
A Survey of Android Security Threats and Defenses

Bahman Rashidi∗and Carol Fung
Virginia Commonwealth University, Richmond, Virginia, USA

{rashidib, cfung}@vcu.edu

Abstract

With billions of people using smartphones and the exponential growth of smartphone apps, it is pro-
hibitive for app marketplaces, such as Google App Store, to thoroughly verify if an app is legitimate
or malicious. As a result, mobile users are left to decide for themselves whether an app is safe to
use. Even worse, recent studies have shown that over 70% of apps in markets request to collect
data irrelevant to the main functions of the apps, which could cause leaking of private information
or inefficient use of mobile resources. It is worth mentioning that since resource management mech-
anism of mobile devices is different from PC machines, existing security solutions in PC malware
area are not quite compatible with mobile devices. Therefore, academic researchers and commercial
anti-malware companies have proposed many security mechanisms to address the security issues of
the Android devices. Considering the mechanisms and techniques which are different in nature and
used in proposed works, they can be classified into different categories. In this survey, we discuss the
existing Android security threats and existing security enforcements solutions between 2010−2015
and try to classify works and review their functionalities. We review a few works of each class. The
survey also reviews the strength and weak points of the solutions.

Keywords: Android, Security, Privacy, Smartphone

1 Introduction

Since the first introduction in 2008, Android has gained a tremendous number of users over the last
few years. Smartphones are the fastest growing technology market segment. According to Gartner [1], a
technology research and advisory firm, 1.1 billion devices running on Google’s Android OS were shipped
in 2014 alone, marking its 80 percent mobile market share. Attributing to this fast-pace increament is
the proliferation of Android apps, which provides an ever-growing application ecosystem. Officially
reported by Android Google Play Store, the number of apps in the store has reached over 1.6 million in
early 2015, surpassing its major competitor Apple Apps Store [2]. Mobile applications are essential to the
smartphone experience. Mobile applications are getting increasingly sophisticated, robust, life-engaging,
and privacy-intrusive. The market offers a wide variety of applications ranging from entertainment,
productivity, health care, to online dating, home security, and business management [3]. Users depend
more and more on mobile devices and applications.

As mobile applications are gaining increasing popularity among users, the privacy and security of
smartphone users become a concern. Due to the large user base, smart devices are used to store sensitive
personal information more frequently than laptops and desktops. As a consequence, a malicious third-
party app can not only steal private information, such as the contact list, text messages, and location from
its user, but can also cause financial loss of the users by making secretive premium-rate phone calls and
text messages [4]. At the same time, the rapid growth of the number of applications on Android markets
makes it hard for app market places, such as Google App Store for example, to thoroughly verify if

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, volume: 6, number: 3, pp. 3-35
∗Corresponding author: Department of Computer Science, Virginia Commonwealth University, Tel: +1-804-402-7575,

Web: http://people.vcu.edu/˜rashidib/

3

http://people.vcu.edu/~rashidib/

Android Security Threats and Defenses Rashidi, Fung

an app is legitimate or malicious. As a result, mobile users are left to decide for themselves whether
an app is safe to use. In addition, unlike iOS, Android device owners do not have to root or ”jailbreak”
their devices to install apps from ”unknown sources”. This gives Android users broad capability to install
pirated, corrupted or banned apps from Google Play simply by changing a systems setting. This provides
further incentive for the users to install third-party applications, but exposes their privacy to significant
security risks [5].

The exponentially increasing number of Android applications, the unofficial apps developers, and the
existing security vulnerabilities in Android OS encourage malware developers to take advantage of such
vulnerable OS and apps and steal the private user information to inadvertently harms the apps markets
and the developer reputation [6]. Moreover, since Android OS is an open source platform, it allows the
installation of third-party market apps, stirring up dozens of regional and international app-stores such
as PandaApp [7] and GetJar [8]. Android malware can gain control of device, steal private information
from users, consume excessive battery, use telephony services to steal money from users’ bank accounts,
and even turn the device into a botnet zombie.

There are a large variety of Android vulnerabilities and they can occur in any layers of Android OS
stack, such as application layer or framework layer. Vulnerabilities also appear in benign apps through
the accidental inclusion of coding mistakes or design flaws. As we described before, the flawed Android
OS provides a fertile ground for attackers. There are a variety of security issues on Android phones,
such as unauthorized access from one app to the others (information leakage), permission escalation,
repackaging apps to inject malicious code, colluding, and Denial of Service (DoS) attacks.

Realizing these shortcomings in the current Android architecture, much efforts have been put towards
addressing these problems [9]. In addition to Android OS’s various security measures such as sandboxing
and Android permission model, many security and privacy solutions were proposed to cope with the
existing security Android OS vulnerabilities, including many resource management systems such as [10,
11, 12] and security solutions using different approaches and techniques [13, 14, 15]. We will discuss
the these techniques, approaches and tools in more details in section 3.

