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Abstract

Scyther [1] is a tool designed to formally analyze security protocols, their security requirements
and potential vulnerabilities. It is designed under the perfect or unbreakable encryption assumption
[2], which means that an adversary learns nothing from an encrypted message unless he knows the
decryption key. To our best knowledge, most protocols analyzed using Scyther are widely used stan-
dards and their complexity are limited. In this paper, we use Scyther to analyze two complex group
authentication protocols [3] and their security properties. Due to the design goals and limitations of
Scyther, we have only checked a subset of the security properties, which show that the group au-
thentication protocols provide mutual authentication, implicit key authentication and they are secure
against impersonation attack and passive adversaries. To achieve this, we have extended the express-
ing ability of Scyther based on some reasonable assumptions.

Keywords: formal verification, group authentication, Scyther

1 Introduction

There are two main approaches to the verification of security of protocols: provable security [4–6]
and formal methods [7, 8]. Scyther [1] is one of the formal verification tools and is designed for the
automatic verification of security protocols. The adversary model of Scyther is predefined, which is
Dolev-Yao’ model [9]. This approach has simplified the formalization of security protocols and makes
it easier to start to work with Scyther for new users. Compared with other formal verification tools,
such as SPIN [10, 11] (language Promela), the specification language of Scyther is no complicated and
thus fast to learn. Scyther also outperformed some other state-of-the-art protocol verification tools, for
instance, ProVerif tool [12]. In addition, Scyther can provide classes of protocol behavior compared
with just single attack traces provided by other tools [13]. As for as we know, Scyther has already
been used to verify different types of protocols, including authentication protocols (e.g., IKEv1 [14]
and IKEv2 [14] protocol suites and the ISO/IEC 9798 [15, 16] family) and authenticated key exchange
(AKE) protocols [17] (e.g., HMQV [18] , NAXOS [19]). The common for all these protocols is that their
complexity is limited. In [20], we tried to use Scyther to analyze two complicated group authentication
protocols, originally proposed in [3]. The main purpose of these group authentication protocols is to
improve authentication efficiency for large groups. The relation between the authenticator and users to
be authenticated is one to one. However, in this type group authentication protocols, the authenticator can
authenticate multiple users at the same time. If the group authentication protocol proceeds successfully,
mutual authentication should be achieved and a group session key will be agreed on.

In [3], a general framework was proposed for two types group authentication protocols by imple-
menting different cryptographic primitives. The main difference between protocols of Type I and Type
II is that an authenticator in Type II has PKI-based certificate while authenticators in Type I does not,
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but all protocols constructed under this general framework were claimed in [3] to satisfy several security
requirements, including security against passive adversaries, against impersonation attacks, providing
mutual authentication, implicit authentication, forward and backward secrecy. To demonstrate how to
construct protocols of both types, two examples were provided in [3]: one is based on the discrete loga-
rithm problem (DLP) [21], and the second one is based on the elliptic curve discrete logarithm problem
(ECDLP) [22] respectively. However, only protocols of both types based on DLP are analyzed, because
ECDLP can be seen as a special type of DLP. Once the DLP-based protocols are proven to satisfy those
security requirements, it can be concluded that ECDLP-based protocols will satisfy the same security
requirements because of the way how to formalize DLP and ECDLP in Scyther.

This paper is an extension of [20]. The following two innovations are added. First of all, in [20],
we only discussed the case where the group size was three, while in this paper, we analyze the cases
for groups containing two, three and four members. More importantly, we show how to formalize DLP-
based protocols of both Type I and Type II when the number of group members is N (N ≥ 3). Secondly,
we analyze some new properties of the protocols, including “Alive” and “Nisynch”. More details will be
given in Sections 3, 4 and 5.

The rest of this paper is organized as follows. In the next section, we describe the general framework
and the DLP-based protocols that we analyze in this paper. Then we introduce the model checking tool
Scyther, its adversary model and specification language in Section 3. In Sections 4 and 5, we describe the
details of how to use Scyther the formalize the DLP-based protocols of both Type I and Type II, including
modeling difficult mathematical problems, security requirements and the algorithms that formalize these
protocols when the number of group users vary. Finally, we conclude this paper in the last section.

2 Description of the Group Authentication Protocols

In this section, we describe the group authentication protocols. In Subsection 2.1, we briefly explain
when and where these group authentication protocols can be applied and their main purposes. Next the
message flow within the general framework and details about the DLP-based protocols will be explained
in Subsections 2.2 and 2.3 respectively.

