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Abstract

Modern mobile communication networks and Internet of Things are paving the way to ubiquitous and
mobile computing. On the other hand, several new computing paradigms, such as edge computing,
demand for high computational capabilities on specific network nodes. Ubiquitous environments
require a large number of distributed user identification nodes enabling a secure platform for re-
sources, services and information management. Biometric systems represent a useful option to the
typical identification systems. An accurate automatic fingerprint classification module provides a
valuable indexing scheme that allows for effective matching in large fingerprint databases. In this
work, an efficient embedded fingerprint classification node based on the fusion of a Weightless Neu-
ral Network architecture and a technique, namely Virtual Neuron, which efficiently maps a neural
network architecture into hardware resources, is presented. The key novelty of the proposed paper
is a new neural-based classification methodology that can leverage devices and sensors with limited
number of resources, allowing for resource-efficient hardware implementations. Furthermore, the
classifier efficiency and the accuracy have been optimized to obtain high classification rate with the
best trade-off between minimum area on chip and execution time. The proposed neural-based clas-
sifier analyzes a directional image, which is extracted from the original fingerprint image without
any enhancement, and classifies the processed item into the five NIST NBIS classes. This approach
has been designed for FPGA devices, by exploiting pipeline techniques for execution time reduction.
Experimental results, based on a 10-fold cross-validation strategy, show an overall average classifi-
cation rate of 90.08% on the whole official FVC2002DB2 database.

Keywords: Mobile and Ubiquitous Computing, Fingerprint Classification, Weightless Neural Net-
works, Virtual Neuron, Field Programmable Gate Array (FPGA).