This paper aims at complementing the former reviews by expanding the coverage of Android security
issues, and malware growth. In this survey, we will cover the major proposed works in Android OS
security and privacy, and most of the existing deployed techniques and tools. The rest of this paper is
organized as follows:

We first describe the Android OS and application and their architectures in Section 2 and then the
Android security and its security issues in Section 3 and 4. After that, we explain all the existing secu-
rity mechanism and proposed solutions in Section 5. We show the comparison results of the described
solutions in section 6. Finally, conclusion in Section 7.

2 Android OS and Applications Architecture

In this section we describe the architecture of the Android OS and its applications. Android is being
developed and maintained by Google and promoted by the Open Handset Alliance (OHA). Android
OS is placed on top of the Linux kernel and it includes the middleware, libraries and APIs written in c
language, and application software running on an application framework which includes Java-compatible
libraries. Android’s source code is released by Google under open source licenses.

2.1 Framework Architecture

Android operating system is a stack of software components, which is roughly divided into five sections
and four main layers as shown in the Figure 2. Android OS layers and components are explained as

4

Android Security Threats and Defenses Rashidi, Fung

Native Android App Third Party Apps

Package Manager Resource Manager Content Provider

Window Manager View System

SQLite WebKit

FreeType
Surface

Manager

SSL SQL libc

Power Management Process Management Memory Management

Display Driver WiFi Driver Audio Drivers
Binder(IPC)

Drivers

Applications

Dalvik Virtual Machine

Core Libraries

Android Runtime

Application Framework

Libraries

Linux Kernel

OpenGL ES

Media Framework

Activity Manager Notification Manager

Figure 1: Android operating system architecture

follows[16][17]:

2.1.1 Applications

Application layer is located at the top of the Android software stack. These comprise both the pre-
installed apps provided with a particular Android implementation and third-party apps developed by
individuals (unofficial) app developers. Examples of such apps are Browser, Contacts Manager, and
Email apps. More examples of such applications can be found from many official and unofficial app
markets.

• Application Framework : The application framework is a set of services that collectively form
the environment in which Android applications run and are managed. Services are provided to
applications in the form of Java classes. Application developers are allowed to make use of these
services in their applications. Application framework includes the following major services [18]:
Activity Manager, Content Providers, Resource Manager, Notifications Manager and View System.

• Activity Manager : Activity Manager Manages and controls all aspects of the application lifecycle
and activity stack. This service interacts with the overall activities running in the system.

• Content Providers : Content providers manage access to a structured set of data. They encap-
sulate the data, and provide mechanisms for defining data security. Content providers are the

5

Android Security Threats and Defenses Rashidi, Fung

standard interface that connects data in one process with code running in another process. In other
words, this service allows applications to publish and share data with other applications.

• Resource Manager :This service provides access to non-code embedded resources such as strings,
color settings and user interface layouts from apps. This service makes it possible to maintain apps’
resources independently.

• Notifications Manager : Notifications Manager allows applications to display alerts and noti-
fications to the user. With this service, apps can notify the user of events that happen in the
background.

• View System : This service is an extensible set of views used to create application user interfaces.

2.1.2 Android Runtime:

This section describes a key component called Dalvik Virtual Machine (DVM), which is a Java Virtual
Machine (JVM) specially designed and optimized for Android. Dalvik VM takes advantage of Linux
core features such as multi-threading, multitasking execution environment and memory management,
which is intrinsic in the Java language. Dalvik VM gives power to apps to run as a process directly on
the Linux kernel and within its own VM (sandboxed). Since Dalvik is using JVM, it provides users with
a set of libraries and APIs to develop Android apps predominantly using Java programming language.
The standard Java development environment includes a vast array of classes that are contained in the
core Java runtime libraries.

2.1.3 Libraries:

The Android’s native libraries were developed on top of the Linux kernel. This layer enables the device
to handle different types of data. It provides different libraries useful for the well-functioning of Android
operating system. These libraries are written in C or C++ language and were developed for a particular
hardware. Examples of some important native libraries include the open-source Web browser engine
WebKit used to display HTML content, the well-known library libc, SQLite database engine used for
data storage purposes, OpenGL used to render 2D or 3D graphics content to the screen, Media framework
used to provide different media codecs, and SSL libraries for Internet security.

2.1.4 Kernel:

The Linux kernel is the fundamental layer of the entire system. This layer is customized specially for
the embedded environment consisting of limited resources. The whole Android OS is built on top of
the Linux kernel with some further architectural changes made by Google. This section also acts as an
abstraction layer between the hardware and other software layers. Linux kernel provides the basic system
functionality such as process management, memory management and device management. Linux kernel
also provides an array of device drivers which make the task easier while interfacing the Android with
peripheral devices.

