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Abstract

Multivariate Public Key Cryptosystems (MPKC) is one of candidates for post-quantum cryptography.
Rainbow is an MPKC digital signature scheme, with relatively efficient encryption and decryption
processes. However, the size of the secret key of Rainbow is substantially larger than that of an RSA
cryptosystem for the same security level. By using sparse secret keys, the size of the secret key of
Rainbow can be reduced. In addition, a method using sparse secret keys can accelerate the signature
generation of Rainbow. Matrix-based Rainbow and NT-Rainbow, which we previously proposed, are
variants of Rainbow using sparse secret keys. These two variants of Rainbow reduce the size of the
secret key of Rainbow, and improve the efficiency of the signature generation of Rainbow. In this
paper, we combine these two variants of Rainbow. As a consequence, the combined scheme realizes
even smaller size of the secret key and even more efficient signature generation than those of the two
variants of Rainbow. In particular, in comparison with the original Rainbow, the secret key is reduced
in size by about 76% and the signature generation is sped up by about 55% at the security level of
100 bits.

Keywords: Post-quantum cryptography, Multivariate public key cryptosystems, Rainbow.

1 Introduction

Multivariate public key cryptosystems (MPKC) [1, 2] are candidates for post-quantum cryptography.
Their security is based on the level of difficulty involved in finding solutions to a system of multivariate
quadratic equations (MQ problem). Many MPKC schemes require secret and public keys that are larger
than those of RSA and ECC. In recent years, a variety of MPKC schemes for encryption and for signa-
tures, have been proposed. Unbalanced Oil and Vinegar (UOV) [3] is an MPKC signature scheme, whose
signatures can be efficiently generated and verified. Rainbow [4] is a multilayer variant of UOV, with
enhanced security. UOV and Rainbow both share the same problem of having large secret and public
keys.

By using sparse secret keys, the size of the secret key of Rainbow can be reduced. Several variants of
Rainbow using sparse secret keys have been proposed, e.g. Enhanced TTS[5], Matrix-based Rainbow[6],
and NT-Rainbow[7]. These schemes can not only reduce the size of secret keys, but also improve the
efficiency of the signature generation of Rainbow. In this paper, we propose a new variant of Rainbow
into which Matrix-based Rainbow and NT-Rainbow are combined. The part which becomes sparse in the
secret keys in Matrix-based Rainbow and that in NT-Rainbow are mutually exclusive. Therefore, we can
combine these two schemes into a new scheme. Our proposed scheme has even smaller size of the secret
key and even more efficient signature generation than those of Matrix-based Rainbow and NT-Rainbow.
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This paper analyzes the security of our scheme. In particular, we investigate the effect to our scheme
for well-known attacks against Rainbow, Finally, we evaluate the security parameter of our scheme for
several security levels on the basis of our security analysis and the results in [6] and [7]. We also compare
the secret key length and efficiency of signature generation of our scheme with those of the corresponding
Rainbow. In particular, in comparison with the original Rainbow, the size of the secret key of our scheme
is reduced by about 76% and signature generation is about 55% faster at the security level of 100 bits.

2 Original Rainbow

Ding and Schmidt proposed a signature scheme called Rainbow, which is a multilayer variant of Unbal-
anced Oil and Vinegar [4].

First, we define parameters that determine the layer structure of Rainbow. Let t be the number of
layers in Rainbow. Let v1, . . . ,vt+1 be a sequence of t +1 positive integers such that 0 < v1 < v2 < · · ·<
vt < vt+1. For i = 1, . . . , t, the set of indices of the i-th layer in Rainbow is defined by all integers from
vi to vi+1, namely Oi = {vi +1,vi +2, . . . ,vi+1−1,vi+1}. The number of indices for the i-th layer, Oi is
then vi+1− vi, and this is denoted by oi = vi+1− vi. Note that the smallest integer in O1 is v1 +1. Upon
defining V1 = {1,2, . . . ,v1}, and for i = 2,3, . . . , t +1, we have

Vi =V1∪O1∪O2∪·· ·∪Oi−1 = {1,2 . . . ,vi}.

The number of elements in Vi is exactly vi for i = 1,2, . . . , t + 1. The sets Oi and Vi are used for the
respective indices of the Oil and Vinegar variables in Rainbow. We define n = vt+1 as the maximum
number of variables used in Rainbow.

