
Anomaly Detection in Computer Networks:
A State-of-the-Art Review

Sherenaz Al-Haj Baddar1, Alessio Merlo2∗, and Mauro Migliardi3
1Department of Computer Science, KASIT, The University of Jordan, Amman, 11942, Jordan

s.baddar@ju.du.jo
2Computer Security Lab (CSec Lab), DIBRIS - University of Genova, Genova, 16145, Italy

alessio.merlo@unige.it
3DEI - University of Padova, Padova, 35131, Italy

mauro.migliardi@unipd.it

Abstract

The ever-lasting challenge of detecting and mitigating failures in computer networks has become
more essential than ever; especially with the enormous number of smart devices that get connected
to all sorts of network everyday. Whether the root cause of a given anomaly is a security breach,
a component failure, an environmental factor, or even any combination of these reasons, anomalies
need to be detected and mitigated timely and properly. In this paper, we review and evaluate the
state-of-the-art studies on the problem of anomaly detection in computer networks. We provide an
elaborate description of the anomaly detection problem, and depict the different categorizations of
its solutions. We also illustrate some recent state-of-the-art solutions on the network level, and depict
current trends in handling malware-induced anomalies in smartphone networks. Additionally, we
evaluate the presented solutions and highlight their shortcomings.

Keywords: Anomaly Detection, Network-level Detection, Application-level Detection, Mobile Se-
curity, Android Security

1 Introduction

Nowadays, multitude of interconnected computers, together with the abundance of smartphones, wear-
ables, biomedical sensor, and the countless number of everyday appliances can connect seamlessly to
different kinds of networks [1, 2, 3, 4]. Thus, the ever-lasting challenge of detecting and mitigating fail-
ures has become more essential than ever, whether it is a small piconet at home, a corporate network, or
even the Internet.
A random, nonconforming, or unexpected behavior within a system is referred to as an anomalous be-
havior, or simply an anomaly [5, 6, 7, 8]. The existence of anomalies can have profound effects on the
robustness of a given network’s operation [9]; as such, the consequences of failing to detect anomalies
can be dramatic. Anomalies going unnoticed in a given system may leak confidential information to
the outside world [10, 11], cause financial complications and/or losses [12, 13], or, even worse, lead
to making fatally wrong decisions [14]. While the existence of security breaches is usually manifested
by anomalous behaviors [15], typical hardware and/or software malfunctions can result in anomalous
behaviors as well [16, 17, 18]. Either way, anomalies within a computer network cannot go unnoticed,
they need to be detected, located, and mitigated timely and properly.
Anomalous behaviors are in essence Byzantine failures. According to his seminal paper [19], Lamport

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, volume: 5, number: 4, pp. 29-64
∗Corresponding author: Computer Security Lab, DIBRIS, University of Genova, Viale F. Causa, 13, 16145, Genova. Tel:

+39-010-353-2344. Homepage: http://www.csec.it/people/alessio/

29

http://www.csec.it/people/alessio/


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

stated that a system of interconnected nodes is said to have Byzantine failures when some node(s) send(s)
conflicting messages to different parts of the system. A solution of the Byzantine failures should seek
to establish an agreement between the non-faulty nodes in the system, taking things a step further than
simply detecting that some nodes are being faulty.
Over many decades, the problem of detecting and mitigating anomalous behaviors has been studied thor-
oughly, yet it remained one of the most chronic problems in distributed computing [20, 21, 22, 23]. As
technology evolves, new issues arise that add to the pile of unsolved issues pertaining to anomaly detec-
tion [24, 25]. In this paper, we aim at reviewing the state-of-the-art solutions of the anomaly detection
problem in computer networks. Classically, detecting anomalies in a computer network, either wired or
wireless, comprises inspecting the exchanged packet headers and/or contents. However, as smartphone
technology emerged, networks of interconnected smartphones have become prone to different classes of
anomalies. Thus, anomaly detection in computer network can be performed on two levels; the network
level and the application level. Here, we divide our discussion into two parts: the first pertains to classical
anomaly detection at the network level, while the second pertains to anomaly detection in smartphone
networks at the application level.

Solving the anomaly detection problem is far from trivial, as the nature of anomalies themselves is
varying. In the context of a computer network, providing a comprehensive definition of an anomalous
or even a normal behavior is typically subtle [26, 27]. Another reason is that several anomaly detection
techniques require labeled samples of normal and/or anomalous behaviors which are not easy to obtain
[28, 29]. Besides, choosing a suitable tool to help detect anomalies is not straightforward. A designated
tool may be well-suited for one kind of anomalies, but not for others [30]. Thus, when the types of
anomalies are not known a priori, which is a rather realistic assumption, selecting an anomaly detection
technique is not trivial. In the context of wireless and smartphone networks, nodes usually wander
freely and could join and leave the network arbitrarily. Thus, the network dynamics impose further
complications on the anomaly detection solution. Moreover, the network scale is an issue: anomaly
detection solutions need to account for load-balancing and fault-tolerance themselves, especially with
the growing sizes of current networks [31, 32].

The rest of this paper is organized as follows; Section 2 presents necessary terminology and back-
ground on the topic of anomaly detection. It also presents several categorizations of anomaly detection
techniques. In Section 3, some state-of-the-art network-level and application-level anomaly detection
solutions are discussed. A summary of the major shortcomings in the illustrated solutions is depicted in
Section 4. Finally, the drawn conclusions are presented in Section 5.

2 Preliminaries and Background

The solutions of the anomaly detection problem originate from a wide array of disciplines. Thus, we
introduce the basic concepts and terminology related to these disciplines, and shed light on relevant
background. We also depict several categorizations of the techniques employed to solve this problem.

2.1 Basic Terminology

Anomalies are detected by analyzing the system’s events, where each event is designated by a data
instance, or simply an instance. The data instance possesses features (i.e. attributes) to help describe it
[26]. For example, in network-level anomaly detection, a packet sent from a source node to a destination
node may count as an event to be analyzed. Hence, the features of the data instance that corresponds to
this event would include the packet’s source address, destination address, length, and the time at which

30



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

the packet was sent, alongside other features. It is worth mentioning that a data instance that has a single
feature is referred to as a univariate instance, while an instance that has multiple features is referred to as
a multivariate instance [30].

Features are crucial for distinguishing normal behavior from anomalous behavior. A given computer
network typically provides a wealth of features per a given data instance, yet they are not necessarily
all equally informative [33]. Thus, identifying the subset of the features that do actually separate nor-
mal behavior from anomalous behavior is not trivial. Some researchers utilized information theoretic
approaches to help distinguish informative features [34, 35, 36, 37]. In information theory, the term
entropy measures the uncertainty in the distribution of a given set of data [38]. Based on the concept
of entropy, the Information Gain (IG) and chi-squared methods can be applied to help select the most
informative features. The IG method measures the reduction in entropy when the feature is kept instead
of being eliminated [39]. Also, the chi-squared test measures the independence of any two features, and
thus helps retain the less correlated features [40]. A third method is the Fisher-score, which is the ratio of
inter-class variance to the intra-class variance for a given feature, assuming that normal instances form
a class and anomalous instances form another class [41]. In a third approach, researchers used machine
learning classification techniques to achieve the same goal [42]. In another approach, the researchers
would hand-pick the informative features to help detect anomalies [43].

2.2 Taxonomies of Anomaly Detection Techniques in Computer Networks

As illustrated is Section 1, an anomaly detection solution (i.e. detector) in networks operates either at
the network-level or at the application-level. Aside from this categorization, various surveys and reviews
provided different categorizations of anomaly detection techniques [30, 26, 33, 44]. In this subsection,
we highlight the most commonly-referenced categorizations of anomaly detection techniques.

2.2.1 According to Granularity

When an independent data instance comprises an anomaly, it is referred to as a point anomaly [30, 26,
33]. For example, a system event in which a user tries to access a restricted server is considered a point
anomaly. Many anomaly detection solutions assume this kind of anomalies [30]. Yet, point anomalies
do not fit the situations where anomalous behavior is an aggregate of data instances, or when anomalies
are associated with given contexts. A pictorial illustration of a point anomaly is illustrated in Fig. 1.

In other situations, the anomalous behavior is defined within a context; thus, a given data instance is
not anomalous unless it happens within a predefined context [30, 33]. This is referred to as contextual
anomaly, where the data instance has to have some feature(s) that pertain to the context, whether it
is temporal (i.e. time-relevant), spatial (i.e. location-relevant), or a different kind of context per the
problem domain. For example, having a staff member attempt to log in to her corporate system using
her credentials is not anomalous per se. However, when this does not happen within the pre-defined
business hours, the instance becomes anomalous in the temporal context. Fig. 2 illustrates an example
of a contextual anomaly.

A collective anomaly designates a group of instances that exhibits an anomalous behavior compared
to the other groups of instances [30, 33]. An individual instance within the anomalous group is not
necessarily anomalous on its own. For example, consider a system in which users interact with a web
server, where a supposedly non-privileged user does the following sequence of operations:

access a local folder on the server, upload an executable file into the folder, run a script

While typical non-privileged users only access the public folder(s) in the web server to simply read
and upload non-executable files; this particular user’s activities are nonconforming, and designate a
collective anomaly. A pictorial example of a collective anomaly is depicted in Fig. 3.

31



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

Figure 1: An example of a point anomaly.

Figure 2: An example of a contextual anomaly.

2.2.2 According to Functionality

Typically, an anomaly detection solution is either signature-based [45] or behavioral [33, 37]. Signature-
based solutions operate by applying a set of hardwired patterns, signatures, or rules against given behav-
ior(s). If a given behavior matches either one of the hardwired signatures, then an anomaly is detected.
Otherwise, the detector will not tell whether or not the designated behavior is anomalous. Typical exam-
ples of signature-based anomaly detectors are antivirus engines [46, 47]. Albeit being potentially efficient
in terms of computational cost, these solutions fail at identifying new or previously unseen anomalies.
Thus, their application domains are rather restricted.

Behavioral detectors, on the other hand, can learn the normal and/or anomalous behavior(s) of a

32



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

Figure 3: An example of a collective anomaly illustrated by the values of Processor II.

network and, thus, have the potential to identify whether new or previously unseen behavioral patterns
are anomalous or not [37]. Such solutions would typically utilize one or more of the approaches described
in subsection 2.2.3 in order to achieve their goal. Thus, they may experience longer computational times.
Moreover, they are prone to detection inaccuracies which could also limit their applicability in some
real-world setups.

2.2.3 According to the Underlying Approach

Anomaly detection can be considered a classification problem, where anomalous behaviors need to be
distinguished from normal behaviors. Here, we discuss the taxonomy of the approaches used in anomaly
detection solutions as depicted in Fig. 4, based on the discussions provided in [30, 48, 49].

The Statistical Approach. The statistical approach is used when normal data exist in high probability
regions of some stochastic model, whereas anomalies occur in the low probability regions of that model
[30]. The stochastic model is either determined a priori (i.e. parametric modeling), or is derived from
the data itself (i.e. non-parametric modeling). The main idea behind this approach is to measure the
anomaly score which designates the deviation of a given data instance from the model. Then, the score
is compared to some pre-defined threshold (i.e. tested) to determine whether its corresponding data
instance is anomalous or not. Hypothesis testing and decision theories are usually used to accomplish
this task [49, 26].
Parametric modeling spans Gaussian-based models, regression-based models, and mixtures of models
[30]. In the Gaussian-based model, the data is assumed to belong to some Gaussian distribution. The
model’s parameters are calculated using the maximum likelihood estimation based on the data instances
themselves [50]. Several tests can be used to determine whether or not a data instance is anomalous.

33



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

Figure 4: Taxonomy of anomaly detection techniques based on their approach.

Such tests include the box-plot[51], and the chi-squared tests. In the regression-based models, the data
is fit to a regression model, like the linear model depicted in Fig. 5, and then the residual of each data
instance, which is not covered by the regression model, gets measured. This residual is considered to be
the instance’s anomaly score. In mixture-based models, a combination of parametric models is utilized
in two flavors. In the first flavor, two models are used: one to represent the normal data, and the other
to represent the abnormal data. In this case, the test aims at determining to which distribution a given
data instance belongs. In the second flavor, a mixture of parametric models can be used to represent the
normal data only. Here, the test identifies a given data instance as anomalous if it does not belong to
any of the designated models. For this approach to be effective, the model(s) to which normal and/or
abnormal instances belong need to be determined a priori; the definition of these models is not always a
trivial task.
In non-parametric modeling, no model is assumed a priori; instead, a model is generated from the normal
data instances. Then, the deviation of a given data instance from the model would designate its anomalous
score. This approach requires that normal behaviors are known a priori.

In the histogram-based model, the data is used to plot a histogram that comprises bins generated from
the values of the normal data. Then, to determine whether a given instance is anomalous or not, it gets
plotted to see if it falls in any one of the histogram bins. If this is not the case, the instance is considered
to be anomalous. When this technique is used, the sizes of the bins are crucial: too wide bins would
result in lower detection accuracy; while too thin bins would result is higher false alarms rates.
The modeling technique based on Kernel functions aims at deducing a similarity function based on the
provided data; this allows constructing a model based on the data instances [52]. If the given data
instances do not fully describe the designated behavior, the model will fall short in terms of accurate
behavior identification.

The Spectral Approach. In some situations, several dimensions (i.e. features) of the data instances
are inherently dependent. Thus, combining the dependent dimensions both improves the classification
accuracy and reduces the computational complexity; the application of such a combination transforms

34



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

Figure 5: A set of points fit to a linear regression model.

the original data instances into new instances with only the independent dimensions.
Mathematically, this formulation is referred to as dimensionality reduction [53]. Formally, this reduc-
tion can be viewed as embedding the original data instances into a subspace with fewer dimensions as
illustrated in Fig. 6; this is subject to the condition that normal and anomalous instances look drastically
different after the dimensionality reduction has taken place. In the spectral approach, a dimensionality re-
duction algorithm is first applied to the data instances. One popular dimensionality reduction technique
is the Principle Component Analysis (PCA) algorithm which gets applied to a matrix of the original
instances, and generates a set of m orthogonal (i.e. independent) vectors referred to as principal compo-
nents. The first k of the m vectors, where k ≤ m, capture the highest variance in the original matrix and
designate normal traffic (i.e. the normal subspace); the remaining m−k vectors designate the anomalous
traffic (i. e. the anomalous subspace). Nevertheless, the m− k vectors can be further split into several
noise as well as anomalies classes. Hence, to determine whether a data instance is normal or anomalous,
it gets projected onto the normal and anomalous subspaces. If it is expressed more by the normal sub-
space, then it is considered normal; otherwise, it is considered anomalous [30]. The threshold used to
choose either subspace is a separate parameter than needs to be adjusted properly.