2.2 Application Structure

Android applications which extend the functionality of devices are written primarily in the Java pro-
gramming language. In this subsection, we explain Android app package structure and its main four
components.

6

Android Security Threats and Defenses Rashidi, Fung

2.2.1 Android .apk package

An Android application contains several files and folders packed as a package with .apk extension used
to distribute and install application software and middleware onto Google’s Android operating system.
Figure 2 depicts the structure of an Android application package. Some particular components in ap-
plication files play an important role. For example, META-INF directory includes MANIFEST.MF,
which contains a cryptographic signature and makes the entire contents of the distribution package vali-
dated. The lib directory contains the compiled code, which is specific to a software layer of a processor
and assets is a directory containing applications assets, which can be retrieved by AssetManager. The
AndroidManifest.xml is a key file within application structure, which is an additional Android
manifest file, describing the name, version, access rights, and referenced library files for the application
[19].

2.2.2 App Components

There are four different types of app components [20]. Each component, serves a distinct purpose and
has a distinct lifecycle that defines how the component is created and destroyed. Figure 3 shows the
Android app components and related interactions.

Activities : Activity is an individual user interface screen in an Android Application. Android activity
is where visual elements called Views (also known as widgets) can be placed and user can perform
various actions by interacting with it.

Services : Service is the Android way of keeping an operation going on in the background. Services
are used to perform the processing parts of your application in the background. Services are typically
used for processes that take a significant period of time such as playing music, downloading data or
uploading photos.

Content Provider : A content provider is a component for managing a data set. Content providers in
Android provides a flexible way to make data available across applications. A simple example of content
provider is the Contacts Manager app. You can get contacts in multiple applications such as your SMS
application, Dialer application, etc.

Broadcasting : Broadcast receivers is one of Android application components that is used to receive
messages that are broadcasted by the Android system or other Android applications. Examples of broad-
casts initiated by the system are battery low, network state changed, phone starts and photo captured
from camera.

3 Android Security Mechanisms

Android is a modern mobile platform that was designed to be open source and free. Android applications
make use of advanced hardware and software, as well as local and served data, exposed through the
platform to bring innovation and value to consumers. To protect that value, the platform must offer an
application environment that ensures the security of users, data, applications, the device, and the network.
Securing an open platform requires a robust security architecture and rigorous security programs. In this
section we discuss mechanisms that Android uses to make the application environment secure [21].

3.1 Android Permission Framework

A basic Android application has no permissions associated with it by default to get access to the re-
sources. Before installing an application, the current version of Android OS displays all required per-
missions by the application. The requested permissions is to enforce restrictions on the resources of the

7

Android Security Threats and Defenses Rashidi, Fung

APK
Drawable

Layout

Other

XML Files

Assets

lib

Meta-INF

res

AndroidManifest.xml

classes.dex

resources.arsc

CERT.RSA

CERT.SF

MANIFEST.MF

Figure 2: Android APK file structure

Application #1

Activity A

Activity B

Process

Intent

Application #2

Broadcast

Receiver

Content

Provider

Process

Activity

SQLite

Intent from

system or

other apps

Figure 3: Android components and their interactions

devices such as Internet connections, SMS, Storage, and Camera, etc. After reviewing these permissions,
the user can choose to accept or refuse them, installing the application only if they accept [21]. There are
four classes of permissions: Normal, Dangerous, Signature and SignatureOrSystem. In this subsection,
we explain all types of Android permissions [22].

Normal : A lower-risk permission that gives requesting applications access to isolated application-
level features, with minimal risk to other applications, the system, or the user.

Dangerous : A higher-risk permission that would give a requesting application access to private user
data or control over the device that can negatively impact the user.

Signature : A permission that the system grants only if the requesting application is signed with the
same certificate as the application that declared the permission.

SignatureOrSystem : A permission that the system grants only to applications that are in the Android
system image or that are signed with the same certificate as the application that declared the permission.

3.2 Application Sandboxing

Application sandboxing, also called application containerization, is an approach to software development
and Mobile Application Management (MAM) that limits the environments in which certain code can
execute. Android applications run in a sandbox, an isolated area of the system that does not have access
to the rest of the system’s resources, unless access permissions are explicitly granted by the user when
the application is installed. In order to protect the application’s data from unauthorized access, Android
kernel implements the Linux Discretionary Access Control (DAC) to manage and protect the device’s
resources to be misused. Each app process is protected with an assigned unique ID (UID) within an
isolated sandbox [23].

3.3 Inter-Component Communication (ICC)

Although each application executes within a dedicated sandbox, Android allows applications to com-
municate with each other through a well-defined Inter-Component Communication (ICC) mechanism or
Binder. Android middleware mediates the ICC between application’s components. The Binder or ICC
takes care of migrating the execution of a request from the requester to the target process transparently to
the applications. Applications can call the components or services of other applications as service [21].