Next, let K be a finite field of order q. Rainbow consists of t layers of n variables polynomials. For
h = 1,2, . . . , t, the h-th layer of Rainbow contains the following system of oh multivariate polynomials:
For k ∈ Oh,

gk(x1, . . . ,xn) = ∑
i∈Oh, j∈Vh

α
(k)
i, j xix j+ ∑

i, j∈Vh, i≤ j
β
(k)
i, j xix j+ ∑

i∈Vh+1

γ
(k)
i xi+η

(k), (1)

where α
(k)
i, j ,β

(k)
i, j ,γ

(k)
i ,η(k) ∈K. We call the variables xi (i∈Oh) and x j (i∈Vj) Oil and Vinegar variables,

respectively. The central map of Rainbow is constructed according to G = (gv1+1, . . . ,gn) : Kn→ Kn−v1 .
Note that a system of oh equations, gk(b1, . . . ,bvh ,xvh+1, . . . ,xvh+1) = ak (k ∈ Oh) becomes oh linear

equations in oh variables for any (avh+1, . . . ,avh+1) ∈ Koh and (b1, . . . ,bvh) ∈ Kvh . Therefore, once we
know the values of the Oil variables in the h-th layer, we can then compute the values of the Vinegar
variables in the (h+1)-th layer. This is the trapdoor mechanism of Rainbow.

2.1 Scheme of Rainbow

Now let us describe the key generation, signature generation, and verification processes of Rainbow.

Key Generation. The secret key consists of a central map G and two affine transformations A1 : Km→
Km (m = n− v1), A2 : Kn → Kn. The public key consists of the field K and the composed map F =
A1 ◦G◦A2 : Kn→ Km, which is a system of m quadratic polynomials of n variables over K. We denote
the public key by F = ( fv1+1, . . . , fn)

T, where T denotes the transpose operation. In addition, we use fk
to denote the k-th public polynomial of F for k = v1 +1, . . . ,n.

Signature Generation. Let M ∈ Km be a message. We compute A = A−1
1 (M), B = G−1(A) and C =

A−1
2 (B) in that order. The signature of the message is C ∈ Kn. Note that the inverse of G can be
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efficiently computed. In fact, for any vector w = (w1, . . . ,wm)
T ∈ Km, an element G−1(w) in the inverse

image of w can be obtained as follows:

Step 1 Randomly choose s′1, . . . ,s
′
v1
∈ K.

Step 2 For i = 1, . . . , t, do the following operations:
A system g(vi+1), . . . ,g(vi+oi) can be regarded as a multivariate quadratic system with variables
x1, . . . ,xvi+oi . Upon substituting (x1, . . . ,xvi) = (s′1, . . . ,s

′
vi
), set up a system of linear equations

of oi variables. Solve the system and obtain a solution (xvi+1, . . . ,xvi+oi) = (s′v+1, . . . ,s
′
n). (If the

system is not regular, go back to Step 1.)

Result G−1(w) = (s′1, . . . ,s
′
n).

Verification. If F(C) = M, the signature is accepted; it is rejected otherwise.

This scheme is denoted as Rainbow(K; v1,o1, . . . ,ot), and we call v1,o1, . . . ,ot the parameters of
Rainbow.

3 Matrix-based Rainbow and NT-Rainbow

In this section, we explain the idea of reduction of the size of secret key using in Matrix-based Rainbow
and NT-Rainbow.

3.1 Basic Idea of Matrix-based Rainbow

The key idea underlying Matrix-based Rainbow is a modification of linear equations appearing in Step 2
of the Rainbow signature generation process. In Step 2 of the Rainbow signature generation process, for
each i-th layer, we need to solve a system of linear equations described as

L.X =V (2)

where L is a matrix of size oi×oi, V is a column vector of size oi and X is a column vector of variables
of size oi. In case of Rainbow, L is a general matrix. However, Matrix-based Rainbow uses a form of L
as

L =


A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

 (3)

where A is a matrix of size o′i×o′i for some divisor o′i of oi. L as in (3) can be made by taking a special
and sparse set of α

(k)
i, j ’s appearing in (1). Since α

(k)
i, j ’s are part of the secret key of Rainbow, the secret

key of Matrix-based Rainbow is shorter than that of Rainbow.
There is another reason why the above diagonal matrix is adopted as L for Matrix-based Rainbow.

