user activity should reflect the user’s job role
in any domain, and users with similar job roles exhibit similar behavior within each domain. Figure[T.3]
shows an example of a blend-in anomaly where an engineer (orange circle) logs on to multiple computers,
exhibiting logon activity similar to network administrators (shows up within the blue group) and not
engineers (not the orange group). Assuming the job roles are unknown, straightforward outlier detection
will not detect the orange circle in the midst of the blue group as an outlier.

Figure [I.5] shows them all in the same color to illustrate the hidden job role information. That is
to say, we clustered them according to activity, but we do not know the job roles associated with each
cluster. However, to leverage multiple activity domains providing additional sources of information. The
apparent network administrator, according to logon activities, is browsing the Web similar to a different
group of users (the engineers). This across-domain inconsistency in peer-groups reveals the blend-in
anomaly.

Problem formulation. We define the problem as follows. An anomalous individual is one that ex-
hibits inconsistent behavior across the information sources (or activity domains). We formulate the
across-domain behavior consistency assumption as a classification task, in which clusters are used as
training features. We predict an individual’s cluster (or peer group) in one domain from her cluster in all
other domains. The prediction accuracy for an individual’s cluster in each domain reflects her behavior
consistency across domains.

At each time-instance t, ¢, y, is the cluster for individual 7 in domain f. For individual n, we say in-
dividual » has domain f activity that is consistent with other domains’ activities if the individual’s cluster
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Cn, . 1s predictable from other domains’ clusters {cj, J'J}j s To measure how predictable the behavior
of entity n in domain f from other domains, prediction is formulated as a multi-label classification task,
in which a classifier is trained using cluster information from all-but-one domains to predict the cluster
information in the remaining (target) domain. In the simplest case, we may use cluster labels of other
individuals m # n to learn a mapping from {c, j, } if 1O Cm i and then check whether this mapping
generalizes to individual n.

Our MDCV method uses cluster labels from the observed domains as features for learning, and
predicts cluster labels to evaluate user predictability. Denote the predicted user’s cluster label by ¢, ;.
The evaluation is not based on just whether or not the true cluster is predicted, but instead on how well the
true cluster is predicted. This is in essence a density estimation problem. The predictability is measured
as one minus the likelihood of observing the true cluster given the cluster of its peers. In particular,
define the anomaly score of individual n w.r.t. time instance ¢ and domain f as

To combine suspicion scores for a particular individual, we must distinguish between domains in
which suspicious activity is commonly observed from domains in which suspicious activity is very rare.
In the latter case, this score should be given a higher weight. This idea is inspired by the TF/IDF (term
frequency—inverse document frequency) scheme [28], reflecting the relative importance of a word to a
document in a corpus. The TF/IDF value is proportional to the frequency that a word appears in the
document, but is offset by the global frequency of the word in the corpus. Words that are frequent and
yet unique to the document have high TF/IDF scores. This property justifies the use of TF/IDF as a
weighting factor in information retrieval and text mining and we leverage this idea in anomaly detection
score computation. Denote the TF-IDF weights for each domain by by wy. We obtain the combined
score for each individual » at each time-instance ¢ by the weighted combination

F
”t(”) = Z Wf’"t(”af)-
/=1

3 Approach 2: Unusual change detection (CD)

We note that while a particular activity may not be suspicious, a rare change in activity can be. In this
section we propose a method that detects individuals with unusual changes in activity. In this context,
changes that are common among peers or the population are considered acceptable changes, and the goal
is to detect changes that are less likely to happen within the group to which a user belongs. The key
strength of our proposed approach is that it avoids detecting common changes that can be mistakenly
detected by typical temporal anomaly detection mechanisms.

In an insider threat detection context, the intuition is that user activity should reflect the user’s job
role in any domain, and users with similar job roles should exhibit similar behavior changes within each
domain over time, for example, due to a change in project assignment. Peers will not be expected to
exhibit similar changes in behavior at similar time episodes, but they will be expected to do so over
longer time intervals.