The Information Theoretic Approach. From an information theoretic perspective, the data instances
are considered to be a set of symbols generated by the network, whereas each instance is generated inde-
pendently with a certain probability. Thus, one would seek to measure the average amount of information
conveyed by each instance. This approach utilizes the concept of entropy, as described in subsection 2.1.
It is based on the assumption that anomalies distort the information content of the network’s data in-
stances. Thus, the anomaly detection technique needs to split the data instances to subsets, so as to
minimize the entropy. Several information theoretic techniques have been used in anomaly detection
[54, 34, 35, 37], one of which is information gain as described in subsection 2.1. In this context, the IG
method splits the instances into normal and anomalous to reduce entropy. Another technique is relative
entropy which aims at measuring the statistical distance between two distributions [55].

35



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

Figure 6: Dimensionality reduction of a high dimensionality data.

The Machine Learning Approach. One of the most appealing features of machine learning algo-
rithms is that they improve their ability to distinguish normal behavior from anomalous behavior with
experience [39]. In the context of anomaly detection, a machine learning algorithm typically provides a
mapping that adapts to unseen network anomalies [49]. Formally, let set S be defined such that S= {0,1},
and let us assume that a data instance can be either in one of two states, normal (i.e. 0), or anomalous
(i.e. 1). Let us also assume that each data instance resembles a feature vector X measured at time t and
denoted by X(t).
A machine learning algorithm aims at learning the function that maps all X(t) instances to their proper
states from S. In order to achieve their goal, machine learning algorithms utilize a set of data instances
that resemble the instances within a given computer network; this set is referred to as a training dataset
( or simply training set). Some machine learning algorithms learn the mapping function by utilizing
labeled training sets, where each instance in the training set is labeled with either one of the states in S.
These algorithms are referred to as supervised learning algorithms. On the other hand, some machine
learning algorithms utilize training sets of totally unlabeled instances. These algorithms are called un-
supervised learning algorithms. In some cases, the two approaches are mixed into the hybrid approach
called semi-supervised learning, where the algorithm is trained with a majority of unlabeled instances and
a minority of labeled instances. A machine learning algorithm starts by learning the mapping function
from the training dataset, then proceeds to the testing phase, where it examines “other” data instances
that are collectively referred to as the testing set, and computes the label (i.e. either 0 or 1) for each
instance using the mapping function it learned.

According to the categorizations provided in [30, 26, 33], machine learning algorithms are either:

• Classification-based. These algorithms’ main goal is to assign each data instance to either one of
pre-set classes based on their features. Typical examples include:

– Classification-oriented neural networks. A neural network loosely mimics the human neu-
ronal structure, and comprises a set of highly interconnected processes that operate asyn-
chronously on their local data [56]. A neural network is trained on normal data instances.
After that, it is presented with unseen instances. Here, the network applies a test on the test
data instance, if it passes, then it gets accepted as a normal instance. Otherwise, it is consid-

36



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

ered anomalous. Feed-forward networks are neural networks typically used in classification,
like multilayer perceptron networks [57]. Depending on the labeling of the data, neural net-
works can be used for both supervised and unsupervised learning. Fig. 7 depicts a multilayer
perceptron network.

Figure 7: A multilayer perceptron network with one hidden layer.

– Bayesian networks. According to the definition in [58], “a Bayesian network is a graphical
model that encodes probabilistic relationships among variables of interest”. Bayesian net-
works are supervised learning algorithms based on the well-known Bayes Theory [39]. They
operate by estimating the posterior probability of an event given some pre-condition. A spe-
cial class of Bayesian networks is referred to as Naı̈ve Bayesian networks which are used
for univariate categorical data instances [39]. Here, for a given data instance, the network
estimates the posterior probability of detecting a class label from a set of normal and anoma-
lous class labels. The class label with the largest posterior probability is selected as the class
to which the data instance belongs. Multivariate data instances are handled via generaliz-
ing the univariate model, as the posterior probability for each attribute is estimated, then the
estimated probabilities get combined to assign the data instance to a given class [30].

– Support Vector Machines (SVM). SVMs are supervised learning algorithms that plot the train-
ing data instances in a multi-dimensional plane and then determine a hyperplane that splits
the data instances into two disjoint groups while maintaining the maximum margins around
the separating hyperplane [59]. One-class SVM algorithms are trained only with normal data.
Thus, upon receiving a test data instance, they predict whether it belongs to the normal data
class, or not. SVMs are well-defined as they stem from a solid mathematical background of
statistical learning theory [59]. An SVM algorithm is considered a linear classifier when it
uses a line to split the data instances into normal and anomalous. To perform non-linear clas-
sification, SVM algorithms use kernel functions [60]. An example of an SVM hyperplane is
presented in Fig. 8.

– Rule-based machine learning algorithms. These supervised learning algorithms learn the
rules that capture the normal behavior of a data instances. Thus, during testing, when all the

37



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

Figure 8: An SVM hyperplane splitting two sets of data.

rules fail to capture a data instance, it is considered anomalous. Decision trees and Associ-
ation Rule Mining (ARM) techniques, among other rule-based techniques, are used to learn
the rules from the training data instances [39, 30]. A well-known decision tree algorithm is
the C4.5 algorithm, which is also known as J48 algorithm [39, 61]. Each rule is assigned a
weight that is proportional to the ratio of the number of training data instances the rule clas-
sified correctly to the total number of training instances covered by the rule. For a given test
data instance, the rule that best captures the test instance is sought. Here, the anomaly score
is the inverse of the weight associated with the best rule. Random forests are constructed
out of several decision trees; a random forest reports the mode of the classification of all
individual decision trees as the overall classification result [62].

• Nearest-neighbor algorithms. These algorithms use either distance-based or density-based func-
tions to measure the distance between a given data instance and its k− th nearest neighbor [30].
This distance designates the anomalous score of that instance. The assumption is that normal in-
stances, unlike anomalous instances, occur in dense groups. Based on whether labels are used in
training data instances, these algorithms can either operate in supervised or unsupervised fashions.

• Clustering. These unsupervised learning algorithms operate by trying to identify groups (i.e.
clusters) of closely located (or similar) training data instances. Anomalies may form sparse clusters
or belong to no cluster at all. Self-Organizing Maps (SOM) [63], Expectation Maximization (EM)
[64], k-means clustering [65], and Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithms [66] are classical clustering algorithms. A pictorial example of the k-means
algorithm output is shown in Fig. 9.

The Streaming Approach. The main idea behind this approach is to consider the data instances within
the network as continuous flows, and try to extract information from almost every such flow. Thus,
discrete algorithms may be applied to these streams in order to help detect anomalies [49]. The point is
trying to avoid sampling of traffic, which is usually used in typical anomaly detection algorithms, as it
may result in missing important data instances that may convey significant information on the normal or
anomalous behavior within the network.
To do so, the problem of detecting anomalous behavior in a network can be reformulated into either [49]:

1. Heavy-hitter detection problem, where the anomaly detection technique aims at identifying flows

38



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

Figure 9: The output of applying k-means algorithm to a dataset with 4 clusters.

that represent large portions of the traffic;

2. Heavy-change detection problem, where the anomaly detection technique aims at identifying flows
that represent a significant change in traffic volume from one period of time to the other.

The heavy-hitter problem might be of more interest to network service providers as they try to achieve
their quality of service goals. The heavy-change detection problem, on the other hand, better models
the anomaly detection problem in computer networks. To solve the heavy-change problem, one would
typically [49]:

1. Apply a summarizing algorithm to the traffic flows to extract vital information without investigat-
ing the flows thoroughly. These are typically called sketching algorithms, and their outcomes are
called sketches.

2. Apply time-series forecast models on top of the sketches.

3. Estimate forecast errors, and use them to identify whether significant changes in traffic volumes
were spotted.

In the context of computer networks, let us assume that we aim at detecting heavy-change in each
flow designated by its source IP address. Also, let the vector F(t)[p] denote the amount of traffic trans-
mitted from the node with IP address p during time interval t. If node p transmits δ additional bits during
the tth time interval, then the total amount of traffic associated with p becomes F(t)[p] = F(t)[p] + δ .
Now, to identify flows with heavy change, we need to find all flows q for which |F(i)[q]−F( j)[q]|> ε ,
for some predefined threshold ε at time intervals i and j. The difference can be simple absolute differ-
ence or a relative difference, or a variational difference [67]. Naturally, the streaming technique is useful
in the situations where anomalous behaviors comprise notable changes in network traffic volumes.

2.2.4 According to the Nature of Data Instances

While some anomaly detection solutions rely on digesting the packet headers to help identify anomalies,
others would analyze the packets’ payload itself. Choosing either method depends on several factors.
First, in some cases the anomalous behavior manifests itself in anomalous traffic patterns, regardless of
the content being exchanged. For such anomalies, detecting packet headers would suffice, and help avoid

39



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

breaching users’ privacy. On the other hand, some anomalies do not manifest themselves in anomalous
network traffic, but in falsified packets’ payload. Here, inspecting the traffic headers would have little to
do, if at all, with accurate identification of anomalies in the network. Yet, breaching users’ privacy may
be simply unacceptable at times.

2.3 Other categorizations

Anomaly detection solutions in networks are either packet-based or flow-based. In packet-based anomaly
detection, the detector analyzes the traffic packet per packet in order to look for anomalies. Yet, as the
number of such packets would be enormous, these solutions revert to sampling. Using sampling, the de-
tector investigates some of the packets generated at predefined timeslots, and associated with previously-
determined locations within the network. One challenge associated with sampling is its granularity, if
sampling happens more often than it should, it would result in having the detector examine a larger
number of packets which could render the detector rather slow in identifying anomalies. On the other
hand, if sampling happens less often than it should, it would result in missing important information
which could result in failing at detecting anomalies as well. In flow-based anomaly detection, the solu-
tion analyzes flows of traffic, running between given source and destination nodes, rather than individual
packets. Again, the detector may either investigate every such flow in order to detect anomalies, or may
sample certain flows to investigate. As we have shown in Subsection 2.2.3, streaming anomaly detection
techniques use the concept of sketching algorithms to analyze summaries of traffic flows.

While some anomaly detection solutions monitor live nodes’ behavior, and report the anomalies they
identify in real-time (i.e. online detectors), other solutions operate offline, as they digest previously-
collected behavior patterns. Online solutions are more responsive compared to offline solutions, yet,
some of them may introduce some overhead on the network itself. This is due to the fact that some online
solutions rely on having some or all of the nodes in the network participate in the anomaly detection
process. This can be a serious burden in situations where nodes have limited resources such as the case
of sensor and smartphone networks. Offline solutions, on the other hand, relief the network from such
overheads, but fail at being responsive which may not be acceptable in some contexts.

The aforementioned categorizations of anomaly detection solutions are applicable both in network-
level detectors as well as application-level detectors. However, other categorizations are more relevant
to application-level anomaly detection solutions. For example, such anomaly detection solutions are
considered static if they identify anomalies solely via inspecting the application’s source code files. In
the context of smartphone networks, these solutions would analyze the application’s xml and .dex files
in order to identify anomalous behaviors [37]. They would normally look for signs of anomalies in
the application’s permissions, used APIs, and the like. On the other hand, dynamic anomaly detection
techniques identify anomalous behaviors by monitoring the application’s behavior under execution, and
normally look for signs of dynamic loading, suspicious code downloads, suspicious system calls, and
the like. While static analysis is usually more efficient from a computational perspective, it fails when
the application’s source is obfuscated as it is usually the case for malicious code. Dynamic techniques,
on the other hand, are more resource and time consuming, relatively speaking, which may render them
impractical to deploy on smartphones and sensors. However, they are immune to code obfuscation.

Another categorization that especially pertains to smartphone and sensor networks is the location of
the detection solution [68]. Some solutions run totally on-device without support from remote server(s)
(see e.g. [69]). Such solutions need to be lightweight and efficient, or they will exhaust the devices’
resources. Other solutions run off-device, where some or all of the detection processing takes place on
remote server(s) that do the actual processing of the collected information, and decide on the existence
of anomalies. These solutions impose a smaller computational overhead on the devices, yet they incur
communication costs, and are prone to malicious isolation from the servers which will prevent them from

40



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

communicating their measurements during anomaly detection.

2.4 Measuring the Performance of an Anomaly Detection Technique

As we briefly described in Subsection 2.2.3, anomaly detection starts by a learning phase in which the
solution, regardless of its approach, gets exposed to the training dataset. After the learning phase is over,
the solution becomes ready to classify new and/or previously unseen instances. Upon completing this
phase, specific metrics that measure the solution’s performance get calculated accordingly.

For a typical anomaly detection solution, identifying anomalies correctly is necessary, but not suffi-
cient. It is also necessary that the solution does not generate false alarms (i.e. identifies normal instances
as anomalies). In real-world applications, it is rather undesirable to have a solution that generates false
alarms even if it manages to detect actual anomalies with high accuracy. Here, we summarize the most
important metrics used to assess the performance of an anomaly detection solution.