2.1 Usage scenarios

Two usage scenarios are considered in [3] and corresponding group authentication protocols are pro-
posed (Type I and Type II). The main difference between proposed protocols is that the authenticator in
Type II has a certificate but the authenticator in Type I does not. As shown in Fig. 1(a), the authenticator
has a friend list, but members in this list may or may not know each other. Every time before group meet-
ing, the authenticator first selects group members and then he needs to authenticate every member in this
group. Since all members have already registered as the authenticator’s friends, we assume they share
some secrets with the authenticator before the authentication. In Type II (Fig. 1(b)), the authenticator is
a server and needs to authenticate a couple of users not necessary known in advance. In this case, the
server should possess a certificate to perform the group authentication.

2.2 The general framework

Assume there are N members in user group U. The message flow of the general framework proposed
in [3] can be described in the following four steps.
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(a) Usage scenario 1: Type I
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(b) Usage scenario 2: Type II

Figure 1: Two types of usage scenarios

1) UA→U1 : IDA,UID,X ,C0,MACA.

2) Ui→Ui+1 : IDi,UID,X ,KPU ,Ci,MACi, where 1≤ i≤ N−1.

3) UN →UA : IDN ,KPU ,CN ,MACN .

4) UA→ U : Y,MAC′A.

1) To start a new session, the authenticator UA generates a message {IDA,UID,X ,C0,MACA} and sends
it to the first user U1 of the user group U. In this message, IDA is UA’s identity, UID is the identity
set of all users in U, parameter X carries some important information that UA wants to deliver to all
users in U, C0 is a parameter that is used to calculate C1 and MACA is the message authentication code
(MAC) [23] for message {IDA,UID,X ,C0}.

After receiving the message from UA, U1 first checks the integrity of the message. If the message is
not tampered, U1 continues. Otherwise, it aborts the session and the authentication fails.

2) If the message received by Ui (1≤ i≤ N−1) is valid, Ui first computes Ci based on Ci−1, then gener-
ates a key parameter and adds it to KPU , where KPU is the key parameter set of user group U. Next Ui

computes the MAC value MACi of {IDi,UID,X ,KPU ,Ci} and sends {IDi,UID,X ,KPU ,Ci,MACi} to
Ui+1. When Ui+1 receives the message, it does the same as U1 did in Step 1).

3) The behavior of UN is the same as U1. Once UA verifies that the message from UN has not been
tampered with, it checks whether CN is valid. If so, all users in user group U are successfully authen-
ticated. If either MACN or CN is invalid, UA aborts the session and the group authentication fails.

4) UA embeds key parameters generated by the user group in parameter Y . Meanwhile, UA computes the
session keys based on parameters from KPU and those generated by itself. Then UA computes MAC′A
and sends the whole message to every user in U.

After user Ui gets the message from UA and validates MAC′A, it retrieves its key parameter from Y and
computes session keys.
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2.3 DLP-based protocols

In this subsection, we explain how to compute parameters Ci (0 ≤ i ≤ N), X and Y of DLP-based
protocols for both Type I and Type II proposed in [3]. The details are as follows.

1) C0 is computed by UA by C0 = ξ (r) = ξ (grA ) , where rA ∈ [1, p− 1] is a random number, ξ is a
message to be encrypted by Elgamal encryption algorithm [24]. Similarly, Ui (2 ≤ i ≤ N) computes
Ci as Ci =Ci−1× rxi = ξ (r∑

i
t=1 xt ).

2) X is computed as a solution of X ≡Vi mod ki (1≤ i≤ N) by using Chinese reminder theorem (CRT)
[25], where ki is a secret shared between UA and Ui. In the DLP-based protocol of Type I, Vi =
{yi⊕KG,yi⊕ ti,gmi ,hi} and hi = H(IDA⊕ IDi⊕yA⊕ ti) which is used to authenticate UA by Ui. Here,
yi is a pre-shared secret between UA and Ui, KG is the group session key generated by UA, ti is a
nonce and gmi is the key parameter generated by UA to compute the key shared between UA and Ui.
In the DLP-based protocol of Type II, Vi = SIGNSKA{IDA, IDi,KG,gmi , ti}. Parameters gmi and ti have
the same meanings as in Type I, and the authentication of UA is realized by the verification by its
signature instead of using hi as in Type I.

3) UA computes Y by solving Y ≡Wi mod ki (1≤ i≤ N), where Wi = {IDA, IDi,KPi} and KPi = KPU −
{gni}.

4) The session key between UA and Ui is computed as gmini , while the session key between Ui and U j

(1≤ i, j ≤ N, i 6= j) is computed as gnin j .

