
Open-Source Android App Detection considering the Effects of
Code Obfuscation

Kyeonghwan Lim1, Jungkyu Han2, Byoung-chir Kim1,
Seong-je Cho1∗, Minkyu Park3, and Sangchul Han3

1Dankook University, Yongin, Republic of Korea
{limkh120, gurukbc, sjcho}@dankook.ac.kr

2NAVER Corp., Seongnam, Republic of Korea
jungkyu.han@navercorp.com

3Konkuk University, Chungju, Republic of Korea
{minkyup, schan}@kku.ac.kr

Abstract

As open source software (Open Source Software, OSS) is becoming more and more popular, the
risk of open-source license violation also increases. According to 2018 open source security and
risk analysis report of Synopsys, 96% of applications (apps) include open source software and 74%
of them them have licensing issues. To address this problem, many researchers have studied open-
source licensing and OSS detection. However, most ones have conducted at source code level and
have not considered the effects of code obfuscation. In this paper, we propose an effective tech-
nique to extract software birthmarks (i.e., features) from executable code of Android apps and find
out whether the executable code is created from OSS by comparing the birthmarks of the executable
code and those of known open-source apps. The proposed technique uses class hierarchy informa-
tion (CHI) and control flow graphs (CFGs) as software birthmarks of Java bytecode code level. The
CFG birthmark is robust against code obfuscation attacks and thus effective to detect open-source
apps although their codes are obfuscated. We validate the proposed OSS detection technique through
experiments on obfuscated apps.

Keywords: Open Source Software, similarity, control flow graph, class hierarchy information

1 Introduction

Many software companies develop software products using open-source software (OSS) for shortening
the development period and saving the cost. OSS is widely used both as independent applications (apps)
and as components in non-open-source apps. We can easily get many kinds of OSS from web hosting
services such as GitHub, BitBucket, and F-Droid, etc [1, 2, 3]. OSS is a type of computer software
released with its source code under a license where the copyright holder grants users the rights to reuse,
change, and distribute the software under the license [4]. Examples of open-source licenses and free soft-
ware license include GNU General Public License, GNU Lesser General Public License, BSD license,
Apache License, Eclipse Public License, etc.

As the use of OSS has largely increased, license violations and security-related problems are also fre-
quently occurring [5, 6]. According to Synopsys, an open source security management solution provider,
‘2018 Open Source Security and Risk Analysis’ reports that 96% of applications include open source and

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), 9:3 (Sept. 2018), pp. 50-61
∗Corresponding author: Department of Computer Science and Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu,

Yongin-si, Gyeonggi-do, Republic of Korea, Tel: +82-31-8005-3239

50

Open-Source Android App Detection K. Lim, J. Han, B. Kim et al.

74% of them have licensing issues [5]. Some issues may be related to legal ones such as copyright in-
fringement due to license violation. Taking advantage of OSS without violating the license is important.
Thus, you should check if OSS you are using is under right license for your purpose.

Another problem is that your system can be hacked or your personal information can be leaked due
to security vulnerabilities of OSS you are using. For example, Android provides useful functionalities to
users using OSS such as OpenSSL and WebView. However, their vulnerabilities can bring about serious
damage such as personal information hijacking [7]. If some vulnerabilities are exploited in very widely-
used open-source projects such as Linux, MySQL, Apache, so on, the extent of damages becomes much
wider.

We, therefore, need to check whether an app uses OSS modules without their license violation and
which OSS it uses if any. It is also necessary to verify whether or not your software products contain
well-known vulnerable OSS modules. In these cases, for software vendors, hardware vendors, and value-
added-resellers, one of the most important things is to determine whether their proprietary and for-profit
products use open-source frameworks, modules, components, and libraries. Then, if the products are
created from or includes any OSS module/component/library, to detect and identify the OSS module/-
component/library is necessary. This OSS detection is especially important to commercial apps because
proprietary software arbitrarily made by open-source modules/components can cause license violation.