1 Introduction

Modern mobile communication networks and Internet of Things (IoT) scenarios are paving the way
to relevant advancements in ubiquitous and mobile computing. In addition, several new computing
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paradigms, such as edge computing, demand for high computational capabilities on specific network
nodes [1]. In those scenarios, the implemented infrastructures must provide secure and trusted user in-
formation access and management in order to protect sensitive and confidential data resource and ensure
the possibility of the user traceability inside a used platform [2, 3, 4, 5]. These environments require a
large number of distributed user identification nodes enabling a secure platform for resources, services
and information management. Such a kind of architecture can potentially meet the requirements regard-
ing response times, battery lifetime, network bandwidth, also considering data confidentiality and privacy
[6]. Especially, in the case of mobile devices, these constraints can be satisfied by offloading intensive
computations to the edge of the network [7]. Therefore, in the last few years, conventional identification
systems—mainly based on username/password pairs or Personal Identification Numbers (PINs)—are in
crisis since they cannot always ensure high security degrees for critical applications. Biometric-based
recognition solutions can offer a reliable e-infrastructure proposing an integrated approach that could
increase the interoperability among different institutions. These systems have the main purpose to au-
thenticate people by means of some personal physiological and/or behavioral characteristics [8, 9]. These
systems represent a rapidly evolving technology that is well-suitable for real-life applications, such as in
forensics, commerce and governance [10]. Nowadays, several embedded biometric identification solu-
tions are available for mobile phones, personal digital assistants (PDAs), wireless processing nodes, and
so on [11, 12, 13, 14]. Automatic recognition systems are usually composed of two modules for finger-
print classification and identification. The automatic fingerprint classification module enables a valuable
indexing scheme that allows for effective matching in large fingerprint databases in software and hard-
ware Automated Fingerprint Identification Systems (AFISes) [15][16][17]. Essentially, the AFIS module
yields as binary response whether the recognition process is either successful or not, so allowing or deny-
ing access to the user.
In literature, many techniques have been used and a lot of prototypes have been proposed to implement
fingerprint classification systems aiming at increasing the performance of the AFISes. They are often
based on neural networks [18][19], hidden Markov models [20], support vector machines [21], direc-
tional image information and/or singularity features [22][23][24], and researches in this field are still
active. To the best of our knowledge, all state-of-the-art classification systems are software-based, such
as in [25], where the authors proposed a method based on topological and numerical considerations about
the macro-characteristics (i.e., delta and core) extracted from the fingerprint directional image. This type
of images was obtained from the original fingerprint images after a distortion and contrast reduction
phase. Processing time is reduced since no thinning and image processing are performed. Resolution in-
creases since single pixel direction and directional histograms for singular point detection are computed.
In [26], the authors proposed a five-step structural approach based on relational graphs. The implemented
steps are: (i) directional image calculation by minimizing the related region variance, (ii) directional im-
age extraction, (iii) a linked fingerprint macro-structure relational graph generation, (iv) inaccurate graph
matching, and (v) classification. In [27] a discrete wavelet transform based feature extraction strategy
is presented. A preliminary evaluation of its utility is neural-based classification tasks is also reported.
Their experimental results show that the wavelet transform is dependent on the quality of the images and
their normalization. The authors of [28], again exploiting the directional image information, presented a
comparison among three different software classification techniques: Fuzzy C-Means, Weightless Neu-
ral Network, and a Naı̈ve Bayesian Network. A 100-image database and four fingerprint classes (Right
Loop, Left Loop, Whorl and Tented Arch) are considered, achieving a 91% classification rate. In [29],
some of the authors of this paper proposed a hardware classifier prototyped on a Celoxica RC2000 board
equipped with a Xilinx Virtex-II 2V6000 FPGA. The classifier was based on a Weightless Neural Net-
work architecture for fingerprint directional image classification. The NIST standard five classes (i.e.,
Left Loop, Right Loop, Whorl, Arch and Tented Arch) were used. The highest overall classification
rate, achieved by the system, was of 86.54%. The goal of this work was to reduce the needed resources
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maintaining high level of accuracy and speed.
This paper follows and extends the above work [29]. The key novelty of this paper is a novel neural-
based classification methodology that can leverage devices with limited number of resources, such as in
the case of ubiquitous computing, allowing for resource-efficient hardware implementations. This effi-
cient embedded fingerprint classification node is focused on the fusion of a Weightless Neural Network
(WNN) architecture [30] and a technique, namely Virtual Neuron [31], which efficiently maps a neural
network architecture into hardware resources. The use of a weightless neuron implies a remarkable sim-
plicity on hardware design, reducing the computations required by a classic weighted neural network.
The virtual neural-based classifier can be seen as a serial-parallel architecture representing the resulting
trade-off between a fast classification rate and the memory structure efficient management in a neural
based classifier. The resulting neural-based node aims at achieving high performance about execution
time, needed hardware resources and classification rate. Our approach analyzes the directional image,
previously extracted from the original fingerprint image without any pre-processing enhancement, and
classifies the fingerprint into the five National Institute of Standards and Technology (NIST) Biometric
Image Software (NBIS) standard classes: Arch, Tented Arch, Whorl, Left Loop and Right Loop [32].
The fingerprint classifier has been designed for Field Programmable Gate Array (FPGA) devices, ex-
ploiting pipeline techniques and parallelism for execution time reduction. So doing, we can identify the
reliability and effectiveness of the proposed system as well as avoid unnecessary complications that may
arise from choosing unsuitable technologies. The system has been prototyped on a Xilinx ML507 board
(Xilinx Inc., San Jose, CA, USA) [33] and the experimental trials have been performed, following a 10-
fold validation strategy [34], over the whole official FVC2002DB2 database composed of 880 fingerprint
images [35].
The paper is structured as follows. In Section 2, the proposed neural-based node is detailed. In Section 3,
the realized hardware prototype is described and the experimental results, in terms of classification rate,
hardware resources and execution times, are shown. A comparison analysis, based on execution times
and used resources, between the proposed hardware classifier and the literature hardware recognition
systems is reported in Section 4. Finally, Section 5 provides some conclusive remarks.

2 The Proposed Neural-based Node

The main contribution of this work is represented by the fusion of a WNN architecture and a technique,
namely Virtual Neuron, properly combined in a smart fashion to propose a novel embedded neural clas-
sification methodology for devices with limited number of resources. Several constraints, such as high
modularity, high neuron density, high recognition rate, and low processing time were considered for the
architectural design developing.
In the following subsections the fingerprint directional image extraction phase, the WNN architecture,
Virtual Neuron technique, and the implemented fusion approach are detailed.