3 Overview of Tool Scyther

In this section, we give a brief overview of model checking tool Scyther. We start with the presen-
tation of the adversary model in Subsection 3.1 and the specification language used by Scyther specially
in Subsection 3.2. We describe the claim specification and security requirements in Subsection 3.3.

3.1 Adversary model of Scyther

The adversary model used by Scyther is predefined and based on Dolev-Yao model [9]. It means that
we do not need to formalize an adversary’s abilities when we analyze protocols. An adversary (denoted
by A) in Scyther can eavesdrop messages on the communication channel and can learn from the messages
it has got. In the following, we explain how an adversary gains new knowledge.

Assume M is the adversary’s knowledge set and f is a function to express the relations among differ-
ent terms in M. k can represent both a symmetric and asymmetric key and k−1 is its reverse, while k−1

equals to k in case of a symmetric key. Let (ti, t j) represents the concatenation of terms ti and t j.

• t ∈M⇒M ` t: if t is an element of M, A knows t.

• M ` (t1, t2)⇒{M ` t1,M ` t2}: if A knows (t1, t2), then A knows both terms t1 and t2.

• {M ` t1,M ` t2}⇒M ` (t1, t2): if A knows both terms t1 and t2, A knows (t1, t2).

•
∧

1≤i≤n M ` ti⇒M ` f (t1, · · · , tn): if A knows all ti (1≤ i≤ n) and f is a public function, then A
can compute the result of function f with the input t1, · · · , tn.

• {M ` t,M ` k}⇒M ` {t}k: if A knows message t and key k, Ae can compute encrypted message
{t}k.
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• {M ` {t}k,M ` k−1} ⇒M ` t: if A knows the encrypted message {t}k and the decryption key
k−1, A can decrypt ciphertext and get plaintext t.

Therefore, an adversary A with the above learning abilities can eavesdrop messages on the com-
munication channel and learn from these messages to expand its knowledge. In addition, A can delete
messages on the communication channel, create new messages and insert them into the communication
channel.

3.2 Specification language of Scyther

Scyther has its own specification language to describe protocols, roles, types of parameters, sending
and receiving messages and so on. In the following (Example 1), we will explain the most important
parameters and elements that we will use in our protocol formalization, including the definitions of
predefined type, usertype, symmetric key, asymmetric keys, hashfunction, role, protocol, and message
sending and receiving.

Example 1:
usertype SharedSecret;

hash f unction H;

protocol Example(A,B){
role A{

f resh Na : SharedSecret;

var Nb,Nb′ : Nonce;

send 1(A,B,{Na}k(A,B));
recv 2(B,A,Nb,Nb′);

};
role B{

f resh Nb : Nonce;

var Na : SharedSecret;

recv 1(A,B,{Na}k(A,B));
send 2(B,A,Nb,{H(Nb)}sk(B));

};
}

Example 1 defines a protocol named Example where two communication parties A and B sending
messages to each other. A communication party or an agent is declared as a role, where they are denoted
by A and B in Example 1. SharedSecret is a user-defined type and it is declared by the term usertype,
by which we can define different new types. The term fresh is a predefined type and is used to declare a
value type that only exists in the session where it is generated. Term nonce is a predefined type used to
describe a constant, for instance, Na defined within the domain of role A, and its value remain constant
during the whole session. Term var is used to define a variable that is usually used to store a received
value from the other party. For example, Na defined inside role B is a variable to receive the value sent
from A rather than a constance such as Na defined in role A. The term hashfunction is used to define
a hash function [26]. Its definition is usually global and all agents and protocols should have access to
it. In Example 1, H is defined as the type of hashfunction, and the hash value of Nb is computed as
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H(Nb). There are two types of keys, symmetric and asymmetric. A symmetric key defined by k(A,B) is a
long-term value shared between A and B, and a message Na encrypted by it is described as {Na}k(A,B).
Asymmetric keys possessed by an agent B are a key pair, including a private key (sk(B)) and a public
key (pk(B)). A message H(Nb) signed by B can be denoted by {H(Nb)}sk(B). Message sending and
receiving in Scyther can be specified by the pair send(s,r,m) and recv(s,r,m), where s is a sender, r is a
receiver and m is a message.

In the following, we use Example 2 to explain how to use a special role construction to express
Diffie-Hellman key exchange protocol [27], which was used in the DLP-based protocols to establish
session keys in the original protocols proposed in [3]. Compared with the role definition in Example 1,
there are three differences in Example 2. First of all, the sender and the receiver are the same, which
is denoted as “DH” here. Secondly, the messages sent and received are different. Finally, sending and
receiving is expressed by send !2() and recv !1() rather than by send 2() and recv 1(). By using this
special structure, we intend to express that the computation results of h(g(r), i)) and h(g(i),r)) are equal.
More similar examples can be found the Scyther manual [1].