To address these problems, many studies have been conducted and many OSS detection tools are
developed. Most of the developed tools have been implemented at source-code level [8, 9, 10] or using
software birthmarks [11, 12, 13, 14, 15, 16]. A software birthmark is intrinsic characteristics of a program
which can identify the program and detect software theft [17, 18]. In this paper, we also call the software
birthmark the feature information of a program. The existing research efforts have limitations to handle
obfuscated software. If software is obfuscated, its feature information may be changed. For examples,
Google recommends using the code obfuscation tool, called Proguard [19], for protecting intellectual
properties and business logics of software when developing Android apps, and most developers apply
code obfuscations to their apps. Proguard performs obfuscation such as code optimizations; renaming of
classes, methods and variables. As a result of the obfuscation, the features of the apps can be changed.

In this paper, we propose an effective technique to extract software birthmarks (i.e., features) from
executable code of Android apps and find out whether the executable code is generated from OSS by
comparing the birthmarks of the executable code and those of known open-source apps. The proposed
technique uses class hierarchy information (CHI) [6] and control flow graphs (CFGs) as software birth-
marks of Java bytecode code level. The CFG birthmark is robust against code obfuscation attacks and
thus effective to detect open-source apps although their codes are obfuscated. We demonstrate the ef-
fectiveness of the proposed OSS detection technique through experiments on obfuscated apps. Our
technique focus on detecting OSS at an Android app level not at a component/library level, or detecting
obfuscated open-source Android app clone.

The rest of this paper is organized as follows. Section 2 discusses related works. Section 3 explains
two software features for measuring similarity between two Android apps and proposes a new detection
technique for open-source Android apps considering code obfuscation effects. In Section 4, we demon-
strate effectiveness of the proposed technique and evaluate the performance. Conclusions and for future
research are presented in Section 5.

2 Related Work

Most OSS detection schemes employ source code-based similarity analysis techniques. One of well-
known OSS detection tools is Black Duck Software’s Protex [10], which utilizes source codes and
character strings to detect OSS. Other source code-based OSS detection tools include Clarity [8] and

51

Open-Source Android App Detection K. Lim, J. Han, B. Kim et al.

Fossology [9]. These tools have difficulty in detecting OSS within the software whose source code is not
available.

Some OSS detection tools utilize binary-level birthmarks if the source code of target software is
not available. BAT [20] itself is an OSS under the Apache 2.0 license. It extracts symbol information
and string table from binary codes to detect OSS. Kim et al. [16] proposed a function-level static birth-
marking technique for detecting OSS libraries in Microsoft Windows Systems. Their approach extracted
function parameter information and the size of local variables from binary and utilize them as birthmark.
Extracting a relatively simple function-level birthmark and comparing them, the approach showed a good
performance. However, because the size of local variables can vary with different compilers, it may not
resilient to compiler optimization attacks. For example, a local variables can be easily removed by the
compiler optimization. Thus, these binary-level OSS detection schemes are not effective if symbols are
removed by compilation options or target binary is obfuscated. In order to remove the limitations in
[16], Kim et al. devised a new birthmark which was more reliable than existing ones and robust to com-
piler optimization [21]. The newly devised birthmark is based on the attributes of function parameters
such as the number, types, and order in Windows Systems. These attributes represent a unique property
of a function and are resilient to compiler optimization. In [21], the birthmark uses the mapped types
of function parameters of each function. That is, Kim et al. inferred parameter type(s) from a target
binary and mapped a restored type onto one of newly defined three types on the basis of the memory size
allocated to each type and the way of access to the memory. They extracted the birthmarks from target
binary files and determined whether a binary file contained another binary (e.g., OSS component) by
calculating the similarity between the extracted birthmarks. Their approach is efficient and effective to
OSS components at binary level in Microsoft Windows Systems, however, it did not consider the effect
of code obfuscation.