2.1 The Fingerprint Directional Image Extraction Phase

The proposed neural-based node classifies the fingerprints belonging to the whole official Fingerprint
Verification Competition (FVC2002DB2) database [35] into the five NBIS standard classes: Right Loop
(R), Left Loop (L), Whorl (W), Arch (A) and Tented Arch (T) (see Figure 1 for further details).
The proposed classification system processes the directional image, extracted from the original finger-
print image without any enhancement pre-processing phase [17][31]. The reduced size of the directional
images decreases the design complexity, thus leading to less used resources and higher speed. As de-
picted in Figure 2, each element in the directional image represents the local orientation of the ridges in
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Figure 1: The used five fingerprint classes: Right Loop (R), Left Loop (L), Whorl (W), Arch (A) and
Tented Arch (T).

Figure 2: Example of the analyzed directional images: a) the original fingerprint image, and b) the
extracted directional image.

the original gray-scale image.

The direction K(i, j) of the point (i, j) is defined by the following Equation:

K(i, j) = min

{
L

∑
k=1

[
C(ik, jk)−C(i, j)

]}
(1)

where C(ik, jk) and C(i, j) are the gray levels of the points (ik, jk) and (i, j), respectively, while L is the
number of selected pixels in this computation along a given direction. In this work, 31 directions were
chosen and L = 16 pixels along the direction were analyzed (from 0◦ to 180◦ degrees).
In the directional image extraction phase, firstly, the fingerprint image is divided into blocks of 8× 8
pixels, then, for each foreground block, the directions of each pixel are calculated using Eq. 1, and finally
the direction with the greatest frequency is attributed to the selected block. Starting from the fingerprint
central position, an area consisting of 37× 19 directions is selected. Therefore, each directional image
contains 703 directions and each direction is encoded as a 5-bit word.
In some blocks, the possible presence of noise could generate directions that are considerably different
with respect to their neighbor directions, thus a smoothing algorithm is applied on the directional image.
This is achieved according to the directional histogram obtained from a direction comparison between
blocks of 3×3 pixels. Finally, the central block direction of the noisy area is replaced by the majority of
the neighboring blocks.
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Figure 3: The WISARD-based WNN scheme: a) RAMs correspond to different patterns of the sampled
input data; b) the discriminators correspond to different object classes.

2.2 The Weightless Neural Network Architecture

WNNs represent a class of methods for building pattern recognition systems [30]. They belong to the
memory-based architectures and consist of a set of RAMs, called discriminators, which store the image
numeric features (similarly to the conventional neural network weights). Each RAM memory samples
and stores a certain amount of data from the input space.
WNNs based on the Wilkie, Stonham, Aleksander’s Recognition Device (WISARD) approach [30] em-
ploy as many discriminators as the number of the final classes. Figure 3 shows the WISARD-based
WNN scheme, where the 0 or 1 values are used as numeric features and stored in RAMs. Especially, a
value of 1 corresponds to a specific feature of the training set for a certain class.
Unlike other neural networks, these architectures can be trained very rapidly and be implemented in
simple and efficient hardware structures [25].

The RAM output value corresponds to a partial input data, while, the discriminator output value
corresponds to the whole input data. With more details, the discriminator is composed of k unit n-RAM
(addressable to n-bits) and it processes input of k× n bits. All RAM units belonging to a discriminator
are linked to the same class. The input set is divided into n-bit sequences. Each RAM unit gives a
result only on its own input sequence: if this sequence belongs to a RAM unit linked to the same class,
then its output will be set to 1, otherwise to 0. Before performing the training phase, all RAM units are
set to 0. The training phase is performed for each discriminator with input examples. Each n-bit input
sequence belonging to each example will set to 1 the correct memory location. Finally, the Winner-
Take-All (WTA) module performs the input pattern classification, according to the maximum among the
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discriminators’ output values. Therefore, a discriminator is a neuron specialized to classify the whole
directional image: the higher is its output value, the more similar is the input with respect to the model
learned from its training set.
The fingerprint images have to be classified into 5 classes (R, L, W, A, and T) using their directional
images alone, wherein each directional image contains 703 directions and each direction is encoded as
a 5-bit word. Thus, the proposed neural-based classifier should implement 5 discriminators and each
discriminator should consist of 703 RAMs of 32 locations. However, each discriminator is composed
of just 2 RAMs, in order to minimize the number of the required hardware resources. Thus, it is able
to process only two directions in parallel for each iteration and, consequently, the input processing is
performed in 352 iterations.