Example 2:
role DH{
var i,r : Nonce;

recv !1(DH,DH,h(g(r), i));

send !2(DH,DH,h(g(i),r));

}

3.3 Events and claims

In this subsection, we describe how to formalize security requirements in Scyther, using match and
claim. The event match can be used in two different ways. It can be used to specify equality constrains,
for example, the codes after event match(p1, p2) can only be executed if p1 equals to p2. The second
usage of match is a value assignment, which is similar to “=” in C programming language. Assume p is
a variable and v is a value, and match(p,v) means assigning value v to variable p.

We use claim to specify security requirements Alive, Nisynch, secret and commitment. Alive is
a form of authentication which aims to ensure that an intended communication party (R) has executed
some events (e.g., claim(R,Alive)). Nisynch means that all received messages of R are indeed sent by the
communication partner (sender) and have been received by another communication partner (receiver). It
is expressed as claim(R,Nisynch). If a term rt is claimed to be secret, rt should be kept secret to the
adversary. More specifically, claim(R,secret,rt) means that R claims that rt must be unknown to an
adversary. If rt is a session key, we use claim(R,SKR,rt) to specify it. Commitment is a promise of a
communication partner to another party. For instance, Claim(R,Commit,R′, t) means that role R make a
promise t to role R′. In this paper, we use commitment to verify protocols against impersonation attack.

4 Formal Analysis of the DLP-based Protocols of Type I

In this section, we describe analysis of the protocol of Type I when the number of group members
N increases from 2 to 4. Later, we discuss the general situation when the number of group number is N
(N ≥ 3).
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4.1 Formalization of security requirements

Assume there are two communication parties, i.e., R and R′. The DLP-based protocols are claimed
to satisfy the following security requirements:

•Mutual authentication Authentication is way to ensure that a communication party is exchang-
ing messages with an intended party. If authentication is achieved by both communication parties,
it is called a mutual authentication. As described in Section 2, the authentication of the authenti-
cator UA by Ui in the DLP-based protocol of Type I can be confirmed if h′i equals to hi. However,
the whole group can be considered authenticated only if C′N equals to CN . We will use match to
check the equality of CN and C′N . In addition, the security property Alive will also be required, to
make sure that it is the intended communication parties rather than someone else.

• Implicit key authentication If a protocol satisfies implicitly key (k) authentication [3] and R
claims this security requirement, it means that R′ is the only entity who has the possibility to
possess this k. In this paper, we use claim(R,SKR,k) and claim(R′,SKR,k) to express it.

• Secure against impersonation attack Impersonation attack is an attack where an adversary be-
haves under the identity of a legitimate communication party. Therefore, this security requirement
can be inferred from mutual authentication. As long as mutual authentication holds, we can claim
that none of the communication parties is impersonated by an adversary. As discussed before, this
can be ensured by checking whether h′i = hi and C′N =CN hold.

• Secure against passive adversaries A passive adversary eavesdrops messages on the communi-
cation channel, analyzes these messages and tries to learn as much as possible. Compared with an
active adversary, the abilities of a passive one are limited. It cannot delete or insert messages into
the communication channel, and its main goal is to learn useful information from the messages
that it has eavesdropped. In the DLP-based protocol of Type I, the most useful information is the
group key (k) and session keys (k), and we can use claim(R,SKR,k) to express it.

• Provide forward secrecy and backward secrecy If a protocol provides forward secrecy, the
exposure of keys in current session will not lead to the exposure of keys of future sessions. If a
protocol provides backward secrecy, the compromise of keys in current session will not cause the
compromise of session keys of past sessions. Since Scyther does not support long term values
except for the shared key between two parties, we will not analyze these two security requirements
in this paper.

4.2 Specification of difficult problems

In this subsection, we specify difficult mathematical problems in DLP-based protocols of Type I,
including Diffie-Hellman key exchange [27], hash functions, Chinese remainder theorem [25], proxy
encryption [24], session key computation, MAC and pre-shared values.

• Diffie-Hellman key exchange (session key computation), hash functions, proxy encryption,
MAC As described in Subsection 3.2, the type hashfunction is used to declare a secure hash func-
tion, which is a one-way function (Its inverse is infeasible to compute). Therefore, difficult math-
ematical problems, such as Diffie-Hellman problem used to compute session keys,cryptographic
hash functions, proxy encryption and MAC can be considered as one-way hash functions, because
an adversary defined by Scyther cannot compute their inverse.