Becker et al. [6] proposed an obfuscation-resilient birthmark to detect third-party libraries within An-
droid apps. They devised a light-weight tool LibScout that is resilient to common obfuscation schemes
and capable of pinpointing exact library versions. In order to determine whether an app include a given
library, LibScout uses high-level class organization information in class profile matching to get a simi-
larity score between an app and a given library. Becker et al. utilized class hierarchy information (CHI)
which is not influenced by control flow obfuscation nor API hiding. They build a database of CHI for
third-party libraries, and the CHI extracted from target Android app is looked up in the database. How-
ever, the scheme is vulnerable to class renaming. In this paper, we propose an OSS detection scheme
based on control flow graph (CFG) birthmark that is resilient to class renaming. Our scheme can improve
the detection rate combined with CHI.

Zhang et al. [22] found that LibScout still has some limitations when applied to large-scale library
detection. To solve the problems of LibScout, they proposed an obfuscation-resilient, highly precise and
reliable library detector LibPecker for Android app. LibPecker adopts signature matching to get a similar-
ity score between an app and a given library. By fully using the internal class dependencies inside a given
library, it creates a strict signature for each class. LibPecker utilizes adaptive class similarity threshold
and weighted class similarity score, then can tolerate library code optimization and elimination. While
LibPecker introduces class dependency information and signature matching as software birthmarks, our
technique employs CHI and CFG.

3 Detection Technique for Open-Source Android Apps

In this section, we propose an OSS app detection technique that is capable to detect OSS apps even for
obfuscated Androids apps in execution code level. In other words, our technique does not need source
codes of the Android apps. To explain concisely, we use two terms a “target app” and “queried OSS

52

Open-Source Android App Detection K. Lim, J. Han, B. Kim et al.

apps”. A target app is a suspicious app that is supposed to be generated from a certain open-source
app. A target app can be an un-obfuscated app or obfuscated one. Queried OSS app (shortly, queried
OSS) is the app known as an open-source app, that is, the app developed from OSS. Our technique de-
termines if a target app is made from an open-source app by comparing the birthmark of the target app
with that of each queried OSS app one by one. A software birthmark is a unique characteristic of an app
which can identify the app and detect illegal software use [17, 18]. Software birthmarks have the same
meaning as software features in this paper. Examples of software birthmarks include API information,
control flow graph (CFG), call graph (CG), opcode n-gram, etc. For effectively determine whether
a target app is generated from an open-source app, the proposed technique adopts two kinds of software
birthmarks: class hierarchy information (CHI) [6] and control flow graphs (CFGs). Although CHI birth-
marks shows robustness against some obfuscation methods such as API hiding [23, 24], control flow
randomization [25, 26] and variable renaming [25, 26, 23, 24, 19], they can be ineffective to check out
if a target app obfuscated by class renaming methods is built from an open-source app [6] because the
CHI birthmarks in the obfuscated app can be modified (E.g., original class names can be transformed
into obfuscated names).

Control flow graph (CFG) indicates a directed graph G = (V,E) to represent all paths that might be
traversed through a program during its execution. Each vertex v ∈ V indicates a basic block that rep-
resents a maximal linear sequence of program instructions having one entry point (the first instruction
executed) and one exit point (the last instruction executed). The instructions in the same basic block
always executed in the same order and no outside instruction can execute between two instructions in
the same block. Each directed edge < vi,v j >∈ E indicates that there may be a transfer of control from
basic block vi to v j. Generally, one CFG is created for each method in an given Android app. Since CFG
captures the structural information such as execution orders between instructions and control transfer in
target apps, CFG is able to detect some patterns originated from the query OSS even in the target apps
obfuscated by class renaming.

The proposed detection technique is roughly divided into the two phases : (1) Reference birth-
mark construction phase and (2) OSS detection phase. In the reference birthmark construction phase,
birthmarks of open-source apps are extracted and maintained in a database as reference birthmarks. The
reference birthmarks are then used in OSS detection phase, where we can judge whether a target app is
identical or similar to a queried OSS by comparing the birthmark extracted from the target app with the
reference birthmark one by one.