2.3 The Virtual Neuron Technique

Typical classification tasks in real-world applications, which exploit neural networks, need for a huge
amount of neurons, forcing FPGA-based neural architectures to store the neuron weights on external
memories. Neural networks are usually wide or deep and input data are fed to the network and then
processed just a single time, giving generally rise to a memory-bound process. The Virtual Neuron tech-
nique exploits a hybrid serial-parallel architecture: input data are loaded in a serial way and these data
are processed in parallel by the Virtual Neurons [31].
Let suppose that the WNN is composed of N neurons. The Virtual Neuron technique implements only h
Virtual Neurons, where h is a sub-multiple of N, to implement the whole neural network.
Firstly, during the initialization of the network, the h Virtual Neurons, simulating the first h physical neu-
rons, read the weights and input data from the memory. After data processing, the computed results are
split into the h shift-register accumulators, one for each Virtual Neuron. Each shift-register accumulator
consists of N

h locations. Then, the physical neurons, with indices from h+ 1 to 2h, are simulated by
the same set of h Virtual Neurons. Accordingly, they take their weights from the memory and process
the same input data again. They do not need to read the input data from the memory. The procedure
ends when all the physical neurons are simulated by the virtual ones. Lastly, the WTA module considers
all the yielded results and selects the highest one. The Virtual Neuron represents the fingerprint class
discriminator. Only 2 virtual discriminators are implemented against 5 physical ones, so a total number
of 6 physical discriminators can be simulated, but the latter will be never used. In more detail, the first
Virtual Neuron simulates the discriminators for the fingerprint classes Arch, Whorl and Left Loop, while
the second one simulates the discriminators for the fingerprint classes Tented Arch and Right Loop.

2.4 Overall Hardware Organization of the Classification Node

The proposed embedded classification node, which combines the WNN architecture and the Virtual
Neuron technique, offers the following benefits. The use of a weightless neuron implies a remarkable
simplicity on hardware design, reducing the computations required by a classic neural network. In more
detail, the scalar products are replaced by a simple reading of memory locations, and the application
of an activation function for each neuron is not required; just the calculation of the maximum between
the responses of each discriminator is performed. In addition, the use of Virtual Neurons minimizes
the number of required resources. This is much more evident by increasing the number of the network
neurons and layers. Figure 4 shows the proposed neural-based classification scheme.

The PowerPC is used in both training and classification phases. In the training phase, it extracts
the directional images from the training fingerprint images and stores them in the external memory. In
the classification phase, it extracts the directional image from the fingerprint image to be classified, and
sends to the FPGA two streams (i.e., according to the number of Virtual Neurons), composed of the input
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Figure 4: The proposed neural-based classification scheme, highlighting the hardware components.
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Figure 5: Structure of the two streams used to drive the two Virtual Neurons.

data to be classified and the RAMs configuration data (see Figure 5).
The two streams are used by the controller module to drive the two Virtual Neurons concerning the