If two parties A and B want to establish a session key based on Diffie-Hellman key exchange,
they should generate parameters a and b first, and send ga and gb to each other. Then A and B
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compute their session keys as (gb)a and (ga)b respectively. To formalize it, we first declare two
hashfucntion g and h and then express the session keys as h(g(b),a) and h(g(a),b). According to
Example 2 in Subsection 3.2, we have h(g(b),a) = h(g(a),b). Similarly, we use hashfuntion H,
C and MAC to specify hash functions, proxy encryption and MAC.

• Chinese remainder theorem (CRT) In the original protocols [3], parameters X and Y are com-
puted by X ≡Vi mod ki (1≤ i≤ N) and Y ≡Wi mod ki (1≤ i≤ N) using CRT, where ki is a long
term value shared between UA and Ui. However, Scyther does not support long-term value except
for the symmetric and asymmetric keys. Since only symmetric keys rather than asymmetric keys
are shared between two parties, we will use a symmetric key between UA and Ui to simulate this
long-term value ki.

• Pre-shared secrets As described in Subsection 2.3, xi (1 ≤ i ≤ N) is another long-term shared
value, and it is used for mutual authentication. Since the symmetric key k(UA,Ui) between UA

and Ui has already been used to simulate ki, we need to formalize xi differently. The main idea
is as follows. Since xi is a long term value used for mutual authentication, it should be enough
to assume that xi has already been shared between UA and Ui before the mutual authentication.
Therefore, we will embed xi in X . Since the parameters in Vi can only be extracted by Ui, this
assumption is reasonable and realistic.

4.3 Specification of the protocols with different group sizes

In our experiments, we have formalized DLP-based protocols when the number of group member
is two, three and four to check whether the security requirements of mutual authentication, implicit key
authentication, secure against impersonation attack and passive adversaries. In Listing 3, we show part
of the specification codes to explain how to formalize the protocol when N = 2.

Listing 1: Type I protocol specification for 2 group members
1 #Type d e f i n i t i o n s
2 h a s h f u n c t i o n g , h ;
3 h a s h f u n c t i o n C , H, MAC;
4 u s e r t y p e mtype , g type , h type , c type , wtype ;
5
6 p r o t o c o l Group−a u t h e n t i c a t i o n −DLP(UA , U1 , U2 )
7 {
8 . . .
9 macro v1 = {KG, x1 , t1 , gm1 , h1}k (UA, U1 ) ;

10 macro v2 = {KG, x2 , t2 , gm2 , h2}k (UA, U2 ) ;
11 macro w1 = {UA, U1 , gn2}KG;
12 macro w2 = {UA, U2 , gn1}KG;
13 r o l e UA
14 {
15 . . .
16 match ( gm1 , g (m1) ) ; . . .
17 match ( h1 , H(UA, U1 , xa , t 1 ) ) ; . . .
18 match (MACA11, MAC(KG, UA, U1 , U1 , U2 , v1 , r , C0 ) ) ; . . .
19 send 1 (UA, U1 , U1 , U2 , v1 , r , C0 , MACA11) ;
20 send 2 (UA, U2 , U1 , U2 , v2 , r , MACA12) ;
21 r e c v 4 ( U2 , UA, gn1 , gn2 , C2 , MAC2) ; . . .
22 match (MAC2, MAC2’ ) ; . . .
23 match ( C2 , C2 ’ ) ;
24 send 5 (UA, U1 , w1 , MACA21) ;
25 send 6 (UA, U2 , w2 , MACA22) ;
26 # check s e c u r i t y r e q u i r e m e n t s
27 c l a i m (UA, A l i v e ) ;
28 c l a i m (UA, Nisynch ) ;
29 c l a i m (UA, SKR, KG) ;
30 c l a i m (UA, SKR, h ( gn1 , m1) ) ;
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31 c l a i m (UA, SKR, h ( gn2 , m2) ) ;
32 }
33 r o l e U1
34 {
35 . . . .
36 r e c v 1 (UA, U1 , U1 , U2 , v1 , r , C0 , MACA11) ; . . .
37 match (MACA11, MACA11’ )
38 match ( h1 , h1 ’ ) ; . . .
39 send 3 ( U1 , U2 , gn1 , C1 , MAC1) ;
40 r e c v 5 (UA, U1 , w1 , MACA21) ; . . .
41 match (MACA21, MACA21’ ) ; . . .
42 c l a i m ( U1 , A l i v e ) ;
43 c l a i m ( U1 , Nisynch ) ;
44 c l a i m ( U1 , SKR, KG) ;
45 c l a i m ( U1 , SKR, h ( gm1 , n1 ) ) ;
46 c l a i m ( U1 , SKR, h ( gn2 , n1 ) ) ;
47 }
48 r o l e U2
49 {
50 . . .
51 r e c v 2 (UA, U2 , U1 , U2 , v2 , r , MACA12) ; . . .
52 match (MACA12, MACA12’ ) ;
53 match ( h2 , h2 ’ ) ; . . .
54 send 4 ( U2 , UA, gn1 , gn2 , C2 , MAC2) ; . . .
55 r e c v 6 (UA, U2 , w2 , MACA22) ; . . .
56 match (MACA22, MACA22’ ) ; . . .
57 c l a i m ( U2 , A l i v e ) ;
58 c l a i m ( U2 , Nisynch ) ;
59 c l a i m ( U2 , SKR, KG) ;
60 c l a i m ( U2 , SKR, h ( gm2 , n2 ) ) ;
61 c l a i m ( U2 , SKR, h ( gn1 , n2 ) ) ;
62 }
63 r o l e DH{
64 v a r i , r : Nonce ;
65 r e c v ! 1 (DH, DH, h ( g ( r ) , i ) ) ;
66 send ! 2 (DH, DH, h ( g ( i ) , r ) ) ;
67 }
68 }