8

Android Security Threats and Defenses Rashidi, Fung

4 Android Security Issues and Threats

Android security is built upon a permission-based mechanism which regulates the access of third-party
Android applications to critical resources on an Android device. Such permission-based mechanism is
widely criticized for its coarse-grained control of application permissions and the inefficient permission
management, by developers, marketers, and end-users. For example, users can either accept all permis-
sion requests from an app to install it, or not to install the app. This type of permission management is
proved to be undesirable for the devices security. In this section, we discuss the main security issues of
the Android, which leads to user information leakage and puts the user’s privacy in jeopardy [21].

4.1 Information leakage

In current Android architecture design, apps are restricted from accessing resources or other apps unless
it is authorized by the users. Users have to grant all resource access requests before installing and
using an app. Information leakage occurs when users grant resources without any restriction from OS.
However, Android’s permission control mechanism has been proven ineffective to protect user’s privacy
and resource from malicious apps. Studies showed that more than 70% of smart phone apps request to
collect data irrelevant to the main function of the app [24][25]. With more than 1.4 million available
apps in Google Play, and a great number of apps from miscellaneous third-party markets, a significant
number of malicious apps have been exposed to Android users for installation. However, when installing
a new app, only a small portion of users pay attention to the resource being requested, since they tend
to rush through prompted permission request screens to get to use the application. Only a small portion
(3%) of users are cautious and make correct answers to permission granting questions. In addition, the
current Android permission warnings do not help most users make correct security decisions [26]. The
”blaming the users” approach has become a failure to protect Android users.

As pointed out in [26, 27], the reasons for the ineffectiveness of the current permission control system
include: (1) inexperienced users do not realize resource requests are irrelevant and will compromise their
privacy, (2) users have the urge to use the app and may be obliged to exchange their privacy for using the
app.

4.2 Privilege escalation

Privilege escalation or permission escalation attacks were leveraged by exploiting publicly available
Android kernel vulnerabilities to gain elevated access to resources that are normally protected from
an application or user. This type of attack can result in unauthorized actions from applications with
more privileges than intended, which causes many sensitive information leakage. Android exported
components can be exploited to gain access to the critical permissions [28].

4.3 Repackaging Apps

Repackaging is one of the most important and common security issues of the Android OS. Repackaging is
the process of disassembling/decompiling of .apk files using reverse-engineering techniques and adding
(injecting) malicious code into the main source code. Repackaging techniques that can be used on the
Android platform allow malicious code to be disguised as a normal app. It is difficult to distinguish
between a repackaged malicious code and a normal app because the repackaged app usually appears to
function in the same way as the legitimate one. The repackaging steps are as follows [29, 30]:

Unpacking : unpacking APK files using available tools such as apktool, which is a tool based on
reverse-engineering.

9

Android Security Threats and Defenses Rashidi, Fung

Decompiling : decompiling the Java source code using JAD and extracting the source code of Java
classes.

Code injection : injecting code and adding resources into the main source code using Java developing
environments.

Repacking : rebuilding the files using apktool and signing the generated files using jarsigner.
Geimini and KungFu are examples of trojans which are based on APK repackaging. These trojans

can be bundled into many valid Android apps.

4.4 Denial of Service (DoS) attack

The increasing number of smartphone users and prevalence of mobile devices (phones, tablets) which are
connected to the Internet can be a platform for growth of DoS attacks. Since the majority of smartphones
are not equipped with the same protections (i.e. anti-virus programs) as PCs, malicious apps find it as
a proper platform for DoS attacks. Overusing limited CPU, memory, network bandwidth and battery
power are the main goals of DoS attacks [31].

4.5 Colluding

Colluding threat is a client-side attack. In this attack, users install a set of apps developed by the same
developer and same certificate and grant different types of permissions including sensitive and non-
sensitive. After installing apps, these apps can take advantage of a shared UID and get access to all their
permissions and resources [32].

5 Proposed Solutions

Considering the security issues that we described in section 4, so far there have been proposed many
studies towards the principles and practices to manage resource usage [10][11][12][33][34][35] [36][37]
and security solutions to address these vulnerabilities. The existing security and privacy solutions are
classified into three categories. We explain the categories in more details in related sections. Since pro-
posed works that we cover in this survey, use different tools and techniques to implement their solutions.
Before going into further details, in this section we described the main categories and all existing applied
techniques.

5.1 Existing techniques and mechanisms

5.1.1 Static Analysis

Those works that use static analysis approach [38][30] are based on the application’s structure and code
[39]. In this section we describe the main techniques of static analysis.