Problem formulation. Within each domain f, we assume a cluster ¢, 7, (or group) label for each user
u at each time . We model activity changes over time as a Markov sequence. As shown in figure [3] for
each user u, within each domain f, we have a sequence of cluster labels ¢, 7.1, ¢ r2, .. , cn 7. Here,
clusters correspond to model states. We construct a transition probability matrix Q for each domain f
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Figure 4: Change Detection illustration

by computing the transition probabililties ¢ (c;, ;) V; ; (all possible clusters) by counting the number of
such changes over all users over time.

Individuals are scored based on their total transition likelihood over time, and suspicious individuals
with unusual transitions between temporal states are detected. Since we assume that clusters reflect
peer groups, our idea of looking at cluster transitions is to compare an individual’s change with that
individual’s peers’ changes. The intuition is that peers will belong to the same set of clusters (or Markov
states) and transition among that set in a similar fashion over time.

The anomaly score rf(n) for each individual n within domain f is calculated by estimating the user’s
transition likelihood over time. The anomaly probability score is computed as

T—1
Ff(l’l) = pf(cn,l) H Qf(cmta Cn,t+1)

=1

where ps(cy, 1) is the prior probablility of being in cluster ¢; which is the start state for entity n.

Given the scores generated by MDCYV and CD, our goal is to robustly combine these scores to identify
anomalous individuals. The fusion method is described in Section Ml

4 Information fusion for combining anomaly indicators

In this section, we describe the process for combining the anomaly scores generated from the Multi-
domain cross-validation (MDCV) approach and the change detection (CD) approach in a robust manner.
In particular, recall that the output of MDCYV is given by a matrix of N x T probability scores r;(i) where
Jj€{l,...,T} denotes the domain, and i € {1,...,N} is the index for individuals. Likewise, the output
of CD is given by a matrix of N X F probability scores ¢;(i) where j € {1,...,F}and i€ {1,...,N}.
We concatenate these two outputs to obtain a joint matrix of dimension N x (T + F) scores p;(i) where
Jje{l,....,F+T}andi€ {l,...,N}. Our goal is to combine these set of scores to robustly determine
which of the N individuals is anomalous.

4.1 Score-based fusion

One set of options for fusing the anomaly scores is to directly operate on the anomaly scores p;(i) and
produce an aggregate score p(i). A couple of options for aggregating the score are either choosing the
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maximum score across dimensions
Pmax (i) = argmjaxpj(i). (D

or by computing the probability that a given user is anomalous w.r.t. at least one of the T+ F dimensions,
which is equivalent to the complement of the probability that a user is not anomalous in any of the 7+ F
dimensions. In this case, we combine the scores using

T+F

p(i)=1- [T ~1lp;(i) > 1]p;(i)), 2)

j=1

for some user-specified threshold 7.

The idea behind the maximum score scheme is that we mark each individual by the highest score
it has recorded across domains and time so as to catch any single infraction by each user. This scheme
is therefore aggressive. On the other hand, the probability-based fusion scheme takes a more conser-
vative approach by ensuring that a one-off anomalous event for an individual is penalized less severely
compared to repeated transgressions. This prevents users from getting incorrectly flagged due to one-off
statistically rare events that most likely happened by chance.

4.2 Rank-based fusion

The primary issue with using score based fusion is that the scores are generated from different mecha-
nisms and as a result, provide no common ground for comparison. For instance, the scores generated
from MDCV might in general be higher than the scores generated by CD, or alternatively, the scores
generated during particular time-instances (for e.g., weekends) might be lower in general compared to
scores over weekdays. Proceeding to combine these scores directly might therefore not result in any
significant improvement subsequent to fusing the scores.

To counter this, we propose rank based fusion of the multiple anomaly scores. In particular, from the
given probability scores p;(i), for each domain j, we determine the corresponding ranks R;(i), where
R;(i) is simply the index at which the score p;(i) occurs in a descending-sorted array of the entries
[pj(1),...,p;(N)]. Next, we fuse these ranks to a single rank R(i) for each individual i as

R(i) = argminR; (7). (3)
j

The advantage of this scheme is that the conversion from p;(i) to R;(i) ensures that the ranks can
now be compared across dimensions j. In particular, notice that the fused ranks R(7), unlike in the score-
based fusion methods, are robust to any monotonic transformation of the individual scores p;(i) within
any particular domain. In summary, this proposed rank based fusion method clearly is more robust to the
score-based alternatives.