The most-commonly used metric is the True Positive (TP) rate (also known as detection rate, sen-
sitivity, or recall) which designates the ratio of the instances classified as anomalous (i.e. positive) by
the detector. Another important metric is the False Positive (FP) rate (i.e. false alarm) which designates
the ratio of the normal instances classified mistakenly as anomalous. The False Negative (FN) rate is
the ratio of the anomalous instances mistakenly classified as normal, while accuracy refers to the ratio
of all correctly classified instances either normal or anomalous. Moreover, the Receiver Operating Char-
acteristic (ROC) curve is a metric to measure the performance of a detection solution. It is generated
by plotting the TP rate against the FP rate at different threshold values, where a threshold is the cut-off
point between considering an instance normal or anomalous. The AUC metric designates the Area Un-
der the ROC Curve. Another metric is precision, which is the ratio of correctly classified anomalies to
all instances classified as anomalies. F-score (also known as F-1 score, F1-score, or F-measure) is the
harmonic mean of precision and recall and is calculated as [70]:

F−Score = 2∗ Precision∗Recall
Precision+Recall

(1)

3 Anomaly Detection Techniques: State-of-the-Art

In this section we discuss a set of recent anomaly detection solutions for computer networks. We start
with network-level anomaly detection solutions, and then depict application-level anomaly detection
solutions.

3.1 Network-level Anomaly Detection Solutions

Several network-level anomaly detection solutions have adopted the machine learning approach. Here,
we depict a subset of these solutions.
In [71], the goal was rapid and accurate detection of some data-centric anomalies while saving on nodes’
computational, memory, and communication resources. The authors introduced the Practical Online
aNomaly Detection (POND) framework which utilizes machine learning for anomaly detection in Wire-
less Sensor Networks(WSNs). The WSN had a base station, and comprised a logical tree of nodes that
extracted statistical features online without maintaining sampled data points over the extraction window.
To reduce the communication overhead, the nodes sent summarized statistical measurements only during
their initial deployments. Furthermore, child nodes sent their summarized measurements to their parent
nodes to help them detect misbehaving child nodes. POND utilized supervised learning where certain
anomaly models were injected into the sensor network initially. Then, each sensor measured three sta-
tistical features pertaining to temporal deviation, spikes in values, and violations of data ranges. After

41



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

the sensors communicated their statistical feature summaries to the base-station, it applied the Adaptive
Boosting (AdaBoost) algorithm to the statistical data collected from sensors, and selected a predictor
that achieved the best trade-off between complexity and accuracy. The AdaBoost algorithm operates by
combining weak classifiers into a weighted sum that represents the overall classification value [72]. The
predictor was sent to the sensor nodes, with normal and abnormal nodes labeled accordingly. A parent
node would restrain from sending the statistical measurements of its child node(s) that are designated ab-
normal by the predictor. The authors did two limited sets of experiments; using simulation of 200 nodes,
and implementation on a randomly scattered 22-node in-door network of MicaZ motes, and measured
FN and FP rates.

In [73], the author proposed an anomaly detection algorithm that combined both a genetic algorithm
and an artificial immune system, called GAAIS, for dynamic intrusion detection in ad hoc networks.
GAAIS can adapt to changes in network topology and utilizes two updating methods to achieve this
goal. GAAIS comprises three steps: training, detection, and updating. In the training step, each node
extracts a set of feature vectors from its normal traffic to generate its spherical detectors. In the detection
step, each node extracts a set of feature vectors from its current traffic and compares it, after proper
scaling, to its spherical detector to help identify anomalies. In the updating step, the spherical detectors
get updated using either partial or total update at pre-specified time intervals. The author used simulation
to measure the performance of their solution. They assumed one node to be malicious and generated 5
pre-determined categories of attacks and measured the detection accuracy for each attack separately as
well as the time spent on training, testing, and updating. They pre-set the number and categories of the
feature vectors used for generating the spherical detectors.

In [74], the goal was to accurately identify abnormal measurements of medical WSNs. The authors
assumed the existence of medical sensors that were attached to a patient’s body, and responsible of mea-
suring his vital biometric signs and sending them to a Local Processing Unit (LPU). The LPU would then
measure the spatial correlation of the values it received to determine if an outlier exists. In such a case,
the LPU generates an alarm as this outlier would typically indicate a health complication in the patient.
Yet, the authors aimed to reduce the ratio of false alarms raised by the LPU by making sure the sensors
do not send anomalous and/or faulty measures to the LPU. The authors assumed that the anomalous
incidents were rather rare. Thus, the sensors carried out a lightweight distributed computation to identify
anomalies locally, and communicate them to the LPU. The sensors utilized a forecasting technique in
order to detect anomalies; hence, prior knowledge of the anomalous or normal data was not necessary.
They also utilized the Exponentially Weighted Moving Average (EWMA) technique [75] for forecast-
ing, and compared the expected measurement with the actual measurement to figure out the deviations
from the expected behavior. The LPU applied chi-squared distance and Kernel Density Estimator (KDE)
[76] to ignore uncorrelated data before raising a medical alarm. In their simulation, the authors used
real medical dataset from the Physionet database1. The dataset contains almost 45000 records, and each
record contains 4 attributes. They compared their approach with the Mahalanobis Distance (MD) [77],
and found that the two methods performed similarly in terms of identifying anomalous values. They also
injected 100 synthesized anomalies at different time instants and in different attributes, and measured the
TP and FP rates.

In [29], the authors aimed at developing a self-learning anomaly detection solution that adapts to
change in the network’s traffic. Thus, they utilized a semi-supervised learning algorithm, where the de-
tector was trained only on normal cases, and the knowledge about anomalous cases evolved dynamically.
Consequently, they used the Discriminative Restricted Botlzman Machine (DRBM) neural networks
[78], which combine strong generative modeling with classification accuracy in order to infer knowl-
edge from incomplete training data. Typically, a DRBM comprises a network of stochastic neurons that

1http://www.physionet.org/, accessed on Nov. 4th, 2014

42

http://www.physionet.org/


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

behave according to some energy model. The authors’ hypothesis was that there exist deep similarities
between normal cases that can be fully expressed using the DRBM machine so as to spot anomalous
traffic with high accuracy. The authors conducted two sets of experiments; in one they acquired real
traffic traces from a normal network host and an infected network host. In the second, they utilized the
KDD’99 training set2. They measured the accuracy of the classifier as well as the free-energy associated
with normal and anomalous traffic.

In [79], the authors aimed at selecting a subset of the data instances that is representative of the orig-
inal data instances set. This data reduction would help design intelligent intrusion detection systems that
are both effective and efficient. To achieve their goal, they introduced the notion of representativeness
which measures the representative power of an instance within its class and with respect to the data in-
stances set. An instance is considered representative when it is similar to many instances within its class
and different from the other data instances within the other classes. In their work, they used a Euclidean
distance metric to measure the similarity, and multiplied it by a factor that measures the similarity be-
tween the instance and all other instances within other classes. However, to reduce the cost associated
with these measures, the authors used a centroid-based classification algorithm to measure similarities.
To assess the effectiveness of their approach, they tested with several machine learning algorithms span-
ning: k-nearest neighbor, artificial neural networks, SVM, and liblinear classifiers, which are large-scale
linear classifiers [80]. They compared the performance of these algorithms using the same dataset with
and without representativeness and measured: TP and FP rates, precision, F-score, and accuracy. Their
results showed that the reduced features resulted in detectors with performance comparable to the cases
when no feature reduction was used. As for the data they used, it comprised labeled flow-based honeypot
traces. As the majority of the traffic was anomalous, they incorporated benign traffic for the purpose of
evaluation. They carried out extensive experimentation in order to figure out the proper values for the
number of clusters as well as the number of representative instances.

In [81], the authors aimed at detecting anomalies with a high degree of accuracy albeit the conflicting
network environment. Thus, they developed a novel combination of machine learning techniques for
feature selection which consisted of k-means clustering, Naive Bayes classification, the Kruscal-Wallis
test [82], and C4.5 decision trees. Their approach comprised:

1. An unsupervised stage in which k-means was applied in order to identify clustered features.

2. The feature selection step which utilized wrapper-based Naı̈ve Bayes algorithm for relevant feature
ranking and Kruscal-Wallis’s test for significant feature ranking.

3. A supervised learning stage where the C4.5 decision tree algorithm was used to evaluate the sig-
nificantly relevant subset of features selected in the selection step.

The authors found that statistically reduced yet relevant features can filter out noisy data associated
with irrelevant features. Their work also showed that the speed and efficiency of anomaly detection
improved, as reducing the amount of features helped decrease the amount of computation required. To
assess their technique, they built a small office network and had it generate four types of Distributed
Denial of Service (DDoS) attack to investigate whether or not their technique would identify the proper
features for each type of DDoS attack. Firstly, they applied the k-means clustering algorithm which only
gathered the malicious traffic into clusters. The number of clusters was comparable to the number of
DDoS attack types. Then, they applied the Naı̈ve-Bayesian classifier to rank the features within each
cluster. Kruscal-Wallis method was applied afterwards to double check the significance of the previous
steps. After the feature sets were identified, they got classified using the C4.5 algorithm. Then, the
authors estimated the classification accuracy, FP and FN rates for the original features, the features

2http://www.sigkdd.org/kdd-cup-1999-computer-network-intrusion-detection, accessed: November 4th 2014

43

http://www.sigkdd.org/kdd-cup-1999-computer-network-intrusion-detection


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

identified after the Naı̈ve-Bayesian classifier, and the feature set identified after the Kruscal-Wallis test.
Reducing the features did not significantly reduce the accuracy of the classification.
Another network anomaly detection solution that utilized machine learning is depicted in [83], where the
authors took advantage of SVM, simulated annealing, and decision trees. SVM was used to select the
best features, whereas simulated annealing and decision trees were used to obtain decision rules to help
identify new attacks.

Other network anomaly detection solutions utilized statistical techniques. Here, we highlight a sub-
set of the state-of-the-art statistical anomaly detection techniques in computer networks.
In [84], the authors aimed at developing a contextual anomaly detection technique that provides a scalable
way to detect, classify, and interpret anomalies in sensor-based systems. This work outlined a contex-
tual anomaly detection algorithm for streaming sensors of networks. This anomaly detection technique
further enhances the parallel computing model, MapReduce in order to handle sensors’ big data [85].
Additionally, the technique comprised a two-part detection scheme in order to detect point anomalies in
real-time and then evaluate them using contextual clustering. The contextual clustering was performed
using the profiles of the sensors that were used in similar contexts, to ensure real-time anomaly detec-
tion. In the part that detects point anomalies, the authors used a univariate Gaussian predictor that built
a historical model of the data, and then predicted and compared new values based on the model. This
part classifies data quickly at the expense of accuracy; thus, in the context-based anomaly detection part,
the contextual anomaly detector defined the sensor profiles, and assigned each sensor to one of those
profiles. It then evaluated the current value, pertaining to the sensor declared anomalous by the first
part, against the sensor profile’s average expected value. The sensor profiles were defined using a mul-
tivariate clustering algorithm which included sensors’ multidimensional contextual metadata spanning
location, time, and weather conditions. This part of the detector was learned off-line using MapReduce
for computational efficiency. The authors utilized Powersmiths datasets to measure the performance of
their proposed technique3. They also included artificial data streams during the testing phase to simu-
late real-time real-world scenarios. They experimentally selected 3 clusters, and counted the number of
point-anomalies and contextual-anomalies that could be identified by their algorithm.

In [86], the authors aimed at developing an anomaly detector that adapts to analysis on irregular
topologies, and can also analyze the traffic matrix in time as well as space domains. In this paper, the
authors implemented Multi-Resolution Analysis (MRA) [87] on Traffic Matrix (TM) using Diffusion
Wavelets (DW) [88]. As a typical TM for an n−node network comprises N2 entries, the MRA provides
a sparse model of M entries where M� N2. The DW implements the MRA on a given TM, and figures
out the most important characteristics of the resulting sparse model. The authors utilized 84 samples from
datasets of Abilene Network [89]. They introduced the concept of Contribution Ratio (CR), which is the
ratio of the square of the volume V (either one of the 5th level approximation coefficients generated by
DW) to the energy of the traffic. The smoothness of the CR over a given time interval implied the absence
of anomalous behavior. On the other hand, a change in the CR designated a sensor’s disconnectivity, and
thus implied the presence of an anomaly.

In [90], the authors aimed at developing a collective long-term anomaly detection algorithm for
wireless sensor networks. Thus, they proposed a statistical data centric anomaly detection algorithm for
wireless sensor networks that considered a collection of neighboring data segments as random variables.
Each data segment comprised observations taken over a continuous time interval. Such a segment is said
to be anomalous if it contains multiple contaminated measurements. In this work, anomalies were identi-
fied by measuring the minimum prediction variance of each data segment with respect to the rest. Hence,
a given data-segment was labeled as anomalous if it was distinct in terms of its prediction variance. The
authors assumed the WSN is split into clusters of adjacent sensors and developed a prediction variance

3“Powersmiths: Power for the Future,” 2010, http://ww2.powersmiths.com, accessed on November 4th, 2014

44

http://ww2.powersmiths.com


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

detector accordingly. Each cluster had a Cluster Head (CH) that collected the data segments from the
sensors within its cluster and considered them random variables. The CH predicted each variable, and
obtained a set of prediction variances. After that, the CH constructed a statistical quantity based on a
chi-squared distribution, and a confidence interval was established as the threshold. This quantity helped
determine the sample covariance matrix among the variables which was used to help detect anomalies.
The sensors did not transmit the measurements associated with their local data segments, but instead
the compressed difference sequences, and sample standard deviations corresponding to their segments.
This helped reduced the communication overhead by 80%, per the authors experiments, as the covari-
ance matrix was built by taking advantage of the Spearman’s rank correlation coefficient. The authors
evaluated the proposed detector utilizing the measurements recorded by the IBRL sensor network which
comprised 52 operating sensors4. They used a fixed-width clustering technique to split the network into
7 clusters. And all their experiments utilized one of the clusters that contained 11 nodes. They measured
FP rate, the detection accuracy, and the average saving rate (i.e. communication cost) for 20 and 40 data
segments. They also injected anomalies artificially in their experiments.