• Application Signature As we described before, any Android application has a unique signature.
Signature-based solutions check the contents or patterns of an application against a dictionary of
malware signatures. If they find a matching, they can take action. This method is somewhat limited
by the fact that it can only identify a limited amount of emerging threats, e.g. generic, or extremely
broad, signatures.

• Permission Analysis This mechanism works based on granted permissions to the applications.
They assess the risk of the granted permissions and the sensitivity of the resources. Depending on
the risk level, they analyze and detect the malicious apps.

10

Android Security Threats and Defenses Rashidi, Fung

• Control Flow Analysis In this type of static analysis techniques, it needs to extract apps’ Control
Flow Graph (CFG) and look for existing possible resource misusing and vulnerabilities within the
application’s code. Based on the discovered threats and vulnerabilities, they make a decision on
maliciousness or vulnerability of the application.

5.1.2 Dynamic Analysis

Existing works that use dynamic analysis [40][41][42][43][44][45][46] mainly work based on application
behavior analysis during the runtime process. There are three main parameters that can be considered as
application’s behavior and activities: system calls, battery consumption, and network usage [47].

5.1.3 Crowdsourcing

Crowdsourcing is the process of obtaining needed services, ideas, or content by soliciting contributions
from a large group of people [48]. In Android OS security scope, it is defined as a process in which we
collect data from users or devices toward improving the security of devices and privacy preserving. For
example, it can be collecting the system call log of a device or users’ reviews on an app.

5.1.4 Policy-based

Using this technique, solutions require users to define several policies on the prepared services in order
to customize the service. For example, in smartphone security area, the policies can be the level of
permission granting restriction to applications.

5.1.5 Recommendation-based

In this approach, they help inexperienced users through providing recommendations on challenging app
security and privacy decisions such as granting permissions to apps and restricting apps’ resource ac-
cesses.

5.2 Taxonomy of existing solution

In this subsection we present our taxonomy of existing related security systems on Android OS. Since
existing works are implemented in different ways and architectures using different techniques and mech-
anisms, we can categorize them in many ways. Our classification is objective-based. We group existing
works in a category if they have same objective and characteristics. We categorize them into three main
category: (1) Prevention-based, (2) Analysis-based and (3) Runtime Monitoring.

5.3 Prevention-based

Since Dalvik bytecode is vulnerable to reverse engineering, hackers are increasingly aiming at binary
code targets to launch attacks on high-value mobile applications (paid/free) across all platforms. They
can directly access, compromise, and exploit the binary code (e.g., analyze or reverse engineer sensitive
code, modify code to change application behavior, or inject malicious code) [49]. Based on a new
research study done by ARXAN [50], 97% of the top 100 paid Android apps and 87% of the top 100
paid Apple iOS apps have been hacked using repackaging.

In this subsection, we review remarkable existing works with focus on app repackaging attacks (code
modification or code injection) and reverse engineering (code analysis).

11

Android Security Threats and Defenses Rashidi, Fung

Manifest App

Generation

Watermarking

Code

Generation

Source Code

Instrumentation

Watermark

Recognizer

Watermark Embedder

App Source &

Resources

Watermark

Value

Manifest App

Released

App

App Developer Side Arbitrator Side

Watermark

Value

Figure 4: Overall AppInk architecture

A
n
d
ro

id
 A

p
p
lic

a
ti
o
n
 I
n
s
ta

lle
r

(1
)

In
s
ta

lla
ti
o

n

Kirin

Security

Service

New

Application

Kirin Security

Rules

(2
)(

3
)

P
a

s
s
/F

a
il

O
p

ti
o

n
a

l
E

x
te

n
s
io

n

D
is

p
la

y
 r

is
k
 r

a
ti
n
g
s
 t

o
 u

s
e
rs

 a
n
d
 p

ro
m

p
t

fo
r

o
v
e
rr

id
e

(4)

Figure 5: Kirin based software installer flow and its
components

5.3.1 Kirin

Mitigating malicious apps at install time using certification process on apps is the main goal of Kirin [46].
Kirin uses a set of predefined security rules on apps’ requested permissions to find matched malicious
permission requests and characteristics. Here, the rules are defined based on those permissions that are
sensitive and leads to misusing of permissions and dangerous activities.

They use a static analysis tool called Pscout in order to extract all permission specifications for
Android apps without modifying the apps. Using this system at install time can help users to make
real-time decisions whether installing the apps or not. They tested the Kirin using 311 downloaded apps
from top ranked applications from an official Android app Market. After experiments, Kirin detects 5
malicious apps with a high level of security risk. Figure 5 shows the Kirin based software installer flow
and its components.

5.3.2 AppInk

In order to mitigate app repackaging, Zhou et al. [51] propose and develop a graph-based dynamic
watermarking mechanism for Android apps. They designed and developed a tool named AppInk, which
takes the source code of an app and a watermark value as inputs, in order to automatically generate a
new app with a transparently-embedded watermark and the associated manifest app.