The final algorithm based on rank based fusion is listed in Algorithm[I] In the subsequent experi-
mental section, we contrast the performance of the proposed rank based fusion with the max score and
probability based fusion methods.

4.3 Exploration of anomalous individuals

Once we ascertain the anomaly ranks of the individuals, the question remains as to what was the anoma-
lous behavior that was responsible for that ranking. To answer this question, for any given user n, we
seek to identify the information sources f and time-instance ¢ with high values of r;(n) and g(n). In
order to address what qualifies as a high value, we develop an automatic threshold selection algorithm
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Algorithm 1 Heterogeneous anomaly detection algorithm
1: Input: Data matrix of dimension N X F x T
2: Output: Ranked list of anomalies

Compute peer group clusters ¢, f;

Use clusters to identify anomaly scores r;(n) across information sources using MDCV
Use clusters to identify anomaly scores g (n) across time using CD

Concatenate scores 7; (i) and g¢(i) to form a single score matrix p (i)

Convert anomaly scores p;(i) to ranks R;(i)

Fuse scores using R(i) = argmin; R;(i).

return Anomaly rankings R(i);i € {1,...,N}

N A

that, given a set Sy of scores Sy = {s1,...,sn} corresponding to N different individuals, automatically
addresses (i) if any of the N individuals should be classified as anomalies w.r.t. the scores s;, and (ii) if the
answer to (i) is yes, then identifying which of the individuals are anomalous by identifying a threshold
score T'(Sy). Given the threshold score, the anomalous individuals within Sy can simply be identifies as
the elements s; such that s; > T'(Sy). Here, the score set can correspond to the set of scores within any
single time-instance ty, i.e. Sy =r4,(1),...,r,(N) or any single domain f, i.e. Sy =gy, (1),...,q(N).

4.3.1 Automatic selection of thresholds (TS)

We assume without loss of generality that the scores Sy are anomaly scores, i.e. lower the score s;, more
normal the samples are. Stated in an other way, we assume that the scores set Sy satisfies the following
monotonicity property: if an item with score s; is an anomaly, then all items with scores s; > s; are also
anomalous.
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Figure 5: Outlier identification
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The details of this automatic procedure, which we will henceforth denote by TS, are enumerated
below:

1. The scores in Sy are sorted in ascending order. Denote these sorted entries by Sy = {s(l) yee s S(N) }.
An illustration of these sorted scores is shown in Figure {.3.1]

2. Collect subsets Sy[j] of Sy for j varying from 1 to N, where
Sl ={sy - Sv—j1) }-

3. Estimate the entropies H(Sy[]) of the probability density functions corresponding to the samples
in Sy[j]. The entropies for these 1-dimensional samples are estimated using the Vasicek spacing
estimator [29].

4. Next, we identify if there is a sharp decrease in entropy H (Sy[j]) as we vary j from 1 to N. If there
is no sharp decrease, then we declare that no anomalies are present in the data. On the other hand,
if there is a sharp decrease in the entropy as we are transitioning from j =k to j = k+ 1, then we
set the threshold for anomaly detection as T'(Sy) = s).-

5. Finally, we flag all individuals with s; > T'(Sy) as anomalies.

The key idea behind this automated approach is that if anomalies are present in the set Sy|[j], then the
empirical distribution corresponding to Sy ;] will be dispersed due to the additional mode corresponding
to the anomalies and as a result, the corresponding entropy H(Sy[j]) will be high. On the other hand,
if Sy[j] contains no anomalies, then the scores will be more concentrated and the entropy of the set will
be correspondingly smaller. As a result, when we are transitioning from the set S[k] which contains
anomalies to the set Sy [k + 1] which contains no anomalies, there will be a sharp decrease in entropy, i.e.
H(Sy[k]) > H(Sy[k+1]).