In [91], another collective anomaly detection solution was proposed, where a quickest change desig-
nates a sequence of observations whose Probability Density Function (PDF) might change at an unknown
time. The goal of this paper is to detect the presence of such a change with a minimum delay under cer-
tain false alarm constraints. The authors assumed that the behavior of the network comprised a sequence
of observations whose probability density function changed at unknown times. In their work, the authors
assumed the network to be a wireless sensor network that is split into three groups, each of which applies
the CUmulative SUM (CUSUM) strategy [92]. Each group that detected an anomaly sent an alarm to
the fusion center. Upon receiving two alarms at least, the fusion center fired a global alarm to announce
the detection of an anomaly. The sensors used two techniques for collecting observations within their
own groups; the continuous-time Brownian motion and the discrete time model. The continuous-time
Brownian motion assumes that changes in the behavior can happen simultaneously, while in the discrete
model changes happen independently.

In [93], the authors aimed at developing a decentralized anomaly detection solution for wireless
sensor networks in the presence of one or more classes of misbehaving nodes. The detector was assumed
to operate in a wireless sensor network where a centralized fusion center exists. The fusion center
collected feedback from the sensor, and for each anomaly it detected it decided the class to which the
anomaly belonged. The authors assumed that each class of anomalies can be characterized using a
decision rule (an operating point). Then, they reformulated this assumption into a maximum-likehood
estimation problem with latent variables. After that, they applied the Expectation Maximization (EM)
algorithm, which is an iterative algorithm for solving the maximum likelihood estimation problem. To
assess the performance of their detection technique, the authors measured the discriminability which
designates the rate of correctly classified cases, and the reliability which measures the distance between
the estimated and actual operating points. They compared their technique with the with the Reputation-
Based Classifier (RBC) algorithm [94], and showed that their approach outperformed the RBC algorithm
in the metrics they measured.

Some recent network anomaly detection solutions used a hybrid approach that mixed different de-
tection techniques. For example, the work in [95] aimed at developing a real-time anomaly detection
solution for computer networks. In this work, the author added time to the features in order to accom-
plish anomaly detection in real-time. They also compared the performance of three well-known detection
algorithms: multivariate normal distribution, k-nearest neighbor, and one-class SVM. To achieve their
goal, the author generated a sequence of data points at regular time intervals, and then constructed a time
series for each interval. After that, they created a feature vector for each time interval and mapped it to

4Intel lab data, http://db.csail.mit.edu/labdata/labdata.html. [Online]. accessed on November 4th, 2014

45

http://db.csail.mit.edu/labdata/labdata.html


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

a single data point in the corresponding feature space. To evaluate the technique, they combined normal
traffic from a University local network with 5 types of anomalous traffic from the Lincoln Laboratory at
the Massachusetts Institute of Technology [96]. They measured precision, recall, and F-score for two sets
of experiments; one with row features, and the other with the time-enhanced features for which they used
a discrete wavelet transformation. Additionally, the features for each anomaly detection technique were
selected manually. This work’s results suggested that the proposed technique produced fine performance
for several types of attacks.

Also, in [97], the goal was to compare and contrast the advantages and disadvantages of various
categories of machine learning techniques for anomaly detection in computer networks. The authors
did compare two statistical approaches to anomaly detection based on the Statistical Hypothesis Testing
(SHT) with two methods based on 1-class SVM (i.e. one-class SVM) algorithm and one clustering
technique. One of the SVM methods was a per-flow detector, while the other was window-based as
it considered a sequence of flows within one time window and tried to detect anomalies within each
window. The clustering technique was based on the Adaptive Resonance Theory (ART) [98] which
splits the network into clusters based on the unique features of its flows. The ART detector was a per-
flow detector, while the two SHT detectors were window-based. The authors did synthesize two types
of traffic; flow-based and packet-based, using two traffic generating software tools they developed. The
experiments showed that flow-based detectors yielded better resolution, but suffered from higher FP
ratios and instability. On the other hand, the window-based techniques yielded lower FP ratios, and were
more stable, yet exhibited lower resolution. The window-based 1-class SVM detector offered parameter
tradeoffs between resolution and stability.

All the preceding recent anomaly detection solutions are behavioral; however, some solutions mixed
the signature and behavioral approaches. One example is depicted in [62], where the goal was to utilize
misuse detection in order to help select features and, hence, improve the performance of the solution.
Thus, the authors proposed combining misuse detection with anomaly detection in a framework that
comprised two phases; the first was the misuse phase which utilized the random forest algorithm to
produce feature importance. In the cases where the misuse detection phase failed at identifying a potential
threat, that threat’s feature importance values got transferred to the anomaly detection phase ( i.e. the
second phase) which utilized weighted k-means algorithm to figure out if that potential threat was an
anomaly. In their experiments, the authors injected anomalies into four datasets they complied based on
the KDD’99 dataset, and measured the detection and the FP rates. They also calculated the importance of
the features they selected. Their results showed that their proposed technique outperformed the classical
machine learning techniques they compared with ( i.e. random forest, SVM, cluster-based estimation,
and k-nearest neighbor algorithms).

A recent collective anomaly detection solution that exploited the concept of spectral analysis is
depicted in [99]. The authors aimed at addressing the special cases of collective anomalies in which
anomalies appear locally in both time and space. They developed a new unsupervised spectral anomaly
detection method that utilizes graph-based filtering framework. They also assumed that anomalous data
instances were far less frequent than normal data instances. Their proposed technique is distributed in
the sense that it splits a WSN into clusters, and assigns each cluster a cluster head to detect the anomalies
within that cluster. In their work, they formulated the spectral decomposition using both graph-based
filtering and PCA, and unified both formulations. Moreover, they showed that PCA is a special case of
spectral decomposition with graph-based filtering. Their approach comprised three steps: graph con-
struction, finding cut-off frequency of graph-based filters, and thresholding anomaly scores. In the graph
construction step, an undirected graph that corresponds to the WSN was generated using the Euclidean
distance between the sensors. In the next step, spectral decomposition was accomplished using graph-
based filtering where normal and anomaly subspaces got separated for unsupervised detection. In the
last step, a threshold score for detecting anomalies was selected. The authors defined their own scor-

46



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

ing using projections on both normal and anomaly spaces. They also depicted the performance of their
proposed graph-based filtering approaches by benchmarking against PCA-based and clustering methods
in terms of ROCs and their AUC. Using the autoregressive model they generated a WSN of 100 nodes,
and collective anomalies were generated using a highly varying autoregressive model at dedicated time
instances. The LEACH protocol was used to split the network into 6 clusters and to select the cluster
heads [100].

Other recent solutions for the problem of anomaly detection in networks use the information theoretic
approach. For example, in the work depicted in [101], an active hypothesis testing technique was utilized
to help solve the problem of quickest detection of a single anomalous node among a finite set of nodes. At
specific time intervals, a subset of the network’s nodes was observed and the observations of each node
followed either one of two different distributions based on whether the node was normal or anomalous.
The authors extended their solution so that they could handle multiple anomalous nodes under certain
conditions. In another solution [54], the authors introduced the “typical day profile” technique and
applied it to the change-point detection theory, which aimed at identifying sudden changes within a
given time interval, to help identify anomalies in aggregate network traffic. The authors also analyzed
and contrasted some change point detection methods in order to detect anomalies in a dataset of 24-hour
worth of network traffic within a university campus.

Some recent solutions to the anomaly detection problem in computer networks have utilized the
streaming technique. For example, the work depicted in [102], introduced the LD-Sketch, which is a data
structure intended for accurate and scalable traffic anomaly detection. The LD-Sketch combines counter-
based and sketch-based techniques, and operates in two phases. In the first of which, local detection was
performed. Then, distributed detection was applied to reduce false positives by aggregating multiple
detection results. The authors compared their solution with some state-of-the-art streaming techniques
including [103, 67, 104], and showed that their solution achieved better accuracy. Another solution that
is based on the streaming approach is depicted in [104], where the authors proposed the fast sketch data
structure which can aggregate packets into a small number of flows, to detect traffic anomalies with small
space and time. Besides, their sketch combined both the combinatorial group testing, and the quotient
technique to identify anomalies to help achieve faster anomaly detection.

Table 1 summarizes the anomaly detection solutions described in this section. The approach column
designates the detection technique utilized in the solution. Network Centric (NC) Vs. Data Centric (DC)
specifies whether the solution addressed anomalies in terms of the network packet headers, or in terms
of packets payload. The Scalable? column designated whether scaling for larger networks is taken into
account in the solution or not. In this table, Inf. Theoretic stands for the information theoretic approach.

3.2 Application-level Anomaly Detection Solutions

In the context of smartphone networks, security has been a crucial issue. Thus, most of the anomaly
detection solutions in this context address malware detection in particular, although several such solutions
can potentially handle other anomalous behaviors should they be exposed to their corresponding data
instances. A vast majority of malware detection techniques are behavior-based. We first explore the
literature on behavior-based static analysis malware detection techniques for mobile devices.

In [105], static analysis was used to gather as many features as possible. The proposed system,
DREBIN, is a lightweight system that can run on the device itself. The authors statistically inspected
a given Android application and extracted different feature sets from the manifest and .dex files. The
extracted features sets were then mapped to a joint vector space, such that patterns and combinations of
features could be analyzed geometrically. Then, SVM was applied to help separate malware behavior
from normal behavior. Upon detection a malicious application, the features pertaining to that application
were reported back to the user. In this work, the feature sets included hardware components, requested

47



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

Table 1: Summary of recent anomaly detection solutions at the network level.

1st Author, Year and Ref. Approach NC vs. DC Scalable? on/off-line
AbuAitah, 2014 [71] Machine learning DC No Online

Barani, 2014 [73] Machine learning NC Yes Online
Salem, 2014 [74] Machine learning DC No Online
Fiore, 2013 [29] Machine learning NC No Offline
Guo, 2013 [79] Machine learning NC No Online

Louvieris, 2013 [81] Machine learning NC No Offline
Lin, 2012 [83] Machine learning NC No Offline

Hayes, 2014 [84] Statistical DC Yes Online
Sun, 2014 [86] Statistical NC No Offline
Xie, 2014 [90] Statistical DC Yes Online

Bayraktar, 2014 [91] Statistical DC No Online
Soltanmohammadi, 2013 [93] Statistical DC No Online

Limthong, 2013 [95] Mixed NC No Online
Wang, 2013 [97] Mixed NC No Offline

Egilmez, 2014 [99] Spectral DC Yes Online
Cohen, 2014 [101] Inf. Theoretic DC No Online

Cuadra-Sanchez, 2014 [54] Inf. Theoretic NC No Offline
Huang, 2014 [102] Streaming NC Yes Online

Liu, 2012 [104] Streaming NC No Online

permissions, application components, filtered intents, restricted API calls, suspicious API calls, and
MAC addresses. The authors evaluated their detection solution using 123453 applications and 5560
malware samples. They performed three sets of experiments, in the first they measured the detection
performance of DREBIN and compared it to sKirin [106], RCP [107], and the approach by Peng et al.
[108], as well as some Anti-Virus engines. They measured the TP and FP rates, and found that their
approach outperformed the other static-analysis techniques they compared with, and was comparable to
the anti-virus engines. In the second set, they investigated the explainability for 4 malware families. For
each sample of those families, they identified the features with the highest contribution to the classifica-
tion decision, and then averaged the results for all the instances of a family. In the third set, they ran an
already learned DREBIN instance on several smartphones, and found that the execution time required to
analyze an application was 10 seconds on average.

In [109], the authors also utilized static analysis for malware detection. They obtained permission
combinations that are frequently requested by malware applications, and implemented a rule-based mal-
ware detection scheme which they called Droid Detective. Their approach comprised decomposing the
application into several files and extracting the manifest file in a readable format. Then, they fed the man-
ifest file to their permission mapper, which kept track of the permission combinations seen so far along
with their appearance frequencies. Next, the permission maps (i.e. permission combinations together
with their frequencies) were fed to the rule sets selection process. The rule sets selection process was
responsible for extracting the permission combinations that were requested more often by malware than
by benign Apps, according to an equation developed by the authors. In their experiments, the authors
measured the TP, TN, FP, and FN rates utilizing 1260 malware samples published by NCSU researchers
[110], together with 741 benign applications collected from the official Google Android Market. Their

48



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

experiments revealed that their permission-combination approach managed to detect the SMS related
malware efficiently with low FP rate.

Another static analysis solution is depicted in [34], were the authors aimed at utilizing statistical
approach to solve the problem of malware detection using static analysis. They used a probabilistic
discriminative model based on regularized logistic regression for Android malware detection. Also, the
authors decompiled applications’ source codes and extracted Android API calls as features (i.e. source
code features), in addition to application permissions’ features. The authors explored issues in feature
granularity, feature representation, and feature selection and regularization. Moreover, they utilized in-
formation gain and chi-squared techniques for feature selection. In their experiments, the authors used
datasets collected from different sources. They measured the precision, recall, and the AUC for their pro-
posed system. Moreover, they compared their system with Naive Bayes with Informative Priors (PNB),
Hierarchical Mixture of Naive Bayes (HMNB), and 2-PNB generative models based on permissions’
features in one set of experiments [108]. In the other set, they compared their system with the same 3
generative models, as well as k-nearest neighbor, SVM, and decision trees, based on source code fea-
tures. In the third set, they combined the source code features and application permission features in
different ways and measured the precision and recall of their proposed solution. The authors showed
that their system outperformed the other state-of-the-art methods they compared with based on static
analysis.

In [111], the authors aimed at developing a rapid static analysis malware detection solution. They
combined feature-based applications permission, broadcast receivers, and the presence of embedded An-
droid applications and native code. They utilized random decision trees that built rules comprising 2 or
3 features each. To assess the performance of their system, they obtained a set of known malicious ap-
plications and some benign applications drawn randomly from a set of 500 applications. They measured
TP and FP ratios, illustrated that their system performed comparably to leading antivirus engines.