Reference birthmark construction phase: each source code is downloaded one after another from
an open-source Android app repository such as F-Droid [3] and then compiled into an executable file
format. CHI and CFG birthmarks are extracted from the compiled apps. We use the procedure [6] for
extracting CHI and dexdump [27] tool for extracting CFG respectively. The extracted birthmarks are
stored in a database as the reference birthmarks representing queried OSSs.

OSS detection phase: Figure 1 shows OSS detection process of our proposed technique. When a
target app is given, CHI and CFG birthmarks are extracted from the target app in a similar way to extract-
ing the reference birthmark (Extracting Features). Then the CHI birthmark of the target app and each
of reference birthmarks are compared (Comparing Merkle trees). If CHI comparison is failed because a
class renaming obfuscation technique is applied to the target app, a subgraph similarity comparison be-
tween the CFGs of the target app and the CFGs of each queried OSS app is carried out to judge whether
the target app is identical or similar to one of queried OSS apps (Computing subgraph isomorphism and
Measuring similarity of node).

The similarity between a CHI birthmark of the target app and that of a queried OSS is first evaluated
by using Eq.(1).

sim(tgt,query) =
|Ctgt ∩Cquery|
|Cquery|

∈ [0,1] (1)

53

Open-Source Android App Detection K. Lim, J. Han, B. Kim et al.

Figure 1: OSS detection phase

where, Cx indicates the set of classes in the CHI of App x. tgt and query indicate the target app and
queried OSS respectively. When the value of sim(tgt,query) is more than empirically predefined thresh-
old θCHI = 0.7, we consider the target app is identical or similar to the quired OSS.

The similarity degree of CHI birthmarks is small and the CHI comparison can fail when a target app
is obfuscated by class renaming. In such cases, our technique carries out the comparison between CFG
birthmarks using subgraph isomorphism. Subgraph isomorphism detection is adopted to judge a given
CFG is a sub-graph of the other CFG. Figure 2 shows an example of subgraph isomorphism. Since a
sub-graph of graph G2 in the dashed square has the same topology to graph G1, G1 and G2 are in a re-
lationship of subgraph isomorphism. We used VF2 algorithm [28, 29] to detect subgraph isomorphism.

Since the subgraph isomorphism problem is a NP-complete problem, to solve the problem in poly-
nomial time, we skip the comparison of two CFGs when the ratio of the orders of small graph to big
graph (Eq.(2)) is small. More specifically we calculate r(g1,g2) with all possible CFG pairs, and skip the
comparison for the graph pairs that r(g1,g2) is smaller than predefined threshold θCFG. The appropriate
value of θCFG is evaluated in Section 4.2.

r(g1,g2) =
min(Order(g1),Order(g2))

max(Order(g1),Order(g2))
∈ [0,1] (2)

where gx indicates a CFG, Order(gx) indicates the number of vertices of gx. For instance, if r(gre f 1,gtgt)=
0.3, r(gre f 2,gtgt) = 0.8 and θCFG = 0.5 then we discard the subgraph isomorphism detection for (gre f 1,

54

Open-Source Android App Detection K. Lim, J. Han, B. Kim et al.

Figure 2: Subgraph isomorphism

gtgt) pair while the detection is carried out for (gre f 2, gtgt) pair.
Even we detect the existence of subgraph isomorphism between two CFGs, there is a possibility

that the detected isomorphism is caused by chance. To reduce false detection possibility, similarities be-
tween two basic blocks that located in the same topological position (vertex) in the detected sub-CFG are
calculated and if the average similarity of all compared basic block pairs exceeds predefined threshold
θCB = 0.7, we consider the two CFGs are similar. We employ an instruction order similarity of two basic
blocks. The similarity between two basic block b1 and b2 follows Eq.(3).

sim(btgt ,bquery) =
2 ·Len(LCS(btgt ,bquery))

Len(btgt)+Len(bquery)
∈ [0,1] (3)

where, btgt and bquery indicate the instruction sequence in a basic block of the target CFG and that of the
queried CFG respectively. Len(x) indicates the length of sequence x. LCS(btgt ,bquery) indicates Longest
Common Sebsequence (LCS) between btgt and bquery. For instance, the similarity between the two basic
blocks shown in Figure 3 is 0.705 (= 2 · 6/(9+ 8)) and the two sub-graph shown in Figure 4 is similar
because the average of the similarities of two basic blocks in the same topological position exceeds
θCB = 0.7.

Figure 3: LCS between two basic blocks

4 Evaluation

In this section, we show the effectiveness of our proposed technique by conducting experiments with
open-source apps. We first describe the open-source apps used in the evaluation, and then explain the
result of evaluation.

55

Open-Source Android App Detection K. Lim, J. Han, B. Kim et al.

Figure 4: Similarity between two sub-CFGs in graph isomorphism

4.1 Dataset for Reference birthmarks

We prepared two groups of open-source apps for the evaluation. The first group consists of original
open-source apps that any obfuscation methods have not been applied to. It contains 91 open-source
apps collected from the open-source repository F-Droid [3]. The second group consists of obfuscated
open-source apps which have been transformed from the apps in the first group using ProGuard 1. The
second group includes 91 obfuscated open-source apps. In this paper, we call the first group the ‘intact
OSS App group,’ and the second group the ‘obfuscated OSS App group.’ In this paper, each open-source
app is a file with an executable file format (i.e., an APK file including DEX) for Android smartphones.
The open-source apps are compiled and built from source programs in Java programming language. The
CHI and CFG birthmarks are extracted from both the intact OSS App group and the obfuscated OSS App
group. The CHI and CFG birthmarks of intact OSS App group are stored in the database as reference
birthmarks. The CHI or CFG birthmarks of an obfuscated app can be different from each other depending
on code obfuscation tools and obfuscation techniques. Therefore, the birthmarks of obfuscated OSS App
group are not maintained as the reference birthmarks. See the reference [30] for various code obfuscation
tools and obfuscation techniques.

ProGuard is one of the most popular obfuscation tools for Android Apps. ProGuard transforms the
names of classes, methods, and variables, and then removes unnecessary/dummy codes. However, the
names of some frequently used methods and classes are not obfuscated by ProGuard in order to prevent
the degradation of execution speed as well as introduction of errors. It is possible to tell ProGurard
not to obfuscate certain classes and methods. Figure 5 shows the default list of classes and methods
which Proguard does not obfuscate. By default, all classes and methods shown in Figure 5 are preserved
without being obfuscated.

4.2 Detection performance

We first evaluates the performance of CHI birthmark comparison (Comparing Merkle trees in Figure 1).
As shown in Table 1,all apps in the intact OSS App group are detected (100% detection ratio) while only
58 apps of total 91 apps in the obfuscated OSS group are detected (64% detection ratio). Figure 6 shows
the package structure of an obfuscated app that is not detected by CHI birthmark comparison. Manual

1https://www.guardsquare.com/en/products/proguard

56

Open-Source Android App Detection K. Lim, J. Han, B. Kim et al.

Figure 5: The ranges of classes and methods excluded from obfuscation

inspection revealed that the class names of 33 undetected Apps were obfuscated while the class names
of 58 detected Apps remained intact even after obfuscation.

Table 1: CHI birthmark comparison results

Intact OSS Apps Obfuscated OSS Apps
(Detected/All/Ratio) (Detected/All/Ratio)

Detection rate 91 / 91 / 100% 58 / 91 / 64%

Figure 6: The package structure of an obfuscated APP (Original (Left), Obfuscated (Right))

For detecting the obfuscated apps that were not detected by CHI birthmark comparison, the CFG
subgraph similarity comparisons are carried out (Computing subgraph isomorphism and Measuring sim-
ilarity of node in Figure 1). We changed the value of θCFG from 1.0 to 0.6 by decreasing the value by 0.1
and evaluated the obfuscated OSS App detection ratio. Table 2 shows that the detection ratio is improved
as the value of θCFG decreases and 76 out of 91 OSS Apps are detected when θCFG = 0.6. One possi-

57

Open-Source Android App Detection K. Lim, J. Han, B. Kim et al.

ble reason of 15 App detection failures is that too many or a few control blocks reside in CFGs. Since
the subgraph isomorphism problem is a NP-complete problem, VF2 algorithm [28, 29] fails to compare
CFGs in polynomial time when there exists many control blocks in CFGs. When an App has too simple
control flows, OSS App detection also fails because there exists insufficient number of CFGs to compare.

Table 2: CFG birthmark comparison results for obfuscated OSS Apps

θCFG Additional Detection ratio Total Detection ratio
(Detected/All/Ratio) (Detected/All/Ratio)

1.0 8 / 33 / 24.24% 66 / 91 / 72.53%
0.9 9 / 33 / 27.27% 67 / 91 / 73.63%
0.8 14 / 33 / 42.42% 72 / 91 / 79.12%
0.7 15 / 33 / 45.45% 73 / 91 / 80.22%
0.6 18 / 33 / 54.54% 76 / 91 / 83.52%

5 Conclusion and Future Work

In this paper, we have proposed an effective technique that is capable to detect open-source Android apps
even though the apps have been obfuscated by ProGuard, which is the most popular obfuscator for Java
bytecode. Our technique operates at the executable code level and does not require source code. The
technique has adopted two software birthmarks, class hierarchy information (CHI) and control flow graph
(CFG), where the CFG birthmark has showed substantial improvements for detecting the open-source
apps obfuscated by class renaming scheme. Using the CHI and CFG birthmarks together, the detection
ratio is improved from 24% to 54% compared to the case of only using the CHI birthmark. Although
LibScout [6] proposed by Backes et al. got some resilience against some obfuscation schemes, there
are still some limitations such as too relaxed class profiling, and difficulty in detecting OSS obfuscated
with class renaming scheme. In this paper, we have solved one of the problems of LibScout using the
CFG birthmark. Our technique can mitigate the workload of painstaking tasks to manually detect an
open-source app in online marketplaces for Android apps.

Since more than 54% of detection ratio improvement is restricted by computational cost of subgraph
isomorphism detection, devising an efficient approximation algorithm to detect subgraph isomorphism
is one of our future works. In addition, we plan to extend our technique to detect open-source compo-
nents/libraries or Java methods at execution code level.

Acknowledgments

This research was supported by (1) Basic Science Research Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Education(no. NRF-2015R1D1A1A02061946)
and (2) the MIST(Ministry of Science and ICT), Korea, under the National Program for Excellence in
SW supervised by the IITP(Institute for Information & communications Technology Promotion)(2017-
0-00091)

58

Open-Source Android App Detection K. Lim, J. Han, B. Kim et al.

References

[1] GitHub, “Github,” https://github.com [Online; accessed on August 19, 2018].
[2] bitbucket, “Bitbucket,” https://bitbucket.org [Online; accessed on August 19, 2018].
[3] F-Droid, “F-droid,” https://f-droid.org/en/ [Online; accessed on August 19, 2018].
[4] Wikipedia, “Open-source software,” https://en.wikipedia.org/wiki/Open-source software [Online; accessed

on August 19, 2018].
[5] Synopsys, “2018 open source security and risk analysis,” https://www.synopsys.com/content/dam/synopsys/

sig-assets/reports/2018-ossra.pdf [Online; accessed on August 19, 2018], May 2018.
[6] M. Backes, S. Bugiel, and E. Derr, “Reliabl third-party library detection in android and its security applica-

tions,” in Proc. of the 23rd ACM Conference on Computer and Communications Security (CCS’16), Hofburg
Palace, Vienna, Austria. ACM, October 2016, pp. 356–367.

[7] M. Neugschwandtner, M. Neugschwandtner, M. Lindorfer, and C. Platzer, “A view to a kill: Webview ex-
ploitation,” in Proc. of the 6th USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET’13),
Washington, D.C. USENIX, November 2013.

[8] clarityinsights, “Clarity,” https://www.clarityinsights.com [Online; accessed on August 19, 2018].
[9] fossology, “Fossology,” https://www.fossology.org/ [Online; accessed on August 19, 2018].

[10] synopsys, “Protex,” https://www.blackducksoftware.com/products/protex [Online; accessed on August 19,
2018].

[11] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discover: Efficient cross-architecture identification of
bugs in binary code,” in Proc. of the 23rd Annual Network and Distributed System Security Symposium
(NDSS’16), San Diego, California, USA. The Internet Society, February 2016.

[12] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable graph based bug search for firmware im-
ages,” in Proc. of the 23rd ACM Conference on Computer and Communications Security (CCS’16), Hofburg
Palace, Vienna, Austria. ACM, October 2016, pp. 480–491.

[13] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding semantic differences in binary
programs,” in Proc. of the 10th International Conference on Information and Communications Security
(ICICS’08), Birmingham, UK, ser. Lecture Notes in Computer Science, vol. 5308. Springer-Verlag, Oc-
tober 2008, pp. 238–255.

[14] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based obfuscation-resilient binary code similarity
comparison with applications to software and algorithm plagiarism detection,” IEEE Transactions on Soft-
ware Engineering, vol. 43, no. 12, pp. 1157–1177, January 2017.

[15] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding software license violations through binary
code clone detection,” in Proc. of the 8th Working Conference on Mining Software Repositories (MSR’11),
Waikiki, Honolulu, Hawaii, USA. ACM, May 2011, pp. 63–72.

[16] D. Kim, S. Cho, S. Han, M. Park, and I. You, “Open source software detection using function-level static soft-
ware birthmark,” Journal of Internet Services and Information Security, vol. 4, no. 4, pp. 25–37, November
2014.

[17] J. Choi, Y. Han, S.-j. Cho, H. Yoo, J. Woo, M. Park, Y. Song, and L. Chung, “A static birthmark for ms
windows applications using import address table,” in Proc. of the 2013 Seventh International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS’13), Taichung, Taiwan. IEEE, July
2013, pp. 129–134.

[18] J. Ko, H. Shim, D. Kim, Y.-S. Jeong, S.-j. Cho, M. Park, S. Han, and S. B. Kim, “Measuring similarity of
android applications via reversing and k-gram birthmarking,” in Proc. of the 2013 Research in Adaptive and
onvergent Systems (RACS’13), Montreal, Quebec, Canada. ACM, October 2013, pp. 336–341.

[19] guardsquare, “Proguard,” https://www.guardsquare.com/en/proguard [Online; accessed on August 19, 2018].
[20] binaryanalysis, “Binary analysis tool,” http://www.binaryanalysis.org/en/home [Online; accessed on August

19, 2018].
[21] D. Kim, S.-j. Cho, M. Park, and S. Han, “Open source software detection using function parameter based

software birthmark,” Journal of Internet Technology, vol. 18, no. 4, pp. 801–811, July 2017.

59

https://github.com
https://bitbucket.org
https://f-droid.org/en/
https://en.wikipedia.org/wiki/Open-source_software
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf
https://www.clarityinsights.com
https://www.fossology.org/
https://www.blackducksoftware.com/products/protex
https://www.guardsquare.com/en/proguard
http://www.binaryanalysis.org/en/home

Open-Source Android App Detection K. Lim, J. Han, B. Kim et al.

[22] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and H. Chen, “Detecting third-party libraries in
android applications with high precision and recall,” in Proc. of the 25th IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER’18), Campobasso, Italy. IEEE, March 2018, pp.
141–152.

[23] guardsquare, “Dexguard android obfuscator,” https://www.guardsquare.com/en/dexguard [Online; accessed
on August 19, 2018].

[24] dexprotector, “Dexprotector android obfuscator,” https://dexprotector.com [Online; accessed on August 19,
2018].

[25] allatori, “Allatori java obfuscator,” http://www.allatori.com [Online; accessed on August 19, 2018].
[26] preemptive, “Dasho java obfuscator,” https://www.preemptive.com/products/dasho/overview [Online; ac-

cessed on August 19, 2018].
[27] Y. Wei, “Dexdump,” https://github.com/greatyao/dexdump [Online; accessed on August 19, 2018].
[28] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “An improved algorithm for matching large graphs,” in

Proc. of the 3rd IAPR TC-15 Workshop on Graphbased Representations in Pattern Recognition (GbRPR’01),
Ischia, Italy. CUEN, May 2001, pp. 149–159.

[29] P. Foggia, C. Sansone, and M. Vento, “A performance comparison of five algorithms for graph isomor-
phism,” in Proc. of the 3rd IAPR TC-15 Workshop on Graphbased Representations in Pattern Recognition
(GbRPR’01), Ischia, Italy. CUEN, May 2001, pp. 188–199.

[30] P. Faruki, H. Fereidooni, V. Laxmi, M. Conti, and M. Gaur, “Android code protection via obfuscation tech-
niques: Past, present and future directions,” arXiv:1611.10231, november 2016.

——————————————————————————

Author Biography

Kyeonghwan Lim received the B.E. degree in Dept. of Software Science from
Dankook University, Korea, in 2015 and the M.E. degree in computer science and en-
gineering from Dankook University, Korea, in 2016. He is currently a Ph.D. student
in Computer Science and Engineering at Dankook University, Korea. His research
interests include computer system security and mobile security.

Jungkyu Han received the B.E. and M.E. degrees in Computer Science and Engi-
neering from Seoul National University in 2005 and 2007 and received Ph.D degree
in Computer science and Communications Engineering from Waseda University in
2018. He worked for NTT in Japan from 2007 to 2014. Now he works for NAVER
corp. in Korea. His research interests include data mining, artificial intelligence, dis-
tributed computing and computer security.

Byoung-chir Kim is currently an undergraduate student at Dept. of Software Science
in Dankook University, Korea. His research interests include computer system secu-
rity, mobile security.

60

https://www.guardsquare.com/en/dexguard
https://dexprotector.com
http://www.allatori.com
https://www.preemptive.com/products/dasho/overview
https://github.com/greatyao/dexdump

Open-Source Android App Detection K. Lim, J. Han, B. Kim et al.

Seong-je Cho received the B.E., M.E. and Ph.D. degrees in Computer Engineering
from Seoul National University in 1989, 1991 and 1996, respectively. In 1997, he
joined the faculty of Dankook University, Korea, where he is currently a Professor in
Department of Computer Science and Engineering (Graduate school) and Department
of Software Science (Undergraduate school). He was a visiting research professor at
Department of EECS, University of California, Irvine, USA in 2001, and at Depart-
ment of Electrical and Computer Engineering, University of Cincinnati, USA in 2009

respectively. His current research interests include computer security, mobile app security, operating
systems, and software intellectual property protection.

Minkyu Park received the B.E., M.E., and Ph.D. degree in Computer Engineering
from Seoul National University in 1991, 1993, and 2005, respectively. He is now
a professor in Konkuk University, Rep. of Korea. His research interests include
operating systems, real-time scheduling, embedded software, computer system se-
curity, and HCI. He has authored and co-authored several journals and conference
papers.

Sangchul Han received his B.S. degree in Computer Science from Yonsei University
in 1998. He received his M.E. and Ph.D. degrees in Computer Engineering from Seoul
National University in 2000 and 2007, respectively. He is now an associate professor
of Dept. of Software Technology at Konkuk University. His research interests include
real-time scheduling, and computer security.

61

	Introduction
	Related Work
	Detection Technique for Open-Source Android Apps
	Evaluation
	Dataset for Reference birthmarks
	Detection performance

	Conclusion and Future Work