We note that an alternative but completely equivalent interpretation of our algorithm is as follows:

For a set Sy of scores, compute the entropy H(Sy) = Y;cs, P(si) * (~log P(s;)) and for each element i,
compute the surprise ratio r; = _ll(ﬁiglv(s)(")). The surprise ratio is a measure of how consistent or random
a given sample point s; is w.r.t. the rest of the data in Sy. Finally, we identify samples s(; as anomalies
if the corresponding surprise ratio r; is large. This automated approach has clear advantages to currently
used practices for identifying anomalies given a score set, such as reporting the k individuals Sy C Sy
with the k smallest scores or reporting all individuals S5 C Sy with scores s; < d for some user-specified,
but arbitrarily chosen 8. In particular, it is possible that the actual set of anomalies is a superset or subset
of Sy (or Sg), including the extreme case where there are no anomalies. In this case, reporting the top k&
individuals (or all the individuals with score less than §) would be incorrect. Our automated approach
ensures that we accurately identify if anomalies are present or not, and if they are present, correctly

estimate the threshold for identifying the anomalies.

Threshold selection for streaming data. In the insider threat monitoring setting, the data is constantly
being updated as new activities are being observed. It follows that the threshold for detecting anomalies
should be updated as new data is being added. The procedure detailed in the previous section assumes a
static setting where are all the scores Sy := {s1,...,sy} are available. We now extend the procedure to
the online case where the scores § := {s1,s,...} are observed in a streaming fashion. Assume that we
have access to the first N scores Sy from S. The threshold 7' (Sy) for these scores Sy can be determined
using the procedure in the previous section. When the next sample score sy arrives, the threshold
T(Sy+1) can be determine via a brute force approach by operating on the set Sy ;. However, this brute
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force approach is computationally expensive as the procedure has to be repeated each time a new sample
score sy is computed.

Instead, we describe a faster alternative by making the following observation. If the new sample
sn+1 < T(Sy), then the threshold should remain unchanged, i.e. T(Sy+; = T(Sy). This is because the
score sy 1, by virtue of satisfying sy; < T (Sy), classifies as a normal score and this in turn implies that
the threshold 7'(Sy) need not be adjusted in order to avoid incorrectly mis-classifying sy as anomalous.
Equivalently, this implies that the threshold needs to be updated only when sy > T(Sy). Also, by the
very nature of anomalies being sparse, the event sy;; > T(Sy) will occur rarely and as a result, the
procedure for determining automatic thresholds scales easily for streaming data.

Ilustrative Example. As an illustrative example, consider a set Sy of N =4000 anomaly scores plotted
in ascending order in the illustration in Figure 4.3.1] From the figure, it is intuitively clear that (i)
anomalies are present in this data, and (ii) the anomalous entries are the ones with scores greater than
1.5¢5. On application of our algorithm to this data set, we identify a threshold 7'(S) = 1.7e5, which is
illustrated via the red line in the figure.
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Figure 6: Outlier identification for online setting. Threshold remains unchanged (original red line) when
the new data points are below the original threshold (red and yellow dots). For new data points above
threshold (blue and green dots), threshold should be reevaluated. The threshold changes to the new line
marked in blue if the new data point corresponds to the blue dot. On the other hand, the threshold does
not change for the green dot even after reevaluation because of the extreme nature of the green dot.

We extend this illustrative example to the online case next. The online situation is illustrated via
Figure The new sample sy could be any one of the four differently colored -green, red, yellow
and blue - dots. It is clear from this figure that the original threshold (marked by the red line) should
remain unchanged when the new data point sy is below the threshold, as is the case with the yellow
and red dots. If s)1 corresponds to the blue dot or the green dot, then as per our algorithm, the threshold
should be reevaluated. We note that the threshold changes after reevaluation (to the new blue line) only
in the case of the blue dot, and not in the case of the green dot because of the extreme value of the green
dot.

4.3.2 Application to entity exploration

The automated threshold selection algorithm is run on the set of scores p;(i) for each jin 1,..., T+ F
and T + F threshold scores T; are identified. Subsequently, all the tuples E; = {(i, j); pj(i) > T;} are
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recorded and maintained for each entity i. Finally, when a particular user » is being investigated due to
high anomaly rank (generated as output from Algorithm [I)), the anomalous events E,, are reported. The
investigation of specific users is illustrated in Figure[5.3]in the experimental section.

S Experimental Evaluation

We apply our proposed framework (illustrated in figure [I.2)) on an indsider threat detection problem,
starting with a multi-dimensional dataset as input until we finally generate a list of anomalies.