Other static analysis solutions that utilized machine learning techniques are depicted in [112] and
[113]. In [112], reverse engineering of the application’s executable files was used to obtain the feature
set using a Java-based profiling tool developed by the authors. Also, the authors utilized a Bayesian
classifier for their learning algorithm. In [113], one-class SVM was utilized to help identify malware
behavior while using the open-source Androguard tool5 for feature extraction. Both solutions are offline
and off-device.

A wider set of recent malware detection solutions for mobile devices has adopted the behavior-based
dynamic analysis approach. Here, we highlight a subset of thee recent techniques.
In [114], the authors aimed at combining the best features from host-based and cloud-based anomaly de-
tection techniques. Thus, they developed a dynamic hybrid mobile IDS framework with both host-based
and cloud-based capabilities. Their framework is intended for iOS mobile devices, but can be extended
to accommodate Android devices as well. The framework incorporated four diverse detection mecha-
nisms, and anomalous behavior was determined based on their combined outcomes. These mechanisms
comprised: SMS profiling, monitoring of applications behavior via iDMA [115], a touch logger profiler
(iTL) [116], and a keystroke-based authentication system. Upon receiving an alert regarding a suspicious
event, the framework would determine whether to run the detection algorithm on the cloud or the host
itself, and then will inform either one to accomplish the detection task. Upon detecting an anomalous
application, it decides what the actions to be taken and adds the application’s relevant information to
its own behavior profile database. To evaluate their framework, the authors collected traces from real
users’ profiles, and utilized decision trees for their learning algorithms. They ran experiments to measure
the detection accuracy as well as the CPU, memory, battery, and timeliness (i.e. the time to detect a
malicious application).

5Androguard. https://code.google.com/p/androguard/, accessed on November 4th, 2014

49

https://code.google.com/p/androguard/


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

In [117], the authors aimed at developing a dynamic system for detecting a mobile application’s
meaningful deviations from the normal behavior based on its network traffic. They targeted republished
popular applications injected with malware or malicious code as well as malware with self-updating
capabilities. As each application should have a model that describes its traffic patterns, they aimed
at learning such models using a semi-supervised machine learning algorithm that learns the behavior
of normal applications. Thus, when such an algorithm is presented with a new application, it would
measure its deviation from normal behavior. If the measured deviation exceeds a pre-defined threshold,
the application will be considered a malware. Their proposed system consisted of 6 main components:

1. A Graphical User Interface (GUI) that communicated with the user and displayed alerts.

2. An alerts handler that generated alerts and processed users’ responses to them.

3. Feature extraction which measured specific features at specific time intervals.

4. Feature aggregation which computed defined aggregations over all extracted measurements within
a specified time interval.

5. A local learner that comprised local models that represented the applications’ traffic patterns per-
taining to the user.

6. An anomaly detector which performed online analysis of the applications’ network behavior, and
detected the deviations from normal behavior.

The learning algorithm, in this work, was based on the cross-feature analysis approach which trans-
forms a semi-supervised learning problem to a collection of supervised learning problems for which
well-established solutions exist [118]. Moreover, detection and learning processes took place locally
on the device itself. The authors conducted several sets of experiments utilizing the applications’ traf-
fic pertaining to the devices of 8 volunteer users over a defined period of time. They also used 10
self-written and 5 real malware applications for testing. Their experiments revealed that modeling an
application’s traffic using only application-level features is possible, also they deduced 7 discriminat-
ing network-relevant application-level features. For the cross-feature analysis they used C4.5 decision
trees for categorical features and several machine learning techniques for the numerical features, includ-
ing regression-based classifiers, Decision Table [119], SVM, and Decision/Regression Tree (REPTree)6.
The authors measured the TP and the FP rates, the accuracy rate, and detection time. Their results
showed the REPTree and Decision Table to be most successful in terms of the metrics they measured.
The authors argued the efficiency of their solution in terms of memory and CPU overhead, which would
encourage its deployment on the devices directly. However, these overheads did not cover the feature
extraction and aggregation components.

In [120], the authors aimed at achieving rapid dynamic large-scale detection of mobile malware
using machine learning algorithms. They presented their STREAM framework which is a distributed
application profiler that comprises a master server that distributes profiling jobs to worker nodes. The
worker nodes, in their turn, distribute the jobs among the devices and/or emulators to run the detection
algorithms in parallel. The STREAM master then harvests the feature vectors from the devices and em-
ulators and handles classifier training and evaluation. In their framework, they evaluated random forests,
multilayer perceptron networks, Naive Bayesian networks, logistic regression, and J48 decision trees. In

6http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html, accessed on November 4th
2014

50

http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

their experiments, they utilized a database of known malwares in order to evaluate their framework. Be-
sides, they utilized Android’s MonkeyRunner7 user input tool to explore the application’s behavior. The
authors measured the TP rate, the FP rate, and the detection time, as well as the percentage of correctly
classified instances. Their results showed that the Naive Bayesian networks performed the best, while
the logistic regression algorithm performed the least in terms of the metrics they measured. Moreover,
they trained their algorithms on 1330 malware applications and 408 benign applications.

The authors in [35] proposed a set of features to detect mobile malware in mobile devices using
machine learning techniques dynamically. In their work, the authors proposed an Android malware
detection system that consisted of a data processing step which comprised deploying an agent on the mo-
bile device. The agent monitored the behavior of the applications executing in the device and recorded
some measurements in a pre-defined format. The solution also consisted of a malware detection com-
ponent which created a machine learning model for each application. This component applied 4 types
of classifiers: Naive-Bayesian networks, random forest, logistic regression, and SVM, and measured
the detection performance for each classifier. The features they identified spanned: network related fea-
tures, SMS related features, CPU related features, power consumption features, process relevant features,
memory relevant features. In their experiments, the authors measured the performance of the classifiers
they experimented with in terms of precision, recall, F-score, and ROC AUC. They utilized 30 normal
applications and 5 malware applications, and utilized the information gain technique to identify the best
performing features among the 32 features they considered initially. According to their experiment, the
top 10 performing features addressed memory, CPU, network, and SMS aspects of the application. Their
experiments showed that the decision trees outperformed the remaining machine learning algorithms in
terms of TP and FP rates.
In [121], the authors aimed at introducing the service-oriented architecture concepts to malware detection
solutions. Thus, they proposed a client-server architecture called SmartMal, where clients continuously
extracted various features and transferred them to the server. The server side comprised distributed
servers that run state-of-the-art anomaly detection techniques in parallel, in order to analyze clients’ fea-
ture vectors. Besides, their architecture utilized information fusion in order to concatenate the servers’
results. For anomaly detection, they proposed a model-based approach where an Analytical Hierarchy
Process (AHP) [122] was used to construct a 3-layer model in order to divide the complex strategic
decision problem into different subjects aiming at several targets. For each of these subjects, a fuzzy
quantitative approach was utilized to estimate the weights of the model. To evaluate the performance
of SmartMal, the authors built a prototype to profile the behavior of normal applications. They used
3 smartphones on which 32 benign applications ran and sampled their status every 30 seconds via a
background engine. Then, they measured the CPU/memory utilization, the battery consumption, and the
network traffic profile for those applications. To measure the performance of their architecture, they uti-
lized three smartphones, to simulate and detect a DoS attack. The authors also compiled feature vectors
for a defined amount of time using the measurement recorded by the devices, and measured the TP rate.

Other dynamic analysis solutions for malware detection were proposed in [36, 123, 124, 37]. In [36],
the authors aimed at determining the best features selection technique with the best machine learning
algorithm. They experimented with 5 machine learning algorithms, spanning Naive Bayesian, k-nearest
neighbor, J48 decision trees, multilayer perceptron, and random forest. They utilized the chi-squared
and information gain methods to help identify the best features per the system calls they captured in
their experiments alongside different features from [125, 126, 127]. In [123], the random forest classi-
fier was applied to the data observed from 1330 malicious applications and 407 benign applications. In
[124], Naive Bayesian and SVM learning algorithms were utilized on malware and benign samples. The
techniques in [36, 123, 124] are all offline and off-device. In [37], malicious application behavior was

7http://developer.android.com/tools/help/monkeyrunner_concepts.html, accessed on November 4th, 2014

51

http://developer.android.com/tools/help/monkeyrunner_concepts.html


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

detected online and on-the-device. For the monitored applications under execution, several metrics were
measured and submitted to different analysis units (i.e. processes). The feedback from each process was
weighted to help reduce the probabilities of false alarms. Upon discovering a malicious application, the
system would submit an alert to the user alongside a set of suitable actions to mitigate the malicious be-
havior. The authors used chi-squared, information gain, and Fisher-score methods to help select the best
features for their learning algorithms. They experimented with several learning and statistical algorithms
spanning decision trees, Naive Bayesian networks, k-means, histogram, and logistic regression.

Some other recent techniques for malware anomaly detection adopted the signature-based rather than
the behavior-based approach. In such solutions, a pre-defined set of malware behaviors are formulated
and hardwired into the solution itself. In [128], for example, the authors aimed at performing anomaly
detection for malware in mobile phones using dynamic analysis at a large scale and in real-time. They
presented Andlantis, a scalable dynamic analysis system capable of processing over 3000 Android ap-
plications per hour. Andlantis architecture comprised:

1. Kane, which is a commodity cluster for malware detection analysis constituting 520 nodes of
commodity PCs.

2. FARM, which was responsible for malware collection and aggregation. Forensic Analysis Repos-
itory for Malware (FARM) stored known-bad, known-benign, and unknown applications and re-
sults from automated analysis tools. Upon deploying Andlantis, the automated analysis tool of the
administrator choice can be utilized.

3. Andlantis agent, which was responsible for job control and scheduled where a sample will be
analyzed and examined for malicious behavior. The main criterion for selecting a node was the
availability of its resources.

4. Minigma, which is a large scale Virtual Machine (VM) management tool to control the Kane
devices.

5. Dynamic analysis or application interaction, which carried out the detection task.

The nodes that examined the applications in order to analyze their runtime behavior utilized an emu-
lator with a GUI that was controlled via an application based on the MonkeyRunner and AndroidView-
Client frameworks8. This helped perform easy and customizable UI exploration while the application
was analyzed. To evaluate the performance of their proposed system, the authors collected forensic data
and utilized 1261 malware samples. They measured the execution time and showed its decompositions
into computation time and communication time.

Another signature-based malware detection solution is presented in [129], where the authors pro-
posed the dynamic analysis tool DroidTrace. This tool is equipped with forward execution capability
(i.e. physical modification), and utilizes ptrace, a Linux system call, to monitor selected system calls.
In their solution, the authors focused on detecting dynamic loading which allows an application to load
a dynamic library into the memory while it is executing. Their forward execution capability helps trig-
ger automatically almost all the dynamic loading behaviors in the application. DroidTrace is online and
can operate on the device itself. In [130], DriodScope, the offline and off-device dynamic analysis tool,
was proposed to achieve malware detection via operating on top of the emulator while reconstructing
some Android OS components as well as Java-level semantics simultaneously. This tool monitors an
application while it executes and collects its native and Dalvik9 instructions traces along with API-level
activities. It also accounts for data leakage using taints, where some data items get specific labels, and

8https://github.com/dtmilano/AndroidViewClient, accessed on November 4th, 2014
9https://source.android.com/devices/tech/dalvik/, accessed on November 4th, 2014

52

https://github.com/dtmilano/AndroidViewClient
https://source.android.com/devices/tech/dalvik/


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

are monitored as they circulate within the system. When these taints get communicated out of the device,
the detection solution gets notified.
The solution proposed in [131] mixed signature-based with heuristic-based approaches for malware de-
tection in mobile devices. The authors proposed an online off-device solution called DroidRanger, where
they started with a permission-based static analysis to detect samples of malware. Then, applied a heuris-
tic technique that checked for two types of malicious behaviors: dynamic loading from untrusted web-
sites, and loading native code in unusual way.

A brief summary of the solutions depicted in this subsection is depicted in Table 2. The summary
highlights the major characteristics of these solutions. In this table, Stat./Dyn. stands for static/dynamic,
while Appr. stands for approach. ML means machine learning, Stat. means statistical, and Algo. means
algorithmic. Scal.? stands for Scalable?, and Sign./Behav. stands for Signature-based/Behavioral.

Table 2: Summary of recent anomaly detection solutions at the application level.

1st Author, Year and Ref. Stat./Dyn. on/off-device Appr. Scal.? on/off-line Sign./Behav.
Damopoulos, 2014 [114] Dynamic Mixed ML Yes Online Behavioral

Shabtai, 2014 [117] Dynamic On-device ML Yes Online Behavioral
Amos, 2013 [120] Dynamic Off-device ML Yes Online Behavioral
Ham, 2013 [35] Dynamic Off-device ML No Offline Behavioral

Wang, 2013 [121] Dynamic Off-device Stat. Yes Online Behavioral
Mas’ud, 2014 [36] Dynamic Off-device ML No Offline Behavioral
Alam, 2013 [123] Dynamic Off-device ML No Offline Behavioral
Wei, 2013 [124] Dynamic Off-device ML No Mixed Behavioral

Shabtai, 2012 [37] Dynamic Off-device ML No Online Behavioral
Yan, 2012 [130] Dynamic Off-device – No Offline Signature

Zheng, 2014 [129] Dynamic On-device – Yes Online Signature
Zhou, 2012 [131] Dynamic Off-device Algo. No Online Mixed
Arp, 2014 [105] Static On-device ML Yes Online Behavioral

Liang, 2014 [109] Static Off-device ML No Offline Behavioral
Cen, 2014 [34] Static Off-device Stat. No Offline Behavioral

Glodek, 2013 [111] Static Off-device ML No Offline Behavioral
Yerima, 2013 [112] Static Off-device ML No Offline Behavioral

Sahs, 2012 [113] Static Off-device ML No Offline Behavioral

4 Summary of subtleties

In this section, we highlight the major subtleties and drawbacks in the various anomaly detection so-
lutions we investigated. Emphasizing these issues should help in designing better anomaly detection
solutions in the future.

• Several anomaly detection techniques assume that the vast majority of network traffic is normal,
and that anomalous traffic is much less frequent. However, this assumption does not always hold,
on the contrary, under some network-wide failures and/or attacks the opposite is true.