fingerprint classes Arch, Whorl and Left Loop, and the classes Tented Arch and Right Loop, respectively.
With more details, each stream consists of 4 fields: the 32-bit fields represent the content of the RAMs
referred to the current input and to a given discriminator group, while the 10-bit field refers to the input
portion to which that group is associated with. So, each RAM conveys all the necessary information so
that each discriminator can perform the classification of a portion of the input.
The input is divided into 10-bit words so, for each iteration, only a 10-bit input is classified by each
discriminator. Especially, for each step, the controller configures the Virtual Neurons with the appro-
priate 32-bit inputs example 1 and inputs example 2, by providing to them the 10-bit input data 1 and
input data 2, respectively (see Figures 4 and 5). Then, the two RAMs for each discriminator will yield
the contents of the locations addressed by the 5 bits. These output values are summed with the con-
tents of the shift-register and then the register is shifted. In each step, the two Virtual Neurons execute
these operations in parallel. At the end of the 352 iterations, each shift-register location will contain the
response of each virtual discriminator. Finally, a WTA module classifies the input according to the max-
imum value of the two registers. Figure 6 shows the proposed neural-based classification node designed
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Figure 6: Schematics of the proposed neural-based fingerprint classification node designed using the
Simulink R©/MATLAB R© software package.

using the Simulink tool integrated in the MATLAB environment (The MathWorks Inc., Natick, MA,
USA) [36]. The designed modules are synchronized and implement a three-stage pipeline. While the
“Controller Module” sends the class L configuration data, the “Set Virtual Neurons Module” configures
the RAMs with the class W and class R configuration data and then interrogates each RAM by using the
input data. Finally, the “Shift and Sum Module” updates the shift-registers with the RAMs output value
for the classes A and T.

3 Experimental Results

The proposed node has been developed and deployed on the Xilinx ML507 board [33], equipped with
a Virtex-5 FPGA, and tested on the official FVC2002DB2 database containing a total of 880 fingerprint
images, belonging to the five classes defined by NIST NBIS [33].
A comparison against two different benchmark architectures, a Multi-Layer Perceptron (MLP) with 30
hidden neurons and a WNN with 350 RAMs each of which consists of 10 locations, was performed
to test the neural-based classification performance. So doing, also the improvements introduced by the
developed fusion scheme were evaluated.
This section firstly describes the components of the final hardware-based prototype. Afterwards, the ex-
perimental results—in terms of hardware resources, classification rate, and execution times—are shown
and analyzed, highlighting the effectiveness of the proposed architecture.

3.1 Prototype Implementation

The realized prototype (see Figure 7 for a graphical representation) uses two Intellectual Properties (IPs)
[37] corresponding to the training module and the recognition module implemented on the XC5VFX70T-
1FFG1136 FPGA. These two IP cores are connected to the hard-core PowerPC 440 through the Processor
Local Bus (PLB) [38]. In what follows, each component is described:

• PLB, which connects all peripherals to hard-core PowerPC 440 for the arbitrage system;

• classify mod is the classification module;
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Web Browser 
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PLB 

PLB 
PLB 

Developer 

Figure 7: Implementation of the hardware-based prototype for automatic fingerprint classification.

• train mod is the training module;

• System Ace Controller allows to load, in reading phase, a compact flash where a website MFS
image is stored as a front-end for the test environment and the configuration stream generated by
the training system;

• DDR2 SDRAM is a buffer of both data transmission sent to classification and training modules as
well as reception for the results acquisition obtained by the two implemented modules. Moreover,
it also maintains the front-end website;

• Block RAM stores the program startup procedure to run on the PowerPC;

• Ethernet allows to send the user data from the Web Server to the compact flash, allowing the user
to communicate with the card and then with the two implemented modules;

• JTAG and RS-232 ports support hardware designers and developers during programming and de-
bugging phases (by exploiting the Xilinx ISE Design Suite tools), while these communication
interfaces are not used by the end user.

The Web Server, running on the PowerPC 440 processor, enables the communication of the user
with the system by means of a simple Web-based interface, displayed in Figure 8. This Web-based
interface allows to operate in two modes: training and classification. The training mode requires the
user to select a number of images per class. Once the “Start Training” command is launched, the Web
server encodes consistently the “examples” with the input format of the training system and provides the
data to the training module. After that the training phase is over, the server will overwrite the training
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Figure 8: Screenshot of the Web-based interface developed to enable the interaction between the end
user and the system.

Table 1: FPGA used resources by the selected architectures.