For L in (3), the system of linear equations (2) can be transformed into another system of linear equations,

A.X ′ =V ′ (4)

where X ′,V ′ are matrices of size o′i× (oi/o′i) corresponding to X ,V , respectively. System (4) can be
solved simultaneously with respect to the columns of variables in X ′. If Gaussian elimination is used to
solve (4), the cost of field multiplications is estimated to be O(o′i

3). On the other hand, the cost of field
multiplications to solve (2) is O(oi

3). Therefore, Matrix-based Rainbow is more efficient at signature
generation than the original Rainbow.
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3.2 Basic Idea of NT-Rainbow

We focus on the terms

∑
i, j∈Sh, i≤ j

β
(k)
i, j xix j (5)

appearing in (1), which composes the secret key of Rainbow. Using a square matrix of size vh× vh,

B =


β
(k)
1,1 β

(k)
1,2 · · · β

(k)
1,vh

0 β
(k)
2,2 ∗

...
...

. . . . . .
...

0 · · · 0 β
(k)
vhvh

,

the quadratic polynomial (5) is described as

x.B.xT (x = (x1, . . . ,xvh)). (6)

However, in case of NT-Rainbow, (5) is not described by the form using an upper-triangular matrix B.
For each layer of NT-Rainbow, first, a general square matrix D is prepared:

D =


δ1,1 · · · · · · δ1,vh

...
. . .

...
...

. . .
...

δvh,1 · · · · · · δvh,vh

,

After that, using the circulated matrix Dl of D,

Dl =


δvh−l+1,1 · · · · · · δvh−l+1,vh
δvh−l+2,1 · · · · · · δvh−l+2,vh

...
...

...
δvh−l,1 · · · · · · δvh−l,vh

,

quadratic polynomials (5) for several k are generated by the form x.Dl.xT for several l. In general, it is
difficult to recover D from the set of these quadratic polynomials x.Dl.xT .

In the original Rainbow, oh(= vh+1− vh) triangular matrices are needed to describe the secret key,
whereas in NT-Rainbow, only one matrix D is needed. Therefore, the secret key of NT-Rainbow is
shorter than that of Rainbow. Once we compute D.xT , the result is reused for computing x.Dl.xT for any
l. Therefore, NT-Rainbow has an efficient signature generation.

4 A New Variant of Rainbow

Matrix-based Rainbow reduces a part of α
(k)
i, j in appearing (1), which composes the secret key of Rain-

bow. On the other hand, NT-Rainbow reduces a part of β
(k)
i, j in appearing (1). Therefore, we can combine

these two schemes. In this section, we describe the procedure of the combined scheme concretely.
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4.1 Construction of the Secret Key

Here, we explain how to construct the secret key of the combined scheme of Matrix-based Rainbow and
NT-Rainbow.

Let v1,v2, . . . ,vt+1 be t +1 positive integers, as in § 2.1. For h = 1, . . . , t, we write Sh = {1, . . . ,vh},
Oh = {vh +1, . . . ,vh+1}, and oh = vh+1− vh. The number of equations and variables in the multivariate
quadratic system used in the scheme is n = vt+1 and m = n− v1, respectively. Assume that for all
h = 1, . . . , t, oh can be factored as oh = dho′h for some positive number o′h,dh. In addition, for any
h = 1, . . . , t, it is assumed that vh ≥ oh.

We first randomly generate the following matrices and vectors over K: For all h = 1, . . . , t,

1. a(h)l : matrix of size vh×o′h (l = 1, . . . ,o′h),

2. b(h)
l ∈ Ko′h (l = 1, . . . ,o′h),

3. d(h) = (δ
(h)
i, j ): matrix of size vh× vh,

4. B(vh+l)
00 ∈ Kvh (l = 1, . . . ,o′h),

5. C(vh+l) ∈ K (l = 1, . . . ,o′h).

The secret key of our scheme consists of the above data. We will describe the central map G : Kn →
Km corresponding to the secret key. The central map G = (g(v1+1), . . . ,g(n)) is composed of quadratic
polynomials g(k) of the form

g(k)(x)=xT A(k)x+B(k)x+C(k), (x=(x1, . . . ,xn)
T ). (7)

Here, A(k) is a square matrix over K of size n×n expressed by

A(vh+l) =

(
A(vh+l)

0 0
0 0

)
(h = 1, . . . , t, l = 1, . . . ,oi),

where A(vh+l)
0 (l = 1, . . . ,oh) are square matrices with size vh+1 of the form

A(vh+l)
0 =

(
A(vh+l)

00 A(vh+l)
01

0 0

)

where A(vh+l)
00 = (ci, j) is a upper triangular matrix of size vh× vh defined by

ci, j =


δ
(h)
i−l+1, j +δ

(h)
j−l+1,i if i < j,

δ
(h)
i−l+1,i if i = j,

0 otherwise,

and A(vh+l)
01 is a matrix of size vh×oh defined by

A(vh+io′h+ j)
01 = (

io′h︷ ︸︸ ︷
0, . . . ,0,a(h)j ,

(dh−i−1)o′h︷ ︸︸ ︷
0, . . . ,0 ) (0≤ i<dh,0< j≤o′h).
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(0 represents a column vector.) B(k) is a vector in Kn expressed in the form,

B(vh+l) = (B(vh+l)
0 ,

n−vh+1︷ ︸︸ ︷
0, . . . ,0) (h = 1, . . . , t, l = 1,2, . . . ,oh).