53



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

• Several anomaly detection solutions assume that the initial measurements recorded by a given node
are normal and based on that, the solution decides whether or not some other node is anomalous.
But, it is not guaranteed that a node’s initial measurements are normal by default.

• Several distributed anomaly detection solutions assume that the results and/or measurements com-
municated by a given node in the network are genuine, regardless of being normal or anomalous.
However, a malicious node can, for instance, choose to deliberately send falsified measurements
other than the ones it actually calculated. For example, it may choose to report normal measure-
ments to confuse the anomaly detector.

• Several distributed anomaly detection solutions fail to address the problem of messages being
compromised during transmission. Compromising messages would typically confuse the anomaly
detector as well.

• The anomaly detection solutions that deployed a centralized fusion center to collect node measure-
ments and identify anomalies nodes accordingly overlook the case when the fusion center itself is
anomalous and/or when it fails. So, such solutions comprise a single-point of failure condition.

• In some anomaly detection solutions, a node needs to identify whether or not its own traffic is
normal. However, it is impractical to assume than even a normal node can always distinguish
normal from anomalous traffic.

• The feature selection method in many anomaly detection solutions is either not automated, or is
based on a given dataset. However, developing automatic feature selection that would perform as
desired regardless of the dataset is to be realized yet.

• Some machine learning solutions require considerable amounts of training time which renders
them impractical.

• Several solutions oriented to sensor and smartphone networks lack thorough experimentation to
support their claims on saving the devices’ resources and energy.

• In many solutions, datasets of normal and/or anomalous instances are synthesized in order to assess
the performance of the solutions. However, this is not always sound due to the following reasons:

– Datasets are artificially generated according to some pre-defined models which are not nec-
essarily realistic, and would affect the soundness of the results.

– Datasets are compiled by mixing instances from different sources, which generates another
kind of unrealistic datasets that would also affect the soundness of the results.

– In some cases, anomalous traffic was injected into normal traffic within a dataset at some pre-
defined intervals. Again, this results in an artificial dataset which could produce misleading
detection results.

– Some of the realistic datasets are obsolete, and do not necessarily reflect the nature of anoma-
lies that currently exist in computer networks.

• In the solutions that utilize the concept of clusters, the number of clusters is manually picked and
mostly depends on the fact that the experiments address a pre-defined set of anomalous behaviors.
This would limit the practicality of such solutions, as in reality determining the number of anoma-
lous behavior classes is rather infeasible; furthermore, predefining the set of anomalous behaviors
may lead to the inability to detect completely new anomalies in a way that is similar to the problem
observed in signature-based detectors.

54



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

• Some solutions assume that there exists one class of anomalous behavior to be detected. However,
practically, more than one anomalous class exist, not to mention unseen classes of normal behavior.

• Some solutions claim being timeless and responsive, but few provide solid experimentation results
to support their claims.

• Most of anomaly detection solutions address point anomalies, and very few of them address con-
textual or collective anomalies.

• Several solutions fail to address network dynamics, especially in sensor and smartphone networks,
where nodes may join and leave the network freely.

• Several detection solutions can identify certain classes of anomalous behavior, but cannot track it
and locate the node(s) that exhibited that behavior which is rather crucial for the practicality of
these solutions.

5 Conclusions

In this review, we discussed the state-of-the-art solutions of the anomaly detection problem in computer
networks. We identified two levels for handling this problem; the network level and the application level.
The network-level detection, on one hand, analyzes the headers and/or the payloads of the messages
exchanged in the network, while application-level detection analyzes the application specification and/or
examines its behavior during runtime.
Tackling anomaly detection in computer networks has been handled using several techniques belong-
ing to different disciplines. One approach to solve anomaly detection is using either parametrized or
non-parametrized statistical techniques to model the network and/or devices behavior and measure the
deviation of anomalous behaviors from normal ones. Alternatively, machine learning techniques can be
used to learn the normal and/or abnormal behaviors, and then try to classify or cluster unseen behaviors
accordingly. In addition, information theoretic as well as spectral techniques provide different perspec-
tives to help measure how an anomalous behavior differs from normal behaviors. Streaming techniques
can be also used in the context of anomaly detection, where instead of sampling behavior information
at regular intervals, the whole behavior information gets summarized into sketches to allow detecting
anomalous behaviors.

Generally speaking, future anomaly detection solutions need to efficiently and effectively handle
the shortcomings that many current solutions suffer from. For example, albeit achieving high detection
rates, several anomaly detection solutions suffer from relatively high false positive rates which renders
them impractical. Additionally, the majority of recent anomaly detection solutions utilize machine learn-
ing techniques, although such techniques merely identify correlations rather than causation. Thus, such
detection solutions would provide little insights when the mitigation and/or justification of the anoma-
lous behavior is sought. Also, as noticed in the studies depicted in this review, most anomaly detection
solutions are intended for point anomalies, and fewer solutions are either contextual or collective. How-
ever, effective anomaly detection would naturally go beyond point anomalies to tackle anomalies within
contexts and collectively anomalous behaviors. Moreover, many anomaly detection solutions overlook
issues pertaining to the dynamics of the networks they investigate, especially for wireless and mobile
networks, while others assume that anomalous behaviors or even normal behaviors do follow specific
models that are known a priori.
Additionally, many anomaly detection solutions for mobile networks lack a rigorous assessment of the
amounts of energy they consume either for local devices’ computation, or for communicating devices’

55



Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

statistical information over the network. An additional vital drawback in many anomaly detection solu-
tions is that, although they assume networks and/or malware attacks are the reason behind the anomalous
behaviors, such solutions do not try to secure the communication paths over which detection information
is being exchanged. Also, they do not address the situations in which nodes themselves could be sending
forged messages to mislead the anomaly detection solution.

References

[1] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context Aware Computing for The Internet
of Things: A Survey,” ArXiv e-prints, May 2013.

[2] L. Xu, W. He, and S. Li, “Internet of things in industries: A survey,” IEEE Transactions on Industrial
Informatics, vol. 10, no. 4, pp. 2233–2243, November 2014.

[3] Z. Bi, L. D. Xu, and C. Wang, “Internet of things for enterprise systems of modern manufacturing,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1537–1546, May 2014.

[4] S. Li, L. Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, pp. 1–17,
2014. [Online]. Available: http://dx.doi.org/10.1007/s10796-014-9492-7

[5] J. Fidalgo and J. Lopes, “Load forecasting performance enhancement when facing anomalous events,” IEEE
Transactions on Power Systems, vol. 20, no. 1, pp. 408–415, February 2005.

[6] C. Brighenti and M. Sanz-Bobi, “Auto-regressive processes explained by self-organized maps. application
to the detection of abnormal behavior in industrial processes,” IEEE Transactions on Neural Networks,
vol. 22, no. 12, pp. 2078–2090, December 2011.

[7] T. Auld, A. Moore, and S. Gull, “Bayesian neural networks for internet traffic classification,” IEEE Trans-
actions on Neural Networks, vol. 18, no. 1, pp. 223–239, January 2007.

[8] D. Wijayasekara, O. Linda, M. Manic, and C. Rieger, “Fn-dfe: Fuzzy-neural data fusion engine for enhanced
resilient state-awareness of hybrid energy systems,” IEEE Transactions on Cybernetics, vol. 44, no. 11, pp.
2065–2075, November 2014.

[9] N. Gobbo, A. Merlo, and M. Migliardi, “A denial of service attack to gsm networks via attach procedure,”
in Security Engineering and Intelligence Informatics - Proc. of the CD-ARES 2013 Workshops: MoCrySEn
and SeCIHD, Regensburg, Germany, LNCS, vol. 8128. Springer-Verlag, September 2013, pp. 361–376.

[10] W. Liping, “An anomaly detection based on local wave decomposition and clustering,” in Proc. of the 2010
International Conference on Information Networking and Automation (ICINA’10), Kunming, China, vol. 2,
October 2010, pp. V2–390–V2–393.

[11] S. Alneyadi, E. Sithirasenan, and V. Muthukkumarasamy, “Adaptable n-gram classification model for data
leakage prevention,” in Proc. of the 7th International Conference on Signal Processing and Communication
Systems (ICSPCS’13), Gold Coast, Australia, December 2013, pp. 1–8.

[12] E. Hormozi, M. Akbari, M. Javan, and H. Hormozi, “Performance evaluation of a fraud detection system
based artificial immune system on the cloud,” in Proc. of the 8th International Conference on Computer
Science Education (ICCSE’13), Phuket, Thailand. IRCSIT Press, April 2013, pp. 819–823.

[13] Y.-J. Lee, Y.-R. Yeh, and Y.-C. F. Wang, “Anomaly detection via online oversampling principal component
analysis,” IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 7, pp. 1460–1470, July
2013.

[14] O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, and B. Furht, “Sensor fault and patient anomaly
detection and classification in medical wireless sensor networks,” in Proc. of the 2013 IEEE International
Conference on Communications (ICC’13), Budapest, Hungary. IEEE, June 2013, pp. 4373–4378.

[15] A. Armando, A. Merlo, M. Migliardi, and L. Verderame, “Breaking and fixing the android
launching flow,” Computers & Security, vol. 39, pp. 104–115, November 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.cose.2013.03.009

[16] Y. Wang, E. Ma, T. Chow, and K.-L. Tsui, “A two-step parametric method for failure prediction in hard disk
drives,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 419–430, February 2014.

56

http://dx.doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.1016/j.cose.2013.03.009


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

[17] S. Cheng, K. Tom, and M. Pecht, “Anomaly detection of polymer resettable circuit protection devices,”
IEEE Transactions on Device and Materials Reliability, vol. 12, no. 2, pp. 420–427, June 2012.

[18] H. Nguyen, Z. Shen, Y. Tan, and X. Gu, “Fchain: Toward black-box online fault localization for cloud sys-
tems,” in Proc. of the 33rd IEEE International Conference on Distributed Computing Systems (ICDCS’13),
Philadelphia, USA. IEEE, July 2013, pp. 21–30.

[19] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM Transactions on
Programming Languages and Systems, vol. 4, no. 3, pp. 382–401, July 1982. [Online]. Available:
http://doi.acm.org/10.1145/357172.357176

[20] P.-Y. Chen, S. Yang, and J. McCann, “Distributed real-time anomaly detection in networked industrial
sensing systems,” IEEE Transactions on Industrial Electronics, vol. PP, no. 99, pp. 1–1, 2014.

[21] M. E. Shin, “Self-healing components in robust software architecture for concurrent and distributed
systems,” Science of Computer Programming, vol. 57, no. 1, pp. 27–44, July 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2004.10.003

[22] J. B. Cabrera, C. Gutiérrez, and R. K. Mehra, “Ensemble methods for anomaly detection and
distributed intrusion detection in mobile ad-hoc networks,” Information Fusion, vol. 9, no. 1,
pp. 96–119, 2008, special Issue on Applications of Ensemble Methods. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1566253507000425

[23] M. Burgess, “Probabilistic anomaly detection in distributed computer networks,” Science of
Computer Programming, vol. 60, no. 1, pp. 1–26, March 2006. [Online]. Available: http:
//dx.doi.org/10.1016/j.scico.2005.06.001

[24] H. Jeong, W. Hyun, J. Lim, and I. You, “Anomaly teletraffic intrusion detection systems on hadoop-based
platforms: A survey of some problems and solutions,” in Proc. of the 15th International Conference on
Network-Based Information Systems (NBiS’12), Melbourne, Australia. IEEE, September 2012, pp. 766–
770.

[25] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang, “Middleware for pervasive computing: A
survey,” Pervasive & Mobile Computing, vol. 9, no. 2, pp. 177–200, April 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.pmcj.2012.08.006

[26] M. Xie, S. Han, B. Tian, and S. Parvin, “Anomaly detection in wireless sensor networks: A survey,” Journal
of Network and Computer Applications, vol. 34, no. 4, pp. 1302–1325, 2011, advanced Topics in Cloud
Computing. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1084804511000580

[27] H. Nallaivarothayan, D. Ryan, S. Denman, S. Sridharan, and C. Fookes, “An evaluation of different features
and learning models for anomalous event detection,” in Proc. of the 2013 International Conference on
Digital Image Computing: Techniques and Applications (DICTA’13), Hobart, Australia, November 2013,
pp. 1–8.

[28] J. J. Davis and A. J. Clark, “Data preprocessing for anomaly based network intrusion detection:
A review,” Computers & Security, vol. 30, no. 6–7, pp. 353–375, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404811000691

[29] U. Fiorea, F. Palmierib, A. Castiglionec, and A. D. Santis, “Network anomaly detection with the restricted
boltzmann machine,” Neurocomputing, vol. 122, pp. 13–23, December 2013.

[30] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Computing Surveys, vol. 41,
no. 3, pp. 15:1–15:58, July 2009. [Online]. Available: http://doi.acm.org/10.1145/1541880.1541882

[31] D. Difallah, P. Cudre-Mauroux, and S. McKenna, “Scalable anomaly detection for smart city infrastructure
networks,” IEEE Internet Computing, vol. 17, no. 6, pp. 39–47, November 2013.

[32] E. Anceaume, Y. Busnel, E. Le Merrer, R. Ludinard, J. Marchand, and B. Sericola, “Anomaly charac-
terization in large scale networks,” in Proc. of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’14), Atlanta, USA. IEEE, June 2014, pp. 68–79.

[33] M. Bhuyan, D. Bhattacharyya, and J. Kalita, “Network anomaly detection: Methods, systems and tools,”
IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp. 303–336, First 2014.

[34] L. Cen, C. Gates, L. Si, and N. Li, “A probabilistic discriminative model for android malware detection with
decompiled source code,” IEEE Transactions on Dependable and Secure Computing, vol. PP, no. 99, pp.
1–1, September 2014.