They improve the system through embedding software watermarks dynamically into the running state
of an app to represent the ownership of developers. After embedding the watermarks, the repackaged app
can be verified by an authorized verifying party and embedded watermarks can be recognized through
the manifest app without any user effort and interaction. It is worthy to note that the embedded code
segments can be later recovered in order to extract the watermarks values. Figure 4 shows the overall
AppInk architecture and its related components.

In order to demonstrate effectiveness and resistance of the proposed solution, they study two other
works [52, 53] and the results indicate that AppInk is effective in defending against common automatic
repackaging attacks.

5.4 Analysis-based solutions

Similar to PC malware, mobile malware has begun taking steps to evade detection by camouflaging as
benign apps. In this category, the main goal is to use static and dynamic analysis to detect security-
sensitive and malicious behaviors of apps [54]. Proposed works in this category focus types of attacks:

12

Android Security Threats and Defenses Rashidi, Fung

(1) malicious behavior detection, (2) app similarity detection in order to detect repackaged apps, (3)
misusing of granted permissions and (4) detecting apps’ vulnerabilities. In this subsection we review
works in any of the above subcategories.

Figure 6: RiskMon architecture

Second-Stage Risk

Analysis

R
is

k
y
 A

p
p

s

U
n
o
ff
ic

ia
l
 A

n
d
ro

id

M

a
rk

e
ts

First-Stage Risk

Analysis

Risk Ranker

Z
e

ro
-d

a
y
 M

a
lw

a
re

Official Market

Figure 7: RiskRanker architecture

5.4.1 RiskMon

RiskMon [44] tries to answer the question ”are those behaviors necessarily inappropriate?”. RiskMon
is a machine-learning approach for coping with this challenge and present a continuous and automated
risk assessment framework.

Figure 6 shows the basic architecture of the RiskMon. RiskMon combines users’ expectations and
runtime behaviors of trusted applications to generate a risk assessment baseline that captures appropriate
behaviors of applications. Users’ perceptions on applications is the key part of the framework. First, it
collects the user’s expectations on the installed apps on the device and the ranking of permission groups
in terms of their relevancy to the corresponding application. Then, based on the collected information
from the user, it builds the risk assessment baseline for her applications. Finally, using the generated
baseline, RiskMon ranks installed applications based on risk of the app’s interactions, which is measured
by how much it deviates from the risk assessment baseline.

Regarding the implementation of RiskMon, it does not address the interactions between third-party
applications and interactions that do not utilize Binder. This, indeed illustrates potential attack vectors
that can bypass RiskMon.

5.4.2 RiskRanker

RiskRanker [55], is a proactive scheme to spot zero-day Android malware [56]. It tries to assess potential
security risks caused by untrusted apps. The authors develop an automated system in order to analyze
the dangerous behavior of apps dynamically.

RiskRanker’s assessment system performs a two-stage risk analysis. First, it identifies apps with high
and medium risk. In order to identify these apps it traces nonobfuscated executions of apps that invoke
(i) launching root exploits, (ii) illegal cost creation, and (iii) privacy violation attacks. In the second stage
of analysis, in order to discover those apps that encrypt exploit code to evade the first stage analysis it
performs a further investigation through analyzing suspicious app behavior. To address this challenge,
they develop a set of heuristics to map apps to related risk categories (High, Medium, and Low risk).
Figure 7 shows the RiskRanker’s architecture.

13

Android Security Threats and Defenses Rashidi, Fung

In order to evaluate the proposed solution, they implement a prototype to evaluate using 118,318 apps
(104,874 distinct apps) collected from different official and unofficial app markets. After the evaluation
process, the first-stage risk analysis has discovered 2,461 suspicious apps and the second-stage analysis
identified 840 apps. Among these discovered 3,281 unique apps, they successfully uncover 322 (or
9.81%) zero-day malware belonging to 11 distinct families. It should be noted that the main challenge
of the RiskRanker is that they use a same set of simple heuristics against encryption and code loading,
which is not effective.

Figure 8: DroidScope’s architecture and its instrumen-
tation interface

Footprint-based

Detection Engine

U
n
o
ff
ic

ia
l
 A

n
d
ro

id

M

a
rk

e
ts

App

Repository

Heuristics-based

Detection Engine

Malware Sample

Permission-based

behavioral footprint

Heuristics

DroidRangerRepresentative Android Markets

Official Market

•
In

fe
c
ti
o
n
 f
ro

m
 k

n
o
w

n
 M

a
lw

a
re

s

•
In

fe
c
ti
o
n
 f
ro

m
 Z

e
ro

-d
a
y
 M

a
lw

a
re

s

Figure 9: DroidRanger architecture

5.4.3 DroidScope

Lok et al. present DroidScope [57], an Android analysis platform, which is based on Virtualization Mal-
ware Analysis (VMA). DroidScope reconstructs both the OS level and Java-level semantics views. In
fact, DroidScope is a Virtual Machine Introspection (VMI) dynamic analysis and it is built on QEMU [58]
emulator with a set of defined APIs as custom analysis plugins. In order to collect apps’ activities and
trace executions, DroidScope exports three types of APIs related to three layers of Android device: hard-
ware, framework and Dalvik Virtual Machine.