As shown above, the authenticator has to formalize v1, v2, w1 and w2 first. They are declared as
global such that all roles have access to them. Before sending out messages to users U1 and U2, UA

has to prepare parameters gm1 , gm2 , h1, h2 for v1 and v2, and compute all necessary MACs. All these
preparations are finished before line 18. In lines 19 and 20, UA sends out the first two messages to U1
and U2. U1 and U2 receive these two messages and check the validity of MAC and the quality of hi,
i ∈ {1,2}, by using event match. If these checks are successful, the authentication of UA by both U1 and
U2 succeeds. After checking MAC of message one and h1 from UA, U1 calculates C1 and sends the third
message to U2 in line 39. U2 receives message three, computes C3 and then sends message four to UA.
Once UA receives the message from U2 and the message is not tampered, it checks the equality of CN and
C′N . If CN =C′N holds, both U1 and U2 are authenticated. In message five and six, UA sends out session
key parameters to U1 and U2. At last, we check security requirements using five claims as described in
Subsection 4.1. The experiment result is shown in Fig. 2.

We have also carried out experiments when N = 3 and N = 4 and checked the same security re-
quirements. Results show that all checked security requirements (mutual authentication, implicit key au-
thentication, security against impersonation attack and passive adversaries) are satisfied. Based on these
experience, we show how to specify the DLP-based protocols of Type I for arbitrary finite N (N ≥ 3)
group members in Listing 2.
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Figure 2: Experiment results of the DLP-based protocols of Type I for 2 group members

Listing 2: Type I protocol specification for N group members
1 p r o t o c o l Group−a u t h e n t i c a t i o n −DLP1 (UA, U1 , . . . , UN)
2 {
3 . . .
4 r o l e UA
5 {
6 . . .
7 send i (UA, Ui , U1 , . . . , UN, vi , r , C0 , MACA1i) ;
8 . . .
9 r e c v 2N (UN, UA, gn1 , . . . , gnN , CN, MACAN) ; . . .

10 match (MACN, MACN’ ) ;
11 match (CN, CN’ ) ; . . .
12 send (2N+ i ) (UA, Ui , wi , MACA2i) ;
13 . . .
14 c l a i m (UA, A l i v e ) ; . . .
15 c l a i m (UA, h ( gn1 , m1) ) ;
16 . . .
17 c l a i m (UA, h ( gnN , mN) ) ;
18 }
19 r o l e U1
20 {
21 . . .
22 r e c v 1 (UA, U1 , U1 , . . . , UN, v1 , r , C0 , MACA11) ; . . .
23 match ( h1 , h1 ’ ) ;