Resource type WNN MLP The proposed method

Slices 5317 1041 358

IOBs 120 190 18

Block RAMs 14 9 0

stream on the memory card and load into the RAM memory the same stream that will be ready for a
subsequent classification phase. The classification mode can be used to both classify fingerprints on-
the-fly and evaluate the system. The fingerprint classification phase requires the selection of the files
containing the directional information, once the recognition is completed, for each image the assigned
class as well as the number of scores received for each class will be yielded. The system evaluation
uses a graphical interface where the user can specify the selected image membership class; after file
selections, the system will query the Web Server and produce the correct class index as response. The
accuracy metrics represents the percentage of fingerprints that have been assigned to the class specified
by the user (i.e., a test set of input samples whose classes are known is provided for validation).

3.2 Used Resources Analysis

Table 1 reports the FPGA used resources by the selected architectures. In the proposed fusion architec-
ture, no Block RAMs have been used since the whole architecture has been implemented using Slices
and IOBs. This table shows the high resources reduction when the proposed solution is adopted. Fur-
thermore, the solution based on the MLP architecture consists of the test set alone, while the WNN and
the proposed fusion solutions involve the whole classification process (i.e., training and testing phases).
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Figure 9: The 10-fold cross-validation strategy used to evaluate the proposed methodology.

Table 2: The average classification rates achieved for each fingerprint class by the tested architectures:
WNN, MLP, and the proposed fusion method.

Class WNN MLP The proposed method
Classification Rate Classification Rate Classification Rate

Right Loop 95.88% 86.47% 89.41%
Left Loop 94.68% 93.62% 91.49%

Whorl 75.29% 83.53% 92.94%
Arch 62.50% 70.83% 87.50%

Tented Arch 100.00% 90.00% 70.00%
Total Average 89.03% 86.68% 90.08%

3.3 Classification Rate Analysis

Table 2 shows the average classification rates achieved for each fingerprint class by the selected archi-
tectures. Aiming at calculating the best performance among the three implemented architectures and
eliminate possible image selection problems between training and test sets, k = 10 experiments have
been executed using a 10-fold cross-validation strategy [34]: the whole database has been divided into
10 different disjoint sets of 88 fingerprint images. In each round, 9 partitions have been used for training
phase and the remaining set for the testing phase, to reduce problems related to over-fitting and evaluate
generalization capabilities of the model (see Figure 7).

The achieved results highlight that the MLP overall average classification rate is the lowest value
(i.e., this type of neural architecture needs for a bigger and opportunely selected training set) and that the
proposed fusion approach achieves the best overall performance.

3.4 Clock Cycles and Execution Time Analysis

Table 3 depicts the number of clock cycles and the execution time for each of the selected architectures
running at 60 MHz. The low clock cycles number of the MLP architecture is due to the fact that only the
testing phase can be implemented on a real board.
More interestingly, it is worth noting the significant difference between the proposed solution and the
WNN architecture. The Virtual Neuron technique fused with the WNN architecture reduces execution
time, obtaining a speed-up of 2.9× with respect to the traditional WNN architecture (more than 65%),
considering both training and testing phases. As a matter of fact, the MLP characteristics do not allow
for the whole implementation on a board, so only the testing phase has to be taken into account.
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Table 3: Clock cycles and Execution Time of the implemented architectures running at 60 MHz.

Architecture Clock Cycles Execution Time (ms)