DroidScope is tested using two Android malware families, DroidKungFu and DroidDream, and the
results show that DroidScope detects them successfully. Figure 8 shows the DroidScope’s architecture
and its instrumentation interface.

5.4.4 DroidRanger

In this work [30], authors present a study to evaluate the safety of apps on Google Play and some other
existing unofficial Android app markets. They propose a two-stage analysis to detect current known
malware and zero-day malware. In order to detect known malware, they use a permission-based behav-
ioral footprinting scheme. In the second stage, they apply a heuristics-based filtering scheme to identify
certain inherent behaviors of unknown malicious families (zero-day malware).

They tested the DroidRanger using 204,040 apps collected from five different Android Markets. The
results show that DroidRanger detected 211 malicious apps: 32 from the official Android Market (0.02%
infection rate) and 179 from alternative marketplaces (infection rates ranging from 0.20% to 0.47%).
The overall architecture of DroidRanger is shown in Figure 9.

14

Android Security Threats and Defenses Rashidi, Fung

Figure 10: DroidMOSS overview

5.4.5 DroidMOSS

In this work, an application similarity measurement system called DroidMOSS [30] is proposed that
applies a fuzzy hashing technique [59][60] to localize and detect the changes from app-repackaging
behavior. In fact, DroidMOSS is proposed to detect repackaged applications on third-party Android
marketplaces. Given an app from a third-party Android marketplace, they measure its similarity with
those apps from the official Android markets.

In order to detect a repackaged app, DroidMOSS extracts the DEC opcode sequence of an app and
generates a signature fuzzy hashing signature from the opcode. Lastly, they calculate the edit distance to
see how similar each app pair is. When the similarity exceeds certain threshold, they consider one app in
the pair is repackaged. The above scenario is showed in Figure 5.4.5.

DroidMOSS has several disadvantages. First, it only calculates the similarity for DEX bytecode and
ignores the native code. Second, the opcode sequence does not consist of high level semantic information
and this causes false negatives.

5.4.6 WHYPER

Pandita et al. propose WHYPER [61] as a Natural Language Processing (NLP) solution to measure the
compatibility of requested permissions from apps. The related apps’ descriptions provided by developers
and the answers of why the app needs the requested permissions are used to access the compatibility of
the permission requests. WHYPER takes an application’s description from the market (provided by
developers) and a semantic model of a permission as input, and determines which sentence (if any) in
the description indicates the use of the permission.

They have tested the WHYPER using 581 applications collected from current Android app markets.
The results show 82.8% accuracy, and an average recall of 81.5% for three special permissions (address
book, calendar, and record audio) that protect frequently used security and privacy sensitive resources.
The main challenge of WHYPER is those apps that are not described by app developers and this causes
false-positive detection. Figure 11 depicts an overview of WHYPER including its related components.

5.4.7 PScout

PScout [62] is proposed as a tool in order to extracts the permission specification (permission map) from
the Android OS source code using static analysis. PScout works based on a call graph, constructed
from API calls. The way that PScout extracts permission specifications is through performing repeated
reachability analyses between API calls and permission checks on a call graph that is constructed from
the Android framework’s code base.

Compared to the closest related work, Stowaway [63], PScout is able to extract more permission
specification. In the reported experimentation, they use PScout to analyze 4 versions of Android spanning

15

Android Security Threats and Defenses Rashidi, Fung

App Description

API Docs

Preprocessor

Requested

Permissions

WHYPER Framework

Intermediate

Representation

Mediator

Semantic Graph

Semantic Graph

Generator
Semantic Engine

FOL Representation

NLP Parser

Annotated

Description

Figure 11: Overview of WHYPER

Perform Backward Reachability Analysis

Extract Android Source Information with Soot

Figure 12: PScout architecture

version 2.2 up to the recently released Android 4.0. On Android 2.2, PScout extracts 17,218 mappings,
whereas Stowaway derives only 1,259. Figure 12 shows PScout architecture.