Here, B(vh+l)
0 is a vector in Kvh+1 given by

B(vh+l)
0 = (B(vh+l)

00 ,B(vh+l)
01 )

where B(vh+l)
01 ∈ Koh is defined by

B(vh+io′h+ j)
01 = (

io′h︷ ︸︸ ︷
0, . . . ,0,b(h)

j ,

(dh−i−1)o′h︷ ︸︸ ︷
0, . . . ,0 ) (0≤ i<dh,0< j≤o′h).

4.2 Our Scheme

Here, we describe the key generation, the signature generation and the verification of our scheme.

• Key generation

Secret key a(h)l , b(h)
l , d(h), B(vh+l)

00 , C(vh+l) given in the last subsection, and two randomly chosen affine
transformations L : Km→ Km and R : Kn→ Kn.

Public key The public key consists of the composite map F = L◦G◦R : Kn→ Km for G defined in the
last subsection.

• Signature generation Let M ∈ Km be a message. To generate a signature S from M, first compute
M′ = L−1(M). Next compute an element S′ = G−1(M′) in the inverse image of M′, and finally compute
S = R−1(S′). G−1(M′) is computed using the improved algorithm described above. L−1(M) and R−1(S′)
can be easily computed since L and R are affine transformations, .
• Verification If F(S) = M, the signature is accepted. It is rejected otherwise.

We denote this scheme by MNT-Rainbow(K;v1,d1 ∗ o′1, . . . ,dt ∗ o′t) and call v1,d1,o′1, . . . ,dt ,o′t the
parameter.

5 Security Analysis for Our Scheme

Now let us analyze the security of our scheme for several attacks against Rainbow.

5.1 Security against Direct Attacks

Direct attacks [8, 9, 10, 11, 12] are the most straightforward attacks to forge a signature for a message M
by solving the system F(x) = M of public equations using an algorithm such as XL or a Gröbner Basis
method. We experimentally compared the time taken by direct attacks against our scheme
MNT-Rainbow(GF(256);v1,d1 ∗ o′1,d2 ∗ o′2) over against the time taken by the same attack against
Rainbow(GF(256);v1,o1,o2) where oi = di ·o′i (i = 1,2). The experiment used the gröbner basis imple-
mented in Magma. The table 1 lists the results: It shows that there is no significant difference between
the times of those schemes.
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Table 1: Comparison of Time Taken by Direct Attacks over GF(256)
(v1,o1,o2) (4,3,4) (5,3,4) (3,4,4)

Our scheme 5.32 s 11.71 s 13.81 s
Rainbow 5.34 s 11.70 s 13.84 s

Random system 5.36 s 11.72 s 13.88 s

5.2 Security against UOV-Reconciliation attack and Rainbow-Band-Separation Attack

UOV-Reconciliation attack [13, 14] and Rainbow-Band-Separation attack [13, 14] aim to reveal the
secret key using solvers of system of multivariate equations.

Tables 2 and 3 show the results of our experiments with MAGMA against UOV-Reconciliation attack
and Rainbow-Band-Separation attack, respectively. These tables compare the result for our scheme with
that for the original Rainbow scheme over GF(256). As the tables show, UOV-Reconciliation attack and
Rainbow-Band-Separation attack against our scheme cannot be significantly faster than those against the
original Rainbow scheme.

Table 2: Results of the experiments with UOV-R attack over GF(256)
(v1,d1 ∗o′1,d2 ∗o′2) (4,4*1,1*5) (5,5*1,2*2) (5,5*1,1*5)

Our scheme 5.13 s 9.30 s 14.20 s
Rainbow 5.10 s 9.33 s 14.21 s

Table 3: Results of the experiments with RBS attack over GF(256)
(v1,d1 ∗o′1,d2 ∗o′2) (3,1*3,2*2) (4,1*3,2*2) (5,1*3,2*2)

Our scheme 3.57 s 7.89 s 17.48 s
Rainbow 3.57 s 7.87 s 17.46 s

5.3 Security against HighRank Attack

We can write g(2)v1+1, . . . ,g
(2)
n for the quadratic parts of the components of the central map G=(gv1+1, . . . ,gn).