WNN 51,072 0.85

MLP 15,384 0.20

The proposed 17,225 0.29

4 Discussion

Automatic fingerprint recognition systems may be composed of two modules: (i) classification, and (ii)
identification. Basically, the AFIS module returns a binary response denoting if the recognition process
is either successful or not, so allowing or denying a user access. On the other hand, the automatic fin-
gerprint classification module enables a valuable indexing scheme to promote an effective retrieval from
large fingerprint databases in software and hardware authentication systems. Several techniques and pro-
totypes have been proposed for fingerprint classification system implementations aiming at increasing
AFIS performance. However, as said before, no hardware-based fingerprint classification system has yet
been proposed. Therefore, the following quantitative analysis is focused on the improvements, in terms
of execution times and used resources, introduced by our classification node with respect to the literature
hardware recognition systems. The main idea of this paper is to integrate the proposed hardware classi-
fier, which employs few resources as well as achieves low execution time, in the full recognition system
pipeline to improve recognition performance by remarkably reducing total processing time on devices
with limited resources.
Table 4 compares the execution times achieved by the proposed fingerprint classification node with re-
spect to the literature hardware recognition systems (considering both complete and partial recogni-
tion pipelines). It is worth noting that all these systems implemented an identification module, without
proposing a classification scheme. The achieved execution times show that our hardware-based classifier
is considerably faster than the state-of-the-art hardware recognition systems, also with reference to the
several different hardware platforms (running at different working frequencies).
In addition, Table 5 shows the hardware resources used by the state-of-the-art fingerprint identification
prototypes. As a result of this analysis, it can be argued that the proposed classification module can
be efficiently implemented and integrated into a complete hardware recognition system, since the total
amount of needed resources is certainly available on the current boards.
On the other hand, the above results make feasible the efficient implementation of the proposed neural-
based automatic classifier either as a whole standard module or as a component of a complex fingerprint
recognition system on devices with limited amount of resources.

5 Conclusion

This paper presented an efficient embedded neural-based node for fingerprint classification exploiting
the fusion of a Weightless Neural Network architecture and a technique, namely Virtual Neuron, imple-
menting an efficient mapping of a neural network architecture for hardware devices with limited number
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Table 4: Execution times of the proposed fingerprint classification node compared against the state-
of-the-art hardware identification prototypes. The working frequency of the hardware platform is also
reported.

System Hardware platform Working frequency Processing time
(MHz) (ms)

Bonato et al. [39] Altera FLEX10KE N/A 306

Schaumont et al. [40] Xilinx Virtex-II XC2V1000 N/A 4000–6000

Fons et al. [41] Xilinx Virtex-4 100 205.025

Lopez and Cantò [42] Xilinx Spartan 3 40 261.9

Fons et al. [43] Atmel AT40K 25 7239040

Garcia and Cantò [44] Xilinx Spartan 3 50 261.9

Vitabile et al. [31] Xilinx Spartan II 200K 22.5 541

Militello et al. [45] Xilinx Virtex-II 25.175 34.8

The proposed Xilinx ML507 board 60 0.29
classification node equipped with Virtex-5

Table 5: Hardware resources required by the state-of-the-art hardware identification prototypes compared
against the proposed classifier.

System Gates RAMs Flip Flops Slices IOBs LUTs

Fons et al. [41] N/A 1.77 MB 31,948 N/A N/A 43,879

Fons et al. [43] 1612 N/A 462 N/A N/A N/A

Militello et al. [45] N/A 1.81 MB 5,138 12,863 212 20,825

The proposed classifier N/A 0 377 358 18 1,941
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of resources. In other words, an embedded and resource-efficient hardware classification architecture for
ubiquitous and mobile computing was proposed [5].

The proposed neural-based node classifies an acquired fingerprint into the five NIST NBIS classes
using only its directional image. These images are extracted without any enhancement phase. The
fingerprint classifier was implemented on a Xilinx ML507 board equipped with a Virtex-5 FPGA and
it is characterized by hardware resources, high accuracy, and low execution time (also with respect to
the literature hardware recognition systems). The achieved average classification rate on the official
FVC2002DB2 database is 90.08%, with a significant resources and execution time reduction, and a
speed-up of 2.9× (higher than 65%), considering both training and testing phases, compared against the
traditional WNN architecture.

This is the first automatic fingerprint classifier proposing a resource-efficient hardware implemen-
tation. Hence, the developed neural-based node could be specifically exploited as a feasible biometric-
based authentication solution by mobile devices in edge computing contexts with a huge number of end
users [46, 9]. As a matter of fact, the proposed solution could have a valuable impact in practical appli-
cations, such as mobile health, ambient intelligence, and smart transportation, since authentication is a
critical issue in ubiquitous, mobile, and edge computing [6].
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