57

http://doi.acm.org/10.1145/357172.357176
http://dx.doi.org/10.1016/j.scico.2004.10.003
http://www.sciencedirect.com/science/article/pii/S1566253507000425
http://dx.doi.org/10.1016/j.scico.2005.06.001
http://dx.doi.org/10.1016/j.scico.2005.06.001
http://dx.doi.org/10.1016/j.pmcj.2012.08.006
http://www.sciencedirect.com/science/article/pii/S1084804511000580
http://www.sciencedirect.com/science/article/pii/S0167404811000691
http://doi.acm.org/10.1145/1541880.1541882


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

[35] H.-S. Ham and M.-J. Choi, “Analysis of android malware detection performance using machine learning
classifiers,” in Proc. of the 2013 International Conference on ICT Convergence (ICTC’13), Jeju Island,
Korea, October 2013, pp. 490–495.

[36] M. Mas’ud, S. Sahib, M. Abdollah, S. Selamat, and R. Yusof, “Analysis of features selection and machine
learning classifier in android malware detection,” in Proc. of the 2014 International Conference on Infor-
mation Science and Applications (ICISA’14), Seoul, Korea, May 2014, pp. 1–5.

[37] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “Andromaly: a behavioral malware detection
framework for android devices,” Journal of Intelligent Information Systems, vol. 38, no. 1, pp. 161–190,
2012. [Online]. Available: http://dx.doi.org/10.1007/s10844-010-0148-x

[38] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series in Telecommunications and
Signal Processing). Wiley-Interscience, 2006.

[39] T. M. Mitchell, Machine Learning, 1st ed. McGraw-Hill, Inc., 1997.
[40] A. K. Sharma, TextBook Of Chi-Test And Experimental Designs, 1st ed. Publishing House, 2005.
[41] J. L. Crowley, J. H. Piater, M. Vincze, and L. Paletta, Eds., Proc. of the 3rd International Conference on

Computer Vision Systems (ICVS’03), Graz, Austria. Springer-Verlag, April 2003.
[42] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of Machine Learning

Research, vol. 3, pp. 1157–1182, March 2003.
[43] H. Al Marakeby, M. Zaki, and S. Shaheen, “A generalized object detection system using automatic feature

selection,” in Proc. of the 10th International Conference on Intelligent Systems Design and Applications
(ISDA’10), Cairo, Egypt, November 2010, pp. 839–844.

[44] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, A Comparative Study of Anomaly
Detection Schemes in Network Intrusion Detection. SIAM, 2003, ch. 3, pp. 25–36. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/1.9781611972733.3

[45] M. Migliardi and A. Merlo, “Improving energy efficiency in distributed intrusion detection systems,” Jour-
nal of High Speed Networks, vol. 19, no. 3, pp. 251–264, 2013.

[46] S. Kumar, C. Rama Krishna, N. Aggarwal, R. Sehgal, and S. Chamotra, “Malicious data classification using
structural information and behavioral specifications in executables,” in 2014 Recent Advances in Engineer-
ing and Computational Sciences (RAECS’14), March 2014, pp. 1–6.

[47] A. Karnik, S. Goswami, and R. Guha, “Detecting obfuscated viruses using cosine similarity analysis,”
in Proc. of the 1st Asia International Conference on Modelling Simulation (AMS ’07), Pukhet, Thailand.
IEEE, March 2007, pp. 165–170.

[48] J. Kittler, W. Christmas, T. de Campos, D. Windridge, F. Yan, J. Illingworth, and M. Osman, “Domain
anomaly detection in machine perception: A system architecture and taxonomy,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 36, no. 5, pp. 845–859, May 2014.

[49] M. Thottan, G. Liu, and C. Ji, “Anomaly detection approaches for communication networks,”
in Algorithms for Next Generation Networks, ser. Computer Communications and Networks,
G. Cormode and M. Thottan, Eds. Springer London, 2010, pp. 239–261. [Online]. Available:
http://dx.doi.org/10.1007/978-1-84882-765-3 11

[50] W. Holmes Finch, J. E. Bolin, and K. Kelley, Multilevel Modeling Using R, 1st ed. CRC Press, 2014.
[51] R. A. Rutledge, Just Enough SAS: A QuickStart Guide to SAS for Engineers. SAS Publishing, 2009.
[52] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learning,” The

Annals of Statistics, vol. 36, no. 3, pp. 1171–1220, June 2008. [Online]. Available: http:
//dx.doi.org/10.1214/009053607000000677

[53] J. Wang, Geometric Structure of High-Dimensional Data and Dimensionality Reduction. Springer Pub-
lishing Company, Incorporated, 2012.

[54] A. Cuadra-Sanchez, J. Aracil, and J. Ramos de Santiago, “Proposal of a new information-theory based
technique and analysis of traffic anomaly detection,” in Proc. of the 2014 International Conference on
Smart Communications in Network Technologies (SaCoNeT’14), Vilanova i la Geltru, Spain, June 2014,
pp. 1–6.

[55] L. C. Jain and N. T. Nguyen, Knowledge Processing and Decision Making in Agent-Based Systems, 1st ed.

58

http://dx.doi.org/10.1007/s10844-010-0148-x
http://epubs.siam.org/doi/abs/10.1137/1.9781611972733.3
http://dx.doi.org/10.1007/978-1-84882-765-3_11
http://dx.doi.org/10.1214/009053607000000677
http://dx.doi.org/10.1214/009053607000000677


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

Springer Publishing Company, Incorporated, 2009.
[56] A. Nigrin, Neural Networks for Pattern Recognition. MIT Press, 1993.
[57] M. Gardner and S. Dorling, “Artificial neural networks (the multilayer perceptron)—a review of

applications in the atmospheric sciences,” Atmospheric Environment, vol. 32, no. 14–15, pp. 2627–2636,
1998. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1352231097004470

[58] D. Heckerman, “A tutorial on learning with bayesian networks,” in Innovations in Bayesian Networks, ser.
Studies in Computational Intelligence, D. Holmes and L. Jain, Eds. Springer Berlin Heidelberg, 2008,
vol. 156, pp. 33–82. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-85066-3 3

[59] Z. Karnin, E. Liberty, S. Lovett, R. Schwartz, O. Weinstein, S. Mannor, N. Srebro, and R. C. Williamson,
“Unsupervised SVMs: On the complexity of the furthest hyperplane problem,” Journal of Machine Learning
Research, vol. 23, pp. 1–18, 2012.

[60] V. Kecman and J. Brooks, “Locally linear support vector machines and other local models,” in Proc. of the
2010 International Joint Conference on Neural Networks (IJCNN’10), Barcelona, Spain. IEEE, July 2010,
pp. 1–6.

[61] K. Abd Jalil, M. Kamarudin, and M. Masrek, “Comparison of machine learning algorithms performance in
detecting network intrusion,” in Proc. of the 2010 International Conference on Networking and Information
Technology (ICNIT’10), June 2010, pp. 221–226.

[62] R. M. Elbasiony, E. A. Sallam, T. E. Eltobely, and M. M. Fahmy, “A hybrid network intrusion
detection framework based on random forests and weighted k-means,” Ain Shams Engineering Journal,
vol. 4, no. 4, pp. 753–762, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S2090447913000105

[63] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464–1480, September
1990.

[64] T. Moon, “The expectation-maximization algorithm,” IEEE Signal Processing Magazine, vol. 13, no. 6, pp.
47–60, November 1996.

[65] J. A. Hartigan and M. A. Wong, “A K-means clustering algorithm,” Applied Statistics, vol. 28, pp. 100–108,
1979.

[66] M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based algorithm for discovering clusters in large
spatial databases with noise,” in Proc. of the 1996 Knowledge Discovery and Data Mining Conferences
(KDD’96), Portland, Oregon, USA. AAAI Press, 1996, pp. 226–231.

[67] G. Cormode and S. Muthukrishnan, “What’s new: finding significant differences in network data streams,”
in Proc. of the 23rd AnnualJoint Conference of the IEEE Computer and Communications Societies (INFO-
COM’04), Hong Kong, China, vol. 3, March 2004, pp. 1534–1545 vol.3.

[68] A. Merlo, M. Migliardi, and P. Fontanelli, “On energy-based profiling of malware in android,” in Proc. of
the 2014 International Conference on High Performance Computing Simulation (HPCS’14), Bolgona, Italy,
July 2014, pp. 535–542.

[69] M. Curti, A. Merlo, M. Migliardi, and S. Schiappacasse, “Towards energy-aware intrusion detection systems
on mobile devices,” in Proc. of the 2013 International Conference on High Performance Computing and
Simulation (HPCS’13), Helsinki, Finland., July 2013, pp. 289–296.

[70] I. Pillai, G. Fumera, and F. Roli, “F-measure optimisation in multi-label classifiers,” in Proc. of the 21st
International Conference on Pattern Recognition (ICPR’12), Tsukuba, Japan, November 2012, pp. 2424–
2427.

[71] G. Abuaitah and B. Wang, “Online data-centric anomaly detection framework for sensor network deploy-
ments,” in Proc. of the 2014 International Conference on Computing, Networking and Communications
(ICNC’14), Honolulu, Hawaii, USA, February 2014, pp. 599–604.

[72] R. E. Schapire, “A brief introduction to boosting,” in Proc. of the 16th International Joint Conference on
Artificial Intelligence (IJCAI’99), Stockholm, Sweden. Morgan Kaufmann Publishers Inc., July-August
1999, pp. 1401–1406.

[73] F. Barani, “A hybrid approach for dynamic intrusion detection in ad hoc networks using genetic algorithm
and artificial immune system,” in Proc. of the 2014 Iranian Conference on Intelligent Systems (ICIS’14),
Bam, Iran, February 2014, pp. 1–6.

59

http://www.sciencedirect.com/science/article/pii/S1352231097004470
http://dx.doi.org/10.1007/978-3-540-85066-3_3
http://www.sciencedirect.com/science/article/pii/S2090447913000105
http://www.sciencedirect.com/science/article/pii/S2090447913000105


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

[74] O. Salem, Y. Liu, and A. Mehaoua, “Anomaly detection in medical WSNs using enclosing ellipse and chi-
square distance,” in Proc. of the 2014 IEEE International Conference on Communications (ICC’14), Sidney,
Australia, June 2014, pp. 3658–3663.

[75] C. C. Holt, “Forecasting seasonals and trends by exponentially weighted moving averages,”
International Journal of Forecasting, vol. 20, no. 1, pp. 5–10, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0169207003001134

[76] H. Lauter, “Silverman, b. w.:density estimation for statistics and data analysis. chapman & hall, london
- new york 1986, 175 pp.” Biometrical Journal, vol. 30, no. 7, pp. 876–877, 1988. [Online]. Available:
http://dx.doi.org/10.1002/bimj.4710300745

[77] B. Kulis, “Metric learning: A survey,” Foundations and Trends in Machine Learning, vol. 5, no. 4, pp.
287–364, 2012.

[78] G. E. Hinton, T. J. Sejnowski, and D. H. Ackley, “Boltzmann machines: Constraint satisfaction networks
that learn,” Computer Science Department, Carnegie Mellon University, Tech. Rep. CMU-CS-84-119, 1984.

[79] C. Guo, Y.-J. Zhou, Y. Ping, S.-S. Luo, Y.-P. Lai, and Z.-K. Zhang, “Efficient intrusion detection using
representative instances,” Computer & Security, vol. 39, pp. 255–267, November 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.cose.2013.08.003

[80] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A library for large linear
classification,” Journal of Machine Learning Research, vol. 9, pp. 1871–1874, June 2008. [Online].
Available: http://dl.acm.org/citation.cfm?id=1390681.1442794

[81] P. Louvieris, N. Clewley, and X. Liu, “Effects-based feature identification for network intrusion detection,”
Neurocomputing, vol. 121, pp. 265–273, December 2013.

[82] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” Journal of
the American Statistical Association, vol. 47, no. 260, pp. 583–621, 1952. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441

[83] S.-W. Lin, K.-C. Ying, C.-Y. Lee, and Z.-J. Lee, “An intelligent algorithm with feature selection and decision
rules applied to anomaly intrusion detection,” Applied Soft Computing, vol. 12, no. 10, pp. 3285–3290,
2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1568494612002402

[84] M. Hayes and M. Capretz, “Contextual anomaly detection in big sensor data,” in Proc. of the 2014 IEEE
International Congress on Big Data (BigData’14), Anchorage, Alaska, USA, June 2014, pp. 64–71.

[85] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” Communication
of the ACM, vol. 51, no. 1, pp. 107–113, January 2008. [Online]. Available: http://doi.acm.org/10.1145/
1327452.1327492

[86] T. Sun and H. Tian, “Anomaly detection by diffusion wavelet-based analysis on traffic matrix,” in Proc.
of the 6th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP’14),
Beijing, China, July 2014, pp. 148–151.

[87] R. Long, W. Chen, and S. Yuan, “Wavelets generated by vector multiresolution analysis,” Applied
and Computational Harmonic Analysis, vol. 4, no. 3, pp. 317–350, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1063520397902165

[88] R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Applied and Computational Harmonic Analysis,
vol. 21, no. 1, pp. 53–94, 2006, special Issue: Diffusion Maps and Wavelets. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S106352030600056X

[89] T. Ahmed, B. Oreshkin, and M. Coates, “Machine learning approaches to network anomaly detection,” in
Proc. of the 2nd USENIX Workshop on Tackling Computer Systems Problems with Machine Learning Tech-
niques, Cambridge, Massachusset (SYSML’07), Cambridge, Massachusetts, USA. USENIX Association,
April 2007.

[90] M. Xie, J. Hu, and S. Guo, “Segment-based anomaly detection with approximated sample covariance matrix
in wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. PP, no. 99, pp.
1–1, 2014.

[91] E. Bayraktar and L. Lai, “Byzantine Fault Tolerant Distributed Quickest Change Detection,”
arXiv:1306.2086, December 2014. [Online]. Available: http://arxiv.org/abs/1306.2086

[92] E. S. Page, “Continuous Inspection Schemes,” Biometrika, vol. 41, no. 1/2, pp. 100–115, 1954. [Online].