5.4.8 AndroSimilar

In [38] authors propose AndroSimilar, an approach which generates signature by extracting statistically
improbable features, to detect malicious Android apps. They claim that it is effective against code
obfuscation and repackaging. AndroSimilar uses techniques such as string encryption, method renaming,
junk method injection, and control flow modification to detect Android malware. AndroSimilar is a
syntactic footprinting mechanism [64] that finds regions of statistical similarity with known malware to
detect those unknown, zero day samples.

In AndroSimilar, they use a statistical attribute extraction approach that explores improbable byte
features for capturing code homogeneity among variants of known apps. After capturing the common
similarities among known apps, they identify code similarity of an unknown sample and explore its
similarity with known malicious family.

In fact, they generate signatures of known malware applications for different families of malware as
a database of knowledge. Later, they compare the unknown applications with the captured features. If
the similarity score of the comparison passes the pre-defined threshold, they label the app as a malware
or repackaged pp.

5.4.9 ComDroid

ComDroid [65] was proposed to detect application communication vulnerabilities. Since most of these
vulnerabilities stem from the fact that Intents can be used for both intra and inter-application communi-
cation, ComDroid examines Android application interactions and identifies security risks in application
components. Vulnerabilities include personal data loss and corruption, phishing, and other unexpected
behaviors.

ComDroid is a two-stage solution. First, it disassemble application DEX files using the publicly
available Dedexer tool [66]. After disassembling apps, it parses the disassembled output from Dedexer
and logs potential component and Intent vulnerabilities. The results of the reported experimentation on
20 apps shows that ComDroid found 34 exploitable vulnerabilities; 12 of the 20 applications have at least
one vulnerability.

In addition to described works in this section, there are many other related works: FlowDroid [67],
Amandroid [68], AppsPlayGround [69], ScanDroid [70], VetDroid [71], Pegasus [72], AppIntent [73],

16

Android Security Threats and Defenses Rashidi, Fung

Mobile-Sandbox [74], PiggyApp [75], AnDarwin [76], Juxtapp [77], Stowaway [63], DNADroid [78],
Androguard [79], APKInspector [80], JEB [81], Andrubis [82], AndroTotal [83], RobotDroid [84],
CHEX [85], Androwarn [86], MAdFraud [87], DECAF [88], DroidChecker [89], MARVIN [90],
Shinichi et al. [91], and ProtectMyPrivacy [92]. These works all use static and dynamic analysis tools to
detect apps’ vulnerabilities and detect malicious apps.

Permission

Control

Portal

• Thin OS Patch

Permission responses

<AppID, PerReq, Response>

Mobile Clients

Market Places

Server

Permission Recommendation

A
p

p
s

Apps Ranks

• Bad Response Filtering

• Seed/Savvy Users Search

• Response Recommendation

• Apps Ranking

Figure 13: RecDroid Components and Architecture Figure 14: FireDroid Components and Architecture

5.5 Runtime Monitoring

As we described before, at the middleware level, each application is sandboxed, i.e., it is running in
its own instance of Dalvik VM, and interaction and sharing between apps are allowed only through an
inter-process communication (IPC) mechanism. Android middleware provides a list of resources and
services such as sending SMS, access to contacts, or internet access. Android enforces access control to
these services via its permission mechanism. In Android permission mechanism, each service/resource
is associated with a certain unique permission tag, and each app must request permissions to the services
it needs at installation time. Everytime an app requests access to a specific service/resource, Android
runtime security monitor checks whether the app has the required permission tags for that particular
service/resource. In addition to privilege escalation protection, information leakage can be monitored
too.

In this section, we describe those works which are based on monitoring apps’ activities and permis-
sions accesses. Proposed works in this category continuously run on a device to either prevent, detect
malicious activity, or enforce fine-grained policy. It is worthy to note that policies can be defined either
by users or systems.

5.5.1 RecDroid

RecDroid [40][93][94] is a resource access permission control framework through crowdsourcing. Rec-
Droid tries to assist users to make a right decision as for whether a permission request should be accepted.
RecDroid is a crowdsourcing recommendation framework that collects apps’ permission requests and
users’ permission responses, from which a ranking algorithm is used to evaluate the expertise level of
users and a voting algorithm is used to compute an appropriate response to the permission request (ac-
cept or reject). To bootstrap the recommendation system, RecDroid relies on a small set of seed expert
users that could make reliable recommendations for a small set of applications. RecDroid also uses a
game-theoretic Bayesian model to detect the malicious users and ignore their responses [95][96].

17

Android Security Threats and Defenses Rashidi, Fung

Figure 13 illustrates RecDroid’s architecture and its components. First, the framework allows users
to use apps without giving all permissions and receive help from expert users when permission requests
appear. RecDroid allows users to install untrusted apps under a ”probation” mode, while the trusted
ones are installed in normal ”trusted” mode. In probation mode, users make realtime resource granting
decisions when apps are running. The framework also facilitate user-help-user environment, where ex-
pert users’ decisions are recommended