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Abstract

The Electronic Product Code Information System (EPCIS) is a state of the art information system
for tracking and monitoring the lifecycle of physical objects based on RFID technology. Low-cost
passive RFID tags are replacing traditional barcodes for physical object identification and are heavily
used within logistics and trade. They are an essential aspect of identifying physical objects, therefore
an integration into the IoT is required. This paper presents a concept, which defines how the EPCIS
can be integrated into the IoT extending it to a so called Smart Thing Information System (STIS).
The integration follows a two-fold approach. On the one side, the information of the EPCIS is made
available for IoT devices and services, by providing a lightweight query interface. On the other side,
the information of non-RFID related devices, such as sensors and actuators of home and building
automation systems (BAS) are made available to EPCIS. Thus, a seamless integration with building
automation systems is possible. The extended system embraces interoperability by resting upon stan-
dards such as OBIX and CoAP. We present a case study using a globally testbed that demonstrates
the feasibility of the proposed system extension. In addition, a performance analysis is carried out
that investigates the scalability impacts and limits of the STIS new interfaces as well as the gateway
for BAS.
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1 Introduction

The IoT is an emerging paradigm that extends the existing Internet infrastructure to the most constrained
devices and the embedded world. Smart objects equipped with ICT-intelligence become citizens of a
world wide Internet based communication infrastructure that interconnects appliances, sensors and actu-
ators, mobile devices, wearables, identification tags, smart objects and cloud based information systems
and services.

From the initial supply chain visibility application, the IoT has been evolving dramatically to em-
brace many other application domains such as building automation, pervasive health care or smart infras-
tructure. These evolutions require upgrades to the existing information infrastructures. Specifically, the
traditional Electronic Product Code Information System (EPCIS) [[1] which has been used extensively
for objects management in manufacturing and supplying processes, needs a redesign to accommodate
new IoT application domains with new requirements.
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Building Automation is a typical IoT application for these new requirements. A Building Automation
System (BAS) usually contains many devices that possess fruitful data such as their working status or
environment condition. These data are of much interest for maintenance process and thus, need to be
indexed and managed efficiently in an information system that allows easy data retrieval and supports
decision makings.

To address these requirements, I0T6 - a FP7 European research project EI has proposed an extended
version of EPCIS called Smart Things Information Service (STIS) [2]]. STIS seamlessly integrates tradi-
tional EPC networks with a new breed of data-generating devices such as EnOcean [3]], 6LoWPAN [4],
and off-the-shelf BAS such as BACnet [3], KNX [6]]. The basic idea behind STIS is an extensible cap-
turing interface that can capture data from heterogeneous devices in addition to just RFID events. Lever-
aging the standardized EPC object extensions [1]] STIS is able to store and managed the vast amount of
data generated by things. In addition, STIS opens a lightweight query interface based on REST-ful web
service [7] for easing the data retrieval from the system, thus facilitating the maintenance process and
development of third-party applications. The newly added interfaces use CoAP protocol [8] for trans-
portation and OBIX standard [9] for data format. The lightweight characteristics of the CoAP protocol
and the robustness of the OBIX standard make them the best fit for the proposed system.

This paper extends the idea presented in [2] by discussing in detail the underlying techniques used
in the two newly developed interfaces between STIS and BAS and giving a deeper performance analysis
of the deployed system.

The paper is organized as follows. In the next section, we outline some related works in the field
of IoT architecture design, EPCIS development and data exchange format. Section |3| describes some
use cases in integrating the STIS with BAS. Section [ introduces the proposed STIS system in details
and Section [5 presents a case study that demonstrates the feasibility of the proposed concept. Further, a
performance analysis of the involved components is conducted. Finally, Section [6|provides a conclusion
of the presented integration of EPCIS and BAS.

2 Related Works

There are significant efforts in realizing an IoT architecture in which authors tried to design a platform
for storing and retrieving thing’s data [[10] [[11] [[12]. In these works, physical devices are configured
so that they periodically publish their contextual data to the platforms. The published data streams are
then abstracted into channels to which client applications can subscribe to retrieve and process the data.
However, there is a lack of a common data format standard so that it is virtually impossible to exploit
physical thing’s resources in large scale. In addition, these systems do not take into account the identity
of physical devices. Instead, each thing is assigned a unique, random channel ID to identify itself when
publishing data. Due to this approach, these systems do not benefit the product life-cycle management,
which is very important for many applications. For example, the system will not be aware of which real
product is generating which data stream, making product management and data analysis more difficult.

To overcome these limitations, this paper extends the EPC Information Service, which was standard-
ized by GS1 Global [[13]] to handle things’ data along with their identities. The proposed Smart Thing
Information System (STIS) leverages the product life-cycle management of the existing EPC Network
while provides functionality to capture the things’ contextual data.

There are some other extensions of EPCIS that aim at providing more flexible and open interfaces
for third party client applications. Leveraging Web Service architecture, authors in [[14] proposed Web
service interfaces to existing EPCIS to expose products information using the SOAP protocol. In another
work [15]], authors developed an extra server component that adapts the EPCIS repository to a RESTful

Thttp://iot6.eu
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Web service, so that enables access to the EPCIS from conventional Web browsers. Beyond these works,
our EPCIS is not only equipped with RESTful Web service interfaces but also extended to support the
capture of things’ contextual data. Moreover, our proposed extension of EPCIS is capable of commu-
nicating over the CoAP protocol, a new, lightweight application protocol for embedded devices. Thus,
the EPCIS is now open to both client applications and embedded devices. This functionality opens a
vast number of new application scenarios that can be developed. For example, physical things can sub-
scribe to each others’ data stream via STIS over CoAP and act upon each others’ updates, thus enabling
physical mash-up services.

Since the new version of EPCIS requires a standard in data communication between the system and
the devices, a proper data format is indispensable. Within [16] and [[17] the authors described how the
heterogeneity found in nowadays home and BAS can be addressed through an integration layer based on
OBIX and novel Web service protocol bindings to CoAP and JSON, which make a deployment of such
communication stacks feasible for constrained micro-controller based sensors and actuators. The work
presented in this paper extends this integration to RFID based information systems.

3 Use Cases for Integrating STIS with BAS

For combining the STIS with BAS, several use cases can be identified:

¢ Building automation for smart logistics: In an integrated solution, delicate goods (e.g., medical
goods or food) with strong requirements on certain environmental conditions can be linked with the
BAS of storage rooms in order to adjust temperature set points for the air condition. The product
or more realistic the storage container can control its environment in a smart manner. Further,
in case of violations of certain conditions, alarms could be raised in the local BAS which might
include visual and acoustic signals and the notification of a system operator.

e Auditing: Sensor readings of the BAS can be logged by the STIS in order to proof the correct
storage of goods throughout the complete supply chain.

e STIS for building maintenance: From a building management perspective, the integration of
STIS opens the possibility to innovative use cases for building maintenance. Automation devices
equipped with RFID tags would allow to automatically redirect a system operator to the smart
things information service of the vendor allowing him to order spare parts in case of a device
failure. The STIS can be further enriched with product data sheets that guide the installation
process of devices.

For realizing these innovative use cases, a close integration between the extended EPC information
system and building automation technologies is required to create a Smart Thing Information System for
the future Internet of Things.

4 STIS Architecture

This section explains how the current EPCIS is extended with new features. Fig. [T|shows the architecture
of the STIS that includes the original EPCIS. At the bottom, there is a a device layer where smart physical
things reside. Raw data generated from this layer is filtered and collected into Filter and Collection
(FnC) middleware, lies at the middle layer. At the top, there is a data repository that keeps all the filtered
data and exposes them to client applications, where application logics run. The upgraded and extended
interfaces are the Lightweight data querying interface and the new data capturing interface. These two
interfaces are introduced as follows.
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Figure 1: STIS components

4.1 Lightweight data querying interface

EPC Network has been designed for manufacturers and corporations who want a complete product man-
agement information system. Therefore, most of the interfaces between EPC Network components such
as the FnC, the Repository, ONS or the Discovery module are based on heavy enterprise-level Web ser-
vice interfaces such as SOAP/HTTP. With the evolution of the 10T, it is increasingly demanded that the
product consumers be knowledgeable on the products they are consuming, e.g, how they are distributed
or products’ real origins. Furthermore, under the IoT context, objects are also interested in the cap-
tured data. For example, physical mashup services can be realized by having objects subscribe to each
other’s data streams and take corresponding actions. Therefore, we extend the EPCIS by designing a
lightweight query interface that eases the data retrieval process of consumers or other physical objects
(client applications).

The lightweight interface is based on the RESTful communication model that allows client appli-
cations to query for stored data through a simple resource URI. The interface’s internal mechanism is
illustrated in Fig. 2| As seen in the figure, only a portion of the database is REST-ified and made available
to the lightweight interface. This is because client applications are usually interested in only the contex-
tual data of the products. Meanwhile, enterprise applications are mostly interested in other EPC-related
information, such as business locations, business steps and data point. Thus, the REST-ified portion of
the EPCIS repository is grouped into context-oriented resource objects such as EPC event object, lo-
cation object, EPC object. These resources are designed to give client applications a minimum set of
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Figure 2: The STIS lightweight query interface

most necessary information. For example, lightweight EPC event object has only three properties: event
timestamp, event action and the event data extension, which are useful for tracking the current contextual
status of the object without knowing other information such as the data point or business location of the
event. Besides, the lightweight location object gives information on only the data point location where
the event occur.

To enable a variety of applications, STIS’ lightweight query interface operates in both CoAP and
HTTP protocol bindings. For instance, via the CoAP interface constrained objects can subscribe to other
objects’ data stream to act upon changes. Via the HTTP interface, product consumers can query the
locations the products that have been shipped.

4.2 New data capturing interface

In STIS, in order to support capturing capability for sensing data a new data acquisition component
is added to the Filter and Collection (FnC) layer of the traditional EPC network. This component is
responsible for getting sensing data from things and convert them into legacy EPC events, which are
eventually captured into the STIS repository.

The capturing component operates in both push and pull-based mode. The underlying communica-
tion is based on the CoAP protocol. In push-based mode, the component listens to data update requests
from things that are pre-configured with the FnC endpoint. In pull-based mode, the component actively
connects to a list of pre-registered things to collect data from them. In both cases, data exchange format
to capture the data from things follows the OBIX message standard.

Listing 1: Sample ALE event: using the extension mechanism within an EPC standard event

<reports>
<report reportName="reportName">
<group>
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<groupList>
<member>
<epc>urn:epc:id:sgtin:886348213.7508.136164026610</epc>
<rawHex>urn:epc:raw:96.x304f4d499b57551fb40228f2</rawHex>
<extension>
<fieldList>
<field>
<name>temperature</name>
<value>24</value>
<fieldspec>
<fieldname>unit</fieldname>
<datatype>float</datatype>
<format>degree C</format>
</fieldspec>
</field>
</fieldList>
</extension>
</member>
</groupList>
</group>
</report>
</reports>

After the data has been collected, the STIS’ FnC component generates an Application Level Event (ALE)
event that will be forwarded to the Capturing Application. The ALE event fully follows the EPCIS
specification since it uses the EPCIS extension for storing products’ data. Listing [1| shows how the
extension incorporates products data into normal ALE events. The sample ALE event holds an extension
field called “temperature” with a value of ”24” and some other information such as data type or format.
This ALE event will be captured into the STIS repository through the Capturing Application along with
all other ALE events from RFID readers. Finally, the data is made available to end users or physical
devices.

4.2.1 Data acquisition based on OBIX standard and CoAP binding

OBIX attempts to provide a standard XML syntax for representing machine-to-machine (M2M) infor-
mation provided by embedded sensors and actuators. Its goals are to use enterprise friendly technologies
like XML, HTTP and URIs for M2M communication. A goal of OBIX is to provide a standardized
representation for common M2M features like data points, histories and alarms extensible for custom
enhancements. Although OBIX was designed to work on embedded devices, HTTP and XML are not
the best technology choice for Low power and Lossy Networks (LLNs). To address this issue, OBIX
specified in the 1.1 specification working draft a custom binary protocol designed for the use in 6LoW-
PANSs. In a recent committee specification draft, a protocol binding to CoAP and message encoding for
JSON and EXI have been defined, making OBIX more suitable to the constraints found in low-power
and lossy wireless sensor and actuator networks. Since OBIX was designed around the RESTful design
paradigm from the very beginning it is a good choice to integrate existing state of the art home and
building automation technologies but further allows a deployment directly on the sensor or actuators.

So-called OBIX contracts provide a template for certain sensor and actuator types. The OBIX core
specification comes with a set of standard contracts for data point centric data representation, histories,
alarming and watches.

For the integration with the STIS, the data point centric representation and the history contract are
most relevant.
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4.2.2 EPC-based device identification

The EPC is designed by GS1 Global as a universal identifier for physical objects. It supports up to 7
different formats for identification keys. An EPC can be represented in a canonical form through a URI.
Listing [2] illustrates the syntax and provide an example of an EPC.

Listing 2: Serialized Global Trade Item Number

urn:epc:id:sgtin:CompanyPrefix.ItemRefAndIndicator.SerialNumber
urn:epc:id:sgtin:0614141.112345.400

To extend the legacy EPCIS to a STIS so that it can embrace things from BAS, things are represented
in OBIX objects and EPCs are added the OBIX objects in the form of an Id object. These uniquely
assigned EPCs help STIS to easily capture things data into its repository. Listing [3|shows an example of
how this technique is implemented.

Listing 3: Adding EPC to OBIX object

<obj href="/obix">

<ref name="about" href="about"/>

<ref href="/id" is="iot:id"/>

<ref href="/virtualPresence" is="iot:PresenceSensor"/>
</obj>

<obj>
<str name="epc" href="epc" val="0057000.123430.2025"/>
</obj>

4.2.3 Push-based data acquisition in STIS

In push-based mode, the STIS’ FnC component opens a RESTful API, which binds to CoAP protocol,
to receive data update requests from things. The API endpoint has to be provided within the sensor or
the gateway beforehand. The push-based interaction limits the required communication to the minimum
since the sensor can be configured to push new data only if certain events happen.

Listing d]illustrates the OBIX contract for the interface of a single sensor value at the EPCIS. A basic
real object is used to collect sensor readings. The current value can be queried with the val attribute but
more important a standard OBIX history object is provided that allows to push new sensor values using
the OBIX append operation.

Listing 4: STIS OBIX interface

<real href="iot:TemperatureSensor" val="0.0" unit="obix/celsius" is="obix:History"/>
<int name="count" min="0" val="0"/>
<abstime name="start" null="true"/>
<abstime name="end" null="true"/>
<str name="tz" null="true"/>
<list name="formats" of="obix:str" null="true"/>
<op name="query" in="obix:HistoryFilter" out="obix:HistoryQueryOut"/>
<feed name="feed" in="obix:HistoryFilter" of="obix:HistoryRecord"/>
<op name="rollup" in="obix:HistoryRollupIn" out="obix:HistoryRollupOut"/>
<op name="append" in="obix:HistoryAppendIn" out="obix:HistoryAppendQOut"/>
</real>

4.2.4 Pull-based data acquisition in STIS

In Pull-based mode, the STIS captures things data by polling the sensor or the gateway. It is straight-
forward in capturing data from a single sensor because there is only one EPC assigned to the sensor.
However, in the gateway case, the gateway manages many individual sensors so that the STIS needs to
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loop through all of these sensors to capture their data. This can be done via the lobby OBIX object of
the gateway, which contains information on all the things the gateway is managing as well as their OBIX
interfaces.

This capturing mode imposes the most communication overhead since the server has to actively
request for new sensor data. If no new sensor data is available unnecessary traffic occurs. However, this
mode provides more freedom to the BAS implementation since little to no effort is required to configure
the existing BAS for data uploading.

4.2.5 Gateway or sensor/actuator deployment

The described communication interfaces can be deployed directly on sensor or actuators within con-
strained lossy and low-power wireless sensor and actuator networks or through a gateway interface for
state of the art BAS technologies like KNX, BACnet, ZigBee or EnOcean to mention a few examples.
The deployment is most feasible for constrained devices since gateway devices usually have enough
memory and computational resources and a good global Internet connectivity, which allows to rely on
mature Web service technologies based on HTTP and XML. However, for integration purposes, it is
most convenient to have a uniform communication interface. By using CoAP expensive polling requests
can be avoided. Furthermore, the usage of CoAP enables the creation of control logic based on IPv6
multicasting as presented in [18]].

5 Evaluation

5.1 Case study

This section introduces a realistic, world-wide deployment of the the proposed system which, is used for
validation of the work. We deployed STIS at KAIST, Korea while VUT, Austria provides a Building
Automation System with oBIX gateways and devices. The purpose of such worldwide deployment is to
test the ability to capture/query things’ data via CoAP protocol over an IPV6 based Internet. The system
is shown in Fig. 3]

5.2 The EPC sensor network at KAIST

The STIS repository at KAIST is based on the open source project Fosstrak [[19], which is a state-of-
the-art implementation of EPCIS repository. STIS extends the Fosstrak’s implementation by adding
a RESTful layer and new CoAP-based communication channel. It also features a live feed of event
stream that third-party applications can subscribe to receive. The implementation based on Java Servlet
technology and is deployed on Apache Tomcat container with a MySQL backend.

STIS FnC uses the open source project Rifidi [20] to capture and filter events from physical things.
Rifidi uses an open source Complex Event Processing (CPE) framework called Esper [ to filter raw
data events from physical layer. The raw data are captured into Rifidi through a collection of plugins
that connect to things via different communication protocols. We developed two OBIX plugins for the
Rifidi server with UDP sockets to support CoAP communication. We use the state-of-the-art CoAP
implementation Californium [21] for our CoAP stack due to its usability and maturity. Amongst two
OBIX plugins, one acts as a CoAP server to collect thing data in the push-based data acquisition mode.
The other acts actively connect to a list of pre-configured OBIX servers to retrieve thing data in pull-
based mode.

Zhttp://esper.codehaus.org/

63



Integrating the EPCIS and Building Automation System into the IoT Giang, Im, Kim, Jung, Kastner

Global Smart Thing
Information System

6LoOWPAN LLN
(direct global IPv6 connectivity)

EPC Information Service(EPCIS)
2002:8ff8:6a89::8ff8:6a89

Internet of Things Test Bed

@ Vienna University of Technology Filterng and Collection (F&C)

2002:8ff8:6a6¢::8ff8:6a6¢c

Extended EPCIS test bed

HVAC model and room automation model with smart @ Vienna University of Technology
meter using BACnet, KNX, EnOcean and W-MBus

Figure 3: The Deployed System

<ohj href="/obix":>
<ref nawe="about" href="about"/>
<ref href="/id" is="iot:Id"/>
<ref href="/virtualIndoorBrightnessSensor” is="iot:IndoorBrightnessiensor
<ref href="/vircualPresence" is="iot:Presenceletectordensor™/>
<ref href="/virtualFanSpeed"” is="iot:FanSpeedictuator"/»
<fobir

EPC ~ Data - Action

urncepeid:sotin 234567.000000.68719476746  presence: false fanSpeed: 0 brightness: 243.0 ~ ADD
urnepeid:sgtin1 234567 000000687 19476746 presence: false fanSpeed: 22 brighthess: 244.0  ADD
urnepeid:sgtin:l 234567.000000.68719476746  presence: false fanSpeed: 25 brightness: 237.0 ADD

urn.epe.id:satin:1 234567.000000.68719476746  presence. false fanSpeed: 21 brighiness: 240.0  ADD

Figure 4: Demonstration of Data Capturing from BAS to STIS

5.3 Internet of Things testbed at VUT

An Internet of Things testbed in Vienna is connected to the STIS repository in KAIST using IPv6 con-
nectivity. IoT smart objects equipped with sensors have a direct end-to-end connection with the STIS
repository. Contiki based 6LoWPAN devices are used. Therefore, Contiki has been extended to include
an OBIX implementation and to offer an according communication interface. For integrating existing
sensors and actuators in STIS, a Java based OBIX gateway is used. It can be operated both in a push
mode to report latest sensor readings to the STIS or in a pull mode in which the STIS queries the gate-
way for updated sensor readings. A versatile testbed based on KNX, BACnet and EnOcean devices is
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Platform STIS NGrinder & NGrinder agent
Operating System | Ubuntu Linux 12.04 server 64 Bit Windows 7 64 Bit

CPU HP ProLiant DL160 Intel Xeon CPU E5504 2.00GHz | Intel i7 870 2.93GHz

Memory 4 GB RAM 8 GB RAM

Software Apache Tomcat 7.0.54, Oracle JVM 1.7.0_55 64-bits | JVM 1.7.0-40 64

Table 1: Test environment

# of concurrent clients | # of processes | # of threads per each process
1 1 1

5 1 5

10 1 10

20 2 10

30 2 15

40 2 20

50 2 25

100 4 25

Table 2: Experiment setting for emulation of concurrent clients

used. The gateway implementation based on Java as well as the Contiki based sensor/actuator firmware
is provided as open source [22].

In this section, we demonstrated the implemented system by sending and receiving data between
KAIST’s STIS and VUT’s IoT testbed. The demonstration scenario is about a building automation use
case in which an administrative application is setup to watch for operations of smart devices in building.
The STIS is configured in pull-based mode with the VUT’s OBIX gateway address so that its FnC
component continuously polls the gateway for data. The administrative application is programmed so
that it can detect abnormal data which are collected from devices through the OBIX gateway. When
abnormal data are detected, the administrative application can automatically notify the system operators
and issue replacement order (based on the device’s EPC number) without users intervention. Fig. 4{shows
the OBIX gateway’s lobby object which lists all the devices being monitored and the Web interface of the
STIS where user can see a live stream of data coming in the STIS repository. The live data stream reflects
the status of all the devices that are being monitored by the OBIX gateway and gives the administrative
application inputs for its decision.

5.4 STIS lightweight interface performance

The STIS is deployed in a server. We emulate concurrent clients to send STIS queries using a Web
performance evaluation tool called NGrinder. It can send concurrent requests and measure their response
time in an automatic manner. NGrinder can also execute a Java program using its script execution
function, so we used NGrinder to execute Californium-based CoAP query client program written in
Java. NGrinder emulates each client using a thread. The number of processes and threads per each
process for each test case are summarized in Table 2]

Figure[5|based on Table 3|shows how the response time of the STIS CoAP interface and its error rate
change according to the number of clients. When only one client sends a CoAP query to the STIS every
2 seconds, the average response time is 214.05 milliseconds and there is no error. This trend continues
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Response Time and Error Rate of STIS lightweight CoAP Interface
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Figure 5: Response time and error rate of STIS lightweight CoAP interface

Mean Response

zlizfltsCOncurrent 1,;1:;: (msl)lesponse Time per # of | Error Rate (%)
Clients (ms)

1 214.05 214.05 0

5 1489.92 297.984 0

10 2185.32 218.532 0

20 4364.26 218.213 0

30 6531.12 217.704 0

40 20527.92 513.198 0

50 29001.1 580.022 0

100 29302.2 293.022 37.87

Table 3: Response Time and Error Rate of STIS lightweight CoAP Interface

to the case when the number of clients is 30. It is clearly shown that the mean response time increases
linearly according to the number of clients. When it comes to the next case (i.e. 40 clients), the average
response time per client increases. Thus, the processing capability of the STIS is gradually saturated,
leading some clients to wait more time to get a response. Nevertheless, it is shown that the STIS can
process all the queries. However, as for the final case when 100 clients participate in the experiment, the
request error rate increases to 37.87%. Please note that the mean response time per clients (i.e. 293.022
ms) is calculated only based on the measured response time of successful requests. To sum up, the
SITS lightweight CoAP interface guarantees a comparatively constant and feasible processing capability
(around 200 ms) with 30 clients; also STIS can scale up to 50 clients with increased response time.

5.5 Gateway performance

For the scalability analysis of the proposed gateway to integrate building automation systems, a queuing
network model of the gateway allows to predict the resource demand and the performance behaviour.
Therefore, the different request types that impose load on the gateway are analyzed, measured and used
to establish and quantify an analytic model that allows to estimate the scalability of the gateway in certain
load scenarios.
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5.6 Mixed queuing network model for gateway analysis

A mixed queuing network model is taken to analyze the scalability. This model approach and according
algorithms to solve this type of model follow the methodology presented in [23]]. For the analysis of the
gateway, the various request types are used to define the model. The gateway needs to deal with requests
that represent the process data exchange. Group communication used for creating distributed control
logic scenarios falls into this category. Also read and write requests on OBIX objects and datapoints
for creating application logic can be categorized into this type of traffic. Furthermore, human users
may interact with the gateway in order to directly interact with objects or to create further control logic
applications.

A mixed queuing network model can be taken to represent these different types. A closed model
reflects the interactive user requests that are placed on the gateway. An open model is used to represent
related requests to the process data exchange. The resource of interest is the CPU of the gateway.

To solve the combined model of the multi-class open and multi-class closed model, the principle
approach is to solve the independent models. In order to represent the influence of the different models on
each other, first the utilization of the resources due to the open class model is calculated and depending on
the utilization, the service demand of the closed model is elongated. The closed model with the modified
service demand is then solved and the average customer queue length of the closed model customers is
used for calculating the response times of the open model.

Closed model The closed model is represented through the load intensity vector ﬁ and the rele-
vant class descriptor parameters of (D;,,M,,Z,). R is defined with the set of possible request types
R = (WatchService,Read,Write, GroupManagement). The WatchService customer class represents the
recurring requests that occur through the OBIX watch service, issued by a client to update the user inter-
face. In case of the HTTP binding of the gateway, this service can be polled for updates that happened
since the last poll. The watch service comes with two different request types. The pollChanges operation
provides a delta of changes since the last poll and the pollRefresh operation provides a complete list of
the objects that are currently monitored by the watch. The computational effort strongly depends on the
required number of OBIX objects that need to be encoded. The positive effect of the pollChanges fur-
ther depends on the update ratio of the represented objects. If the update ratio is higher than the polling
interval, no improvement of pollChanges compared to pollRefresh can be observed.
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l Class \ Service Demand CPU (ms) Pi \ Smart Board \ x86 PC ‘
Datapoint Write 298 52 12
Datapoint Read 259 45 1
Object Write 334 51 13
Object Read 265 44 1
Group Communication Write 72 41 16
Bus Event 3 6 1

Table 5: Service demands open model

Table || provides the service demands measured on different hardware platforms operating the gate-
way. For the evaluation a x86 PC platform is compared to a custom developed embedded smart board
and the popular Raspberry PI platform. The smart board was developed within the IoT6 research projectE]
and is comparable to the Raspberry Pi but comes with a customized extension of transceivers for legacy
building automation systems. For acquiring the measurements the operational analysis methodology
presented in [24] is used.

| Class [ Service Demand CPU (ms) Pi [ Smart Board [ x86 PC ‘
WatchService 159.13 41 1
Write 95.45 32 2
Read 51.54 17.7 7
Group Management 57.71 31 2.5

Table 4: Service demands

Open model For the requests related to process data exchange, an open model is used, since requests
may originate within the local network by devices directly sending requests and also local or remote
applications that perform control logic scenarios. The open model is represented through R customer

classes with a load intensity vector A = (A1, 4,,...,Ag) on K devices, where A, indicates the arrival rate
of class r customers.
Table [5]illustrates the service demands measured at the gateway for the open model.

5.7 Evaluation results

For the evaluation, different scenarios are taken into the account. The main input parameters are the
arrival rate of the open class request, the think time and the number of closed class customers. To keep
the complexity of the model reasonable the same think time is used for all closed class requests. For
the open class requests, the arrival rate is grouped into an arrival rate for process related communication
that consists of group communication [18] and bus communication, and further into a group that repre-
sents ad-hoc communication generated through external applications which operate through client/server
based communication with datapoints and objects. The process communication takes place at run-time
without the involvement of any system engineer. This might be traditional non-IP bus communication,
as well as IP-based communication using CoAP. The following results show the average response time
to be expected for a certain arrival rate and number of clients for the Raspberry Pi platform.

3www.iot6.eu
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Scenario comparison The achieved gateway performance strongly depends on the pattern and compo-
sition of the traffic and the user interaction. Taking the Raspberry Pi platform, the worst case performance
can be observed if the process communication is disturbed by high load imposed through ad-hoc commu-
nication requests and high user interaction. Reducing the ad-hoc communication to 20% and decreasing
the user delay provides a significant performance improvement, but the best performance can be achieved
if the ad-hoc communication is limited to 10% and the user interaction is kept at a low interaction rate.

For the comparison of different traffic scenarios, the average response time of the process communi-
cation based on CoAP/XML is used.

Object Wite (CoAP/XML) - Think time: 1.0 (50% Ad hoc Comm.) ——— Object Read (CoAP/XIML) - Think time: 2.0 (20% Ad hoc Comm.) ——— Datapoint Write (CoAP/XML) - Think time: 3.0 (10% Ad hoc Comm.) ———

=]

ORI © s

NPT
-

Average response time (s)
Average response time (s)
Average response time (s)

3
Blumber of terminals

Arrival rate (req/s)”

Arival rate (req/s Arrival rate (req/s)”

Figure 7: Scenario comparison - Raspberry Pi

Platform comparison The previous results only focused on the Raspberry Pi platform. The results
below show the difference between the other hardware platforms that have been considered. A custom
developed smart board within the IoT6 research project shows a much better performance compared to
the Raspberry Pi platform.

Datapoint Write (CoAP/XML) - Think time: 1.0 (50% Ad hoc Comm.) Datapoint Write (CoAP/XML) - Think time: 2.0 (20% Ad hoc Comm.) Datapoint Write (CoAP/XML) - Think time: 3.0 (10% Ad hoc Comm.)

PR

Average response time (s)
Average response time (5)

Average response time (s)

Arrival rate (req/s) Arival rate (req/s)

Figure 8: Scenario comparison - custom smart board

However, the performance of an x86 based PC platform is still a magnitude better. The cost difference
for the various platforms is also significant.
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Datapoint Write (CoAP/XML) - Think time: 1.0 (50% Ad hoc Comm.) Datapoint Write (CoAP/XML) - Think time: 2.0 (20% Ad hoc Comm.) Datapoint Write (CoAP/XML) - Think time: 3.0 (10% Ad hoc Comm.)
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Figure 9: Scenario comparison - X86 platform
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Figure 10: Platform comparison

6 Conclusion

Follow the evolution of the IoT, we showed that traditional information system such as EPCIS can be
upgraded and extended to seamlessly embrace new application domains. In this paper we introduce such
extension of EPCIS called STIS and an interoperable approach to integrate such information system into
an emerging IoT application domains - the Building and Automation System. By leveraging the exten-
sion of the EPCIS standard and protocols that suit perfectly to the IoT field (i.e., CoAP/OBIX), the STIS
brings a new information infrastructure for loT data warehousing, specifically BAS data management
in this work. We also showed that a lightweight query interface based on REST-ful web service and
CoAP protocol is of much benefit to third-party applications. We showcased a realistic, world-wide in-
tegration system between our partners that proves its practicability. Further, a performance evaluation of
the proposed STIS lightweight interface and a gateway component for building automation systems is
conducted to estimate the scalability of the proposed system.
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