60

http://www.sciencedirect.com/science/article/pii/S0169207003001134
http://dx.doi.org/10.1002/bimj.4710300745
http://dx.doi.org/10.1016/j.cose.2013.08.003
http://dl.acm.org/citation.cfm?id=1390681.1442794
http://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441
http://www.sciencedirect.com/science/article/pii/S1568494612002402
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://www.sciencedirect.com/science/article/pii/S1063520397902165
http://www.sciencedirect.com/science/article/pii/S106352030600056X
http://arxiv.org/abs/1306.2086


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

Available: http://dx.doi.org/10.2307/2333009
[93] E. Soltanmohammadi, M. Orooji, and M. Naraghi-Pour, “Decentralized hypothesis testing in wireless sensor

networks in the presence of misbehaving nodes,” IEEE Transactions on Information Forensics and Security,
vol. 8, no. 1, pp. 205–215, January 2013.

[94] A. Rawat, P. Anand, H. Chen, and P. Varshney, “Collaborative spectrum sensing in the presence of byzantine
attacks in cognitive radio networks,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 774–786,
February 2011.

[95] K. Limthong, “Real-time computer network anomaly detection using machine learning techniques,” Journal
of Advances in Computer Networks, vol. 1, pp. 1–5, 2013.

[96] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber, S. Webster, D. Wyschogrod,
R. Cunningham, and M. Zissman, “Evaluating intrusion detection systems: the 1998 darpa off-line intrusion
detection evaluation,” in Proc. of the 2000 DARPA Information Survivability Conference and Exposition
(DISCEX ’00), Hilton Head Island, South Carolina, USA, vol. 2. IEEE, January 2000, pp. 12–26.

[97] J. Wang, D. Rossell, C. Cassandras, and I. Paschalidis, “Network anomaly detection: A survey and compar-
ative analysis of stochastic and deterministic methods,” in Proc. of the 52nd Annual Conference on Decision
and Control (CDC’13), Florence, Italy, December 2013, pp. 182–187.

[98] G. A. Carpenter and S. Grossberg, “ART 2: self-organization of stable category recognition codes for analog
input patterns,” Applied Optics, vol. 26, pp. 4919–4930, December 1987.

[99] H. Egilmez and A. Ortega, “Spectral anomaly detection using graph-based filtering for wireless sensor
networks,” in Proc. of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP’14), Florence, Italy, May 2014, pp. 1085–1089.

[100] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for
wireless microsensor networks,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660–
670, October 2002.

[101] K. Cohen and Q. Zhao, “Active hypothesis testing for quickest anomaly detection.” in CoRR, 2014.
[102] Q. Huang and P. P. C. Lee, “LD-Sketch: A distributed sketching design for accurate and scalable anomaly

detection in network data stream,” in Proc of the 33rd Annual IEEE International Conference on Computer
Communications (INFOCOM’14), Toronto, Canada. IEEE, May 2014.

[103] T. Bu, J. Cao, A. Chen, and P. P. Lee, “Sequential hashing: A flexible approach for unveiling significant
patterns in high speed networks,” Computer Networks, vol. 54, no. 18, pp. 3309–3326, 2010. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1389128610002045

[104] Y. Liu, W. Chen, and Y. Guan, “A fast sketch for aggregate queries over high-speed network traffic,” in
Proc. of the 31st Annual IEEE International Conference on Computer Communications (INFOCOM’12),
Orlando, Florida, USA, March 2012, pp. 2741–2745.

[105] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, “Drebin: Efficient and explainable detec-
tion of android malware in your pocket,” in Proc. of the 20th Annual Network & Distributed System Security
Symposium (NDSS’14), San Diego, California, USA, February 2014.

[106] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone application certification,” in Proc.
of the 16th ACM Conference on Computer and Communications Security (CCS’09), Chicago, Illinois,
USA. ACM, 2009, pp. 235–245. [Online]. Available: http://doi.acm.org/10.1145/1653662.1653691

[107] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy, “Android permissions: A
perspective combining risks and benefits,” in Proc. of the 17th ACM Symposium on Access Control Models
and Technologies (SACMAT’12), Newark, New Jersey, USA. ACM, 2012, pp. 13–22. [Online]. Available:
http://doi.acm.org/10.1145/2295136.2295141

[108] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru, and I. Molloy, “Using probabilistic
generative models for ranking risks of android apps,” in Proc. of the 2012 ACM Conference on Computer
and Communications Security (CCS’12), Raleigh, North Carolina, USA. ACM, 2012, pp. 241–252.
[Online]. Available: http://doi.acm.org/10.1145/2382196.2382224

[109] S. Liang and X. Du, “Permission-combination-based scheme for android mobile malware detection,” in
Proc. of the 2014 IEEE International Conference on Communications (ICC’14), Sidney, Australia, June
2014, pp. 2301–2306.

61

http://dx.doi.org/10.2307/2333009
http://www.sciencedirect.com/science/article/pii/S1389128610002045
http://doi.acm.org/10.1145/1653662.1653691
http://doi.acm.org/10.1145/2295136.2295141
http://doi.acm.org/10.1145/2382196.2382224


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

[110] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolution,” in Proc. of the IEEE
Symposium on Security and Privacy (SP’12), San Francisco, California, USA, May 2012, pp. 95–109.

[111] W. Glodek and R. Harang, “Rapid permissions-based detection and analysis of mobile malware using ran-
dom decision forests,” in Military Communications Conference, MILCOM 2013 - 2013 IEEE, November
2013, pp. 980–985.

[112] S. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A new android malware detection approach using
bayesian classification,” in Proc. of the 2013 IEEE 27th International Conference on Advanced Information
Networking and Applications (AINA’13), Barcelona, Spain, March 2013, pp. 121–128.

[113] J. Sahs and L. Khan, “A machine learning approach to android malware detection,” in PRoc. of the 2012
European Intelligence and Security Informatics Conference (EISIC’12), Odense, Denmark, August 2012,
pp. 141–147.

[114] D. Damopoulos, G. Kambourakis, and G. Portokalidis, “The best of both worlds: A framework for
the synergistic operation of host and cloud anomaly-based ids for smartphones,” in Proc. of the Seventh
European Workshop on System Security (EuroSec’14), Amsterdam, The Netherlands. ACM, April 2014,
pp. 6:1–6:6. [Online]. Available: http://doi.acm.org/10.1145/2592791.2592797

[115] D. Damopoulos, G. Kambourakis, S. Gritzalis, and S. Park, “Exposing mobile malware from the inside
(or what is your mobile app really doing?),” Peer-to-Peer Networking and Applications, vol. 7, no. 4, pp.
687–697, 2014. [Online]. Available: http://dx.doi.org/10.1007/s12083-012-0179-x

[116] D. Damopoulos, G. Kambourakis, and S. Gritzalis, “From keyloggers to touchloggers: Take the
rough with the smooth,” Computers & Security, vol. 32, pp. 102–114, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404812001654

[117] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, and Y. Elovici, “Mobile malware
detection through analysis of deviations in application network behavior,” Computers & Security, vol. 43,
pp. 1–18, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167404814000285

[118] Y. an Huang, W. Fan, W. Lee, and P. Yu, “Cross-feature analysis for detecting ad-hoc routing anomalies,”
in Proc. of the 23rd International Conference on Distributed Computing Systems (ICDCS’03), Providence,
Rhode Island, USA, May 2003, pp. 478–487.

[119] R. Kohavi, “The power of decision tables,” in Proc. of the 8th European Conference on Machine Learning
(ECML’95), Heraklion Crete, Grece. Springer-Verlag, April 1995, pp. 174–189.

[120] B. Amos, H. Turner, and J. White, “Applying machine learning classifiers to dynamic android malware
detection at scale,” in Proc. of the 9th International Wireless Communications and Mobile Computing Con-
ference (IWCMC’13), Cagliari, Italy, July 2013, pp. 1666–1671.

[121] C. Wang, Z. Wu, A. Wang, X. Li, F. Yang, and X. Zhou, “Smartmal: A service-oriented behavioral malware
detection framework for smartphones,” in Proc. of the 10th IEEE International Conference on High Per-
formance Computing and Communications and Embedded and Ubiquitous Computing (HPCC EUC’13),
Zhangjiajie, China, November 2013, pp. 329–336.

[122] R. Saaty, “The analytic hierarchy process—what it is and how it is used,” Mathematical Modelling,
vol. 9, no. 3–5, pp. 161–176, 1987. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0270025587904738

[123] M. Alam and S. Vuong, “Random forest classification for detecting android malware,” in Proc. of the 2013
Green Computing and Communications conference (GreenCom’13), Beijing, China, August 2013, pp. 663–
669.

[124] Y. Wei, H. Zhang, L. Ge, and R. Hardy, “On behavior-based detection of malware on android platform,” in
Proc. of the 2013 IEEE Global Communications Conference (GLOBECOM’13), Atlanta , Georgia, USA.
IEEE, December 2013, pp. 814–819.

[125] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis for android malware detection,”
in Proc. of the 7th International Conference on Computational Intelligence and Security (CIS’11), Hainan,
China. IEEE, December 2011, pp. 1011–1015.

[126] K. J. Abela and al., “The analytic hierarchy process—what it is and how
it is used,” International Journal of Cyber-Security & Digital Forensics, vol. 2,
no. 2, 2013. [Online]. Available: http://connection.ebscohost.com/c/articles/88222125/

62

http://doi.acm.org/10.1145/2592791.2592797
http://dx.doi.org/10.1007/s12083-012-0179-x
http://www.sciencedirect.com/science/article/pii/S0167404812001654
http://www.sciencedirect.com/science/article/pii/S0167404814000285
http://www.sciencedirect.com/science/article/pii/0270025587904738
http://www.sciencedirect.com/science/article/pii/0270025587904738
http://connection.ebscohost.com/c/articles/88222125/automated-malware-detection-system-android-using-behavior-based-analysis-amda
http://connection.ebscohost.com/c/articles/88222125/automated-malware-detection-system-android-using-behavior-based-analysis-amda


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

automated-malware-detection-system-android-using-behavior-based-analysis-amda
[127] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, “Madam: A multi-level anomaly detector for

android malware,” in Computer Network Security, ser. Lecture Notes in Computer Science, I. Kotenko
and V. Skormin, Eds. Springer Berlin Heidelberg, 2012, vol. 7531, pp. 240–253. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33704-8 21

[128] Y. R. Choe, M. Bierma, J. L. Erickson, D. J. Fritz, and E. Gustafson, Andlantis: Large-scale Android
Dynamic Analysis. IEEE, February 2014, pp. 1–6.

[129] M. Zheng, M. Sun, and J. Lui, “Droidtrace: A ptrace based android dynamic analysis system with forward
execution capability,” in Proc. of the 2014 International Wireless Communications and Mobile Computing
Conference (IWCMC’14), Nicosia, Cyprus, August 2014, pp. 128–133.

[130] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik semantic views for dynamic
android malware analysis,” in Proc. of the 21st USENIX Conference on Security Symposium (Security’12),
Bellevue, Washington, USA. USENIX Association, August 2012, pp. 29–29.

[131] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my market: Detecting malicious apps
in official and alternative android markets.” in Proc. of the 19th Annual Network & Distributed System
Security Symposium (NDSS’12), San Diego, USA. The Internet Society, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ndss/ndss2012.html#ZhouWZJ12

——————————————————————————

63

http://connection.ebscohost.com/c/articles/88222125/automated-malware-detection-system-android-using-behavior-based-analysis-amda
http://connection.ebscohost.com/c/articles/88222125/automated-malware-detection-system-android-using-behavior-based-analysis-amda
http://dx.doi.org/10.1007/978-3-642-33704-8_21
http://dblp.uni-trier.de/db/conf/ndss/ndss2012.html#ZhouWZJ12


Anomaly Detection in Computer Networks S. Al-Haj Baddar, A. Merlo, M. Migliardi

Author Biography

Sherenaz Al-Haj Baddar earned her PhD degree in Computer Science from Kent
State University in Ohio (USA) in 2009. She obtained her M.Sc. and B.Sc. in
Computer Science from the University of Jordan, in Amman, Jordan, back in 2003
and 2001 respectively. While pursuing her PhD, she worked with Prof. Kenneth E.
Batcher on novel strategies for designing faster sorting networks. Currently, Dr. Al-
Haj Baddar is an assistant professor of Computer Science at the University of Jordan.
Her current research focuses on parallel and distributed computing and wireless sen-

sor networks.

Alessio Merlo got a Laurea degree in Computer Science in 2005 at University of
Genova. He received his PhD in Computer Science from University of Genova (Italy)
in 2010 where he worked on performance and access control issues related to Grid
Computing. He is currently serving as an Assistant Professor at the Computer Security
Lab (CSec Lab) at DIBRIS, University of Genoa. His currently research interests are
focused on security issues related to Web, distributed systems (BYOD), and mobile
(Android platform).

Mauro Migliardi got his PhD in Computer Engineering in 1995. He was a Research
Associate and Assistant Professor at the University of Genoa and Research Asso-
ciate at Emory University as Co-PI in the HARNESS heterogeneous metacomputing
project. Currently he is Associate Professor at the University of Padua and Supply
Professor at the University of Genoa. He is also a member of the Scientific Com-
mittee of the Center for Computing Platforms Engineering and he has won the 2013
Canada-Italy Innovation Reward. His main research interest is distributed systems

engineering in general; recently he focused on mobile systems, human memory support services, energy
awareness and green security. He has tutored more than 80 among Bachelor, Master and PhD students at
the Universities of Genoa, Padua and Emory, and he has authored or co-authored more than 100 scientific
papers published in national and international, peer reviewed conferences, books and journals.

64


	Introduction
	Preliminaries and Background
	Basic Terminology
	Taxonomies of Anomaly Detection Techniques in Computer Networks
	According to Granularity
	According to Functionality
	According to the Underlying Approach
	According to the Nature of Data Instances

	Other categorizations
	Measuring the Performance of an Anomaly Detection Technique

	Anomaly Detection Techniques: State-of-the-Art
	Network-level Anomaly Detection Solutions
	Application-level Anomaly Detection Solutions

	Summary of subtleties
	Conclusions