5.1 Dataset

We present results using a real dataset provided by a large defense contractor. The dataset contains
workpractice information about 4334 users collected over 30 days. The data volume is approximately
89 million records per day. To simplify processing, we bin events into user day records. For each (user,
day) pair, we compute aggregated statstics as shown below. The data also contains synthetically injected
anomalies based on real world malicious behavior scenarios. Note that the scenario labeling was not
made available to the learning, modeling or detection algorithms.

5.2 Feature Extraction

Work pratice data falls into the domains listed below. Each event is tagged with auxilary information
such as user id, host PC id, activity code (whether it is a logon/logoff, file upload/ download, etc.), and

a timestamp. We consider six different activity domains: “device”, “email sent”, “email received”, “file”,
“http” and “logon”.

e Logon and logoff events.

e Use of removable device such as USB thumb drives or removable hard disks. Device name and
type are logged with each usage event.

e File access events: e.g., file created, copied, moved, written, renamed, or deleted. For each file
access the record, file name, path, type, and content are logged.

e Hittp access events, tagged with URL and domain information, activity codes (upload or down-
load), browser information (Internet Explorer, Firefox, or Chrome), and whether the website is
encrypted.

e Email sent and viewed are tagged with from address, to/cc/bcc addresses, subject line, sent date,
text, attachment info, and whether the email is encrypted.

Furthermore, our system associates a set of tags to raw events. For instance, we label (1) whether
the event happens after normal working hours and (2) whether the event happens on a user’s own des-
ignated PC, someone else’s designated PC, or a shared PC. As malicious insiders often need to steal
information from their colleagues, labeling the host PC is semantically important. In addition, events
concerning activities external to the organization (e.g., email sent to or received from external addresses,
file upload/download from external URLs) are labeled.

In real world settings users often produce a multitude of events. For each (user, day) pair, we compute
aggregated statstics as shown below. Domain features are treated separately, and daily feature vectors
for each domain is extracted, as summarized below.
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e Logon: #logons, #PCs with logons, #after hour logons, #logons on dedicated PC, #of logons on
other people’s dedicated PC

e Device: #device access, #PCs with device access, #after hour device access, #device usage on
dedicated PC, #device usage on other people’s dedicated PC

e File: #file access, #PCs with file access, #distinct files, #after hour file access, #file access on
dedicated PC, #file access on other people’s dedicated PC

e HTTP: #web access, #PCs with web access, #URLs visited, #after hour web access, #URLs visited
from other people’s dedicated PC

e Email Sent: #emails, #distinct recipients, #internal emails, #internal recipients, #emails sent after
hour, #emails with attachment(s), #emails sent from non dedicated PC

e Email Received: Similar to email sent

Finally, we apply K-means clustering to generate a 3-dimensional matrix: N x F x T.

5.3 Results

Multi-domain cross validation. We apply our multi-domain cross validation method as follows. For
each of the six activity domains, the goal is to predict the user’s cluster, at any given instant, from the
same user’s clusters in all other domains at that same instant. The prediction accuracy reflects the peer
group consistency across domains. A high accuracy leads to a low anomaly score. Finally, a combined
score for each (user, time) pair is generated by applying TF/IDF to the scores from all the domains.

Figure[5.3]plots the prediction probability distribution for each domain as well as the anomaly scores.
The figure shows the general domain predictability over the entire population based on unadjusted scores
for each domain. The varying level of predictability explains why the different domains used have dif-
ferent levels of importance in identifying an anomaly. Device and File domains are the most predictable
(with the highest predictive accuracy), while Logon and HTTP domains are harder to predict. It appears
that users show great variation in their logon and http behavior, but are more uniform in device usage
and file access. Finally, it is hardest to predict activity in Email-sent and Email-received domains. This
emphasizes the necessity of using TF/IDF as a fusion approach, which considers this domain variation
when computing the final anomaly score.
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Figure 7: Multi-domain cross validation: prediction probability for each domain and final anomaly scores
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Unusual change detection. We apply our unusual change detection method as follows. Within each
of the six activity domains, the goal is to compute the overall user’s cluster transition likelihood over
time. The likelihood reflects the activity change consistency of the population within each domain. A
high likelihood leads to a low anomaly score. Finally, a combined score for each user is generated using
the minimum likelihood across domains. Figure [5.3]plots the transistion likelihood distribution for each
domain as well as the anomaly scores.