12
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24 match (MACA11, MAC11’ ) ; . . .
25 send (N+1) ( U1 , U2 , gn1 , C1 , MAC1) ;
26 r e c v (2N+1) (UA, U1 , w1 , MACA21) ; . . .
27 match (MAC21, MAC21’ ) ;
28 c l a i m ( U1 , A l i v e ) ; . . .
29 c l a i m ( U1 , h ( gm1 , n1 ) ) ;
30 c l a i m ( U1 , h ( gn2 , n1 ) ) ;
31 . . .
32 }
33 r o l e Ui # f o r u s e r s from U2 t o U(N−1)
34 {
35 . . .
36 r e c v i (UA, Ui , U1 , . . . , UN, vi , r , MACA1i) ; . . .
37 match (MACA1i , MACA1i ’ ) ;
38 match ( hi , h i ’ ) ; . . .
39 r e c v (N+ i −1) (U( i −1) , Ui , gn1 , . . . , gn ( i −1) , C( i −1) , MAC( i −1) ) ; . . .
40 match (MAC( i −1) , MAC( i −1) ’ ) ; . . .
41 send (N+ i ) ( Ui , U( i +1) , gn1 , . . . , gni , Ci , MACi) ; . . .
42 r e c v (2N+ i ) (UA, Ui , wi , MACA2i) ; . . .
43 match (MACA2i , MACA2i ’ ) ;
44 c l a i m ( Ui , A l i v e ) ; . . .
45 c l a i m ( Ui , h ( gmi , n i ) ) ;
46 . . .
47 c l a i m ( Ui , h ( gn ( i −1) , n i ) ) ;
48 c l a i m ( Ui , h ( gn ( i +1) , n i ) ) ;
49 . . .
50 }
51 r o l e UN
52 {
53 . . .
54 r e c v N (UA, UN, U1 , . . . , U3 , vN , r , MACA1N) ; . . .
55 match (MACA1N, MACA1N’ ) ;
56 match ( hN , hN ’ ) ; . . .
57 r e c v (2N−1) (U(N−1) , UN, gn1 , . . . , gn (N−1) , C(N−1) , MAC(N−1) ) ; . . .
58 match (MAC(N−1) , MAC(N−1) ’ ) ;
59 send 2N (UN, UA, gn1 , . . . , gnN , CN, MACN) ; . . .
60 r e c v 3N (UA, UN, wN, MACA2N) ; . . .
61 match (MACA2N, MACA2N’ ) ;
62 c l a i m (UN, A l i v e ) ; . . .
63 c l a i m (UN, h (gmN, nN ) ) ;
64 . . .
65 c l a i m (UN, h (gm(N−1) , nN ) ) ;
66 }
67 r o l e DH{
68 v a r i , r : Nonce ;
69 r e c v ! 1 (DH, DH, h ( g ( r ) , i ) ) ;
70 send ! 2 (DH, DH, h ( g ( i ) , r ) ) ;
71 }
72 }

In Listing 2, we have only described the message flow, MACs verification, equality checking and
security requirement verification. However, details on how to prepare parameters for the messages are
omitted since they have already be discussed in the case of two group users. The message flow contains
three parts: N messages from UA to all Ui in the user group to deliver Vi; messages from U1 to U2, U2 to U3
and so on until the message from UN to UA. Finally, N messages from UA to Ui to deliver key parameters
to compute session keys. The integrity of every received message must be checked by verifying its MAC
and it is realized by the event match. In addition, the equality checking of hi and CN is also expressed
by event match. Several claims are used to express and check the security requirements, such as “Alive”
and the secrecy of session keys. The secrecy of session keys analyzes of the group key KG, session keys
between UA and Ui and the session keys between different group members.
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5 Formal Analysis of the DLP-based Protocols of Type II

The specification of the DLP-based protocols of Type II is similar to Type I. More specifically, the
formalization of difficult problems and all security requirements except for mutual authentication are
the same. Compared with the formalization of the DLP-based protocols of Type I, there are mainly two
differences. First, when UA sends out messages which include Vi to all group members in protocols
of Type I, hi is included for later mutual authentication. However, in protocols of Type II, UA uses its
signature instead of hi for its authentication. Accordingly, when group users receives these messages
from UA, they do not need to check the equality of hi to finish the authentication of UA. Instead, they
verify UA’s signature. This property can be provided by the security of PKI based signatures and thus we
do not have to check it here. Based on the above differences, we give the specification how to formalize
the DLP-based protocols of Type II when the number of group users is N (N ≥ 3) (Listing 3).

The presented specification (Listing 3) shows how to specify the DLP-based protocols of Type II
when the group members are two, three and four and how to verify the security requirements including
mutual authentication, implicit key authentication, security against impersonation attack and passive
adversaries. Results (Fig. 3 is the result for two group members.) show that all these four security
requirements are satisfied when the number of group members varies from two to four.

Figure 3: Experiment results of the DLP-based protocols of Type II for 2 group members
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Listing 3: Type II protocol specification for N group members
1 p r o t o c o l Group−a u t h e n t i c a t i o n −DLP2 (UA, U1 , . . . , UN)
2 {
3 . . .
4 macro v i = {{UA, Ui , KG, xi , t i , gmi} sk (UA) }k (UA, Ui ) ;
5 macro wi = {UA, Ui , gn1 , . . . , gn ( i −1) , gn ( i +1) , . . . , gnN}KG;
6 . . .
7 r o l e UA
8 {
9 . . .