Each g(2)i is expressed by g(2)i (x) = x.Ti.xT , (x = (x1, . . . ,xn)) using a triangular matrix Ti of size n. The
symmetric matrix Si (i= v1+1, . . . ,n) is defined by Si =Ti+T T

i , and we can write A =SpanK{Sv1+1, . . . ,Sn}.
The HighRank attack[15, 13, 16] finds a matrix in A with the maximal rank (not full rank), and it

spends most of its times in this process. The computation has the following steps.
Step 1 Choose M ∈A randomly.
Step 2 Determine whether M is regular. If M is regular, then return to Step 1
Output M.

The complexity of HighRank attack against our scheme is the same as that of Matrix-based Rainbow.
From the security analysis in [6], we have the following proposition.

Proposition 1. If q > 2 and vt > ot +o′t−dt then the complexity of HighRank attack against our scheme
is qo′t−dt+1 ·n3/12 m.

Here, m denotes the field multiplication.
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5.4 Security against MinRank Attack

We use the same notation as in the last subsection. MinRank attack [15, 5, 17] finds a matrix in A with
the minimal rank (not equal to zero), and it spends most of its times in this process.

The complexity of MinRank attack against our scheme is the same as that of Matrix-based Rainbow.
From the security analysis in [6], we have the following proposition.

Proposition 2. The complexity of a MinRank attack against our scheme is qv1 ·m(n2/2−m2/6) m.

5.5 Security against UOV Attack

The space spanned by the variables xvt+1, . . . ,xn is a simultaneously isotropic space with respect to
g(2)v1+1, . . . ,g

(2)
n . Here, a subspace W of a vector space V with a quadratic form g is said to be isotropic if

v1,v2 ∈V ⇒ g(v1,v2) = 0.
The UOV attack[18, 19, 10] finds the simultaneously isotropic space by using the following steps.

Step 1 Randomly choose M1,M2 ∈A such that M2 is regular.
Step 2 Compute a proper invariant subspace W of M1,2 = M1M−1

2 . If there is no invariant subspace,
return to Step 1.
Output W .

Considering the construction of α
(k)
i, j ’s in our scheme, the probability that M1,2 has an invariant sub-

space is equal to 1/qn−2ot . Therefore, the complexity of the UOV attack is qn−2ot−1o3
t field multiplication[19].

6 Examples and Comparison

Using our security analysis and the result of Petzoldt et al. [14], we have that S1 =MNT-Rainbow(GF(256);
18,14∗1,1∗14) corresponds to the security levels of 80-bits, and S2 = MNT-Rainbow(GF(256);31,
19 ∗ 1,2 ∗ 12) corresponds to the security levels of 100-bits. S1 and S2 have the same security as
Rainbow(GF(256);18,14,14) and Rainbow(GF(256);31,19,24), respectively. We compare the secret
key lengths and the efficiencies of the signature generation of our scheme and the original Rainbow for
these parameters. Table 4 compares the secret key sizes, and Table 5 compares the efficiencies of the
signature generation. In Table 5, the time taken by a C-Language implementation. We used gcc and an
Intel Core i5 2.67GHz CPU with 4GB RAM.

7 Conclusion

We presented a variant of Rainbow, that has a smaller secret key and faster signature generation process
compared with the original. We analyzed the security of our scheme against known attacks such as direct
attacks. In addition, we presented an explicit parameter of our scheme for several security levels. Our test
proves that our scheme is 55% faster than Rainbow at generating the signatures and has a 76% smaller
key at a security level of 100 bits.
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Table 4: Secret Key Lengths of Schemes over GF(256)
Parameter (v1,d1 ∗o′1,d2 ∗o′2) (18,14∗1,1∗14) (31,19∗1,2∗12)

Security Level 80 bits 100 bits
Rainbow (Byte) 23680 89026

Matrix-based Rainbow (Byte) 19975 56674
NT-Rainbow (Byte) 15242 53663
Our scheme (Byte) 11537 21311

Ratio (Our scheme/Rainbow) 48.7% 23.9%

Table 5: Efficiencies of Signature Generation of Schemes over GF(256)
Parameter (v1,d1 ∗o′1,d2 ∗o′2) (18,14∗1,1∗14) (31,19∗1,2∗12)

Rainbow 188 µs 651 µs
Matrix-based Rainbow 138 µs 423 µs

NT-Rainbow 129 µs 443 µs
Our scheme 96 µs 294 µs

Ratio (Our scheme/Rainbow) 51.1% 45.2%
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