14
0.9 1
0.8 —logon
0.7 — device
06 )
—file
0.5 1.
M —http
04 ]
03 ——email-sent
0.2 ——email-received
011 -_ﬁ anomaly score
0 —
NN SN ONSN00NO0 AN S W WS 0
ST O NOVLOFTXN~TSdNOOMNMS o WO
NS~ NSO ST O0dmO o
e A A NN NN MmN NN

Figure 8: Markov Unusual Change Detection: transition likelihood for each domain and final anomaly
scores
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Figure 9: Insider detection

Ranking and scanning. We apply Algorithm [1] to generate the fused ranking R(i) for this data set.
Given these rankings, Figure[5.3|shows the investigation effort on the x-axis and the return on the y-axis
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Table 1: Rank percentile corresponding to different insiders using different fusion methods. The pro-
posed rank based fusion consistently has a higher anomaly rank across the different insiders and therefore
outperforms other methods.

Insider | meanMDCV | meanCD | probScore | maxScore | minRank
67145F | 21.4 14.9 14.5 11.9 1.3
2C7F84 | 25.6 12.5 26.4 21.7 32
D5943A | 23.8 21.7 20.1 16.5 2.5
D1A30D | 17.3 12.1 24.5 20.2 1.4
A6C30B | 44.7 36.9 41.9 34.7 5.1
95B2BC | 325 27.1 28.6 235 4.3
4EE3A0 | 61.8 40.9 57.1 60.1 1.8
D96B46 | 46.4 45.1 48.7 40.2 4.2
6044DA | 24.6 13.1 20.9 17.1 2.5
1A1686 | 52.0 31.8 53.9 44.5 7.0
7F5DFF | 24.1 14.7 26.0 214 3.1
663B16 | 134 44 4.6 3.7 0.1
EE07B6 | 15.5 7.4 28.1 23.1 0.2

for each approach. The effort is represented by the percentage population that needs to be investigated
and the return is the percentage insiders detected. For comparison purposes, we also plot the performance
curves for rankings based on the individual MDCYV and CD results, and also the rankings corresponding
to the maximum-score fusion approach and the probability-based fusion approach. Each gray curve cor-
responds to the MDCV output at time t. Each green curve corresponds to the CD approach from domain
f. The red curve shows the result for the probability-based fusion approach. The black curve shows
the result for the maximum-score fusion approach. The blue curve corresponds to the best performing
minRank approach using which all the insiders are detected after scanning the top 7% of the population.

Table [I| summarizes the % of the population that needs to be scanned to detect each insider by each
scheme. For MDCV and CD, we present the average results due to space constraints. From these results,
it is clear that the rank based fusion approach comfortably outperforms the other methods used in this
comparison. Indeed, it is remarkable that a suitable combination of the individual MDCV and CD scores
in an appropriate fashion leads to significant improvement in performance relative to any of the individual
MDCYV or CD sources.

Localization and visualization of anomalous activity for insiders. Once we identify the highly
ranked insiders, our automatic thresholding algorithm TS can be applied to breakdown the specific time-
instances and domains that are associated with anomalous activity. Figure[5.3]shows anomalous activities
by each insider (rows) within each domain (colored stack of points) at each time-instance (columns) for
this insider. These anomalous activity incidents were detected using our outlier identification scheme,
applied separately on one vector of one activity domain at one time instance for all the users.
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Figure 10: Visualization of anomalous incidents of insiders

6 Conclusion

A novel layered approach for robust detection of anomalies is discussed. The two main components
of our framework - MDCV and CD - improve anomaly detection prediction accuracy by combining
information from multiple domains and time-instances. As a result, these methods are able to determine
anomalies that are not apparent in any single domain or time-instance, but only manifest in discrepancies
across domains. In addition, we have proposed a robust ranking based fusion scheme to fuse the results
generated from MDCV and CD. Our fusion scheme offers the advantage of being robust to variance
in the individual outputs of MDCV and CD while combining their information in order to improve the
quality of anomaly detection. Finally, we propose a novel outlier threshold selection algorithm that aids
in analyzing the specific domain and time-instance related events that were responsible for a particular to
be flagged with a high anomaly rank. We verify the improved robustness and accuracy of our proposed
algorithm via experimental results on detecting insiders from a large, real-world work-practice data set.
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