10 c l a i m (UA, Commit , Ui , v i ) ; # d i f f e r e n t from Type 1
11 send i (UA, Ui , U1 , . . . , UN, vi , r , C0 , MACA1i) ;
12 . . .
13 r e c v 2N (UN, UA, gn1 , . . . , gnN , CN, MACN) ; . . .
14 match (MACN, MACN’ ) ; . . .
15 send (2N+1) (UA, U1 , w1 , MACA21) ;
16 . . .
17 send 3N (UA, UN, wN, MACA2N) ;
18 c l a i m (UA, A l i v e ) ; . . .
19 c l a i m (UA, h ( gn1 , m1) ) ;
20 . . .
21 c l a i m (UA, h ( gnN , mN) ) ;
22 }
23 r o l e U1
24 {
25 . . .
26 r e c v 1 (UA, U1 , U1 , . . . , UN, v1 , r , C0 , MACA11) ;
27 match (MACA11, MACA11’ ) ; #no need t o check h1 h e r e
28 . . .
29 send (N+1) ( U1 , U2 , gn1 , C1 , MAC1) ;
30 r e c v (2N+1) (UA, U1 , w1 , MACA21) ; . . .
31 match (MACA21, MACA21’ ) ; . . .
32 c l a i m ( U1 , A l i v e ) ; . . .
33 c l a i m ( U1 , h ( gm1 , n1 ) ) ;
34 c l a i m ( U1 , h ( gn2 , n1 ) ) ;
35 . . .
36 }
37 r o l e Ui # f o r u s e r s from U2 t o U(N−1)
38 {
39 . . .
40 r e c v i (UA, Ui , U1 , . . . , UN, vi , r , MACA1i) ; . . .
41 match (MACA1i , MACA1i ’ ) ; . . . #no need t o check h i
42 r e c v (N+ i −1) (U( i −1) , Ui , gn1 , . . . , gn ( i −1) , C( i −1) , MAC( i −1) ) ; . . .
43 match (MAC( i −1) , MAC( i −1) ’ ) ; . . .
44 send (N+ i ) ( Ui , U( i +1) , gn1 , . . . , gni , Ci , MACi) ; . . .
45 r e c v (2N+ i ) (UA, Ui , wi , MACA2i) ; . . .
46 match (MACA2i , MACA2i ’ ) ; . . .
47 c l a i m ( Ui , A l i v e ) ; . . .
48 c l a i m ( Ui , h ( gmi , n i ) ) ;
49 . . .
50 c l a i m ( Ui , h ( gn ( i −1) , n i ) ) ;
51 c l a i m ( Ui , h ( gn ( i +1) , n i ) ) ;
52 . . .
53 }
54 r o l e UN
55 {
56 . . .
57 r e c v N (UA, UN, U1 , . . . , U3 , vN , r , MACA1N) ; . . .
58 match (MACA1N, MACA1N’ ) ; . . . #no need t o check hN
59 r e c v (2N−1) (U(N−1) , UN, gn1 , . . . , gn (N−1) , C(N−1) , MAC(N−1) ) ; . . .
60 match (MAC(N−1) , MAC(N−1) ’ ) ; . . .
61 send 2N (UN, UA, gn1 , . . . , gnN , CN, MACN) ; . . .
62 r e c v 3N (UA, UN, wN, MACA2N) ; . . .
63 match (MACA2N, MACA2N’ ) ; . . .
64 c l a i m (UN, A l i v e ) ; . . .
65 c l a i m (UN, h (gmN, nN ) ) ;
66 . . .
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67 c l a i m (UN, h (gm(N−1) , nN ) ) ;
68 }
69 . . .
70 }

6 Conclusions

This paper is an extension of the conference paper [20]. In [20], we used the model checking Scyther
to analyze DLP-based group authentication protocols proposed in [3] and checked four security require-
ments, i.e., mutual authentication, implicit key authentication, security against impersonation attack and
passive adversaries, for the case of three members in the user group. In this paper, we present analysis of
the DLP-based protocols for two and four group members, in addition to three group members. Results
show that the protocols satisfy the same four security requirements as for three members. Compared
with the work in [20], the most important innovation in this paper is that we have provided general de-
sign (Listing 2 and Listing 3), based on which we can construct models that specify DLP-based protocols
of both types for the group number of size N (N ≥ 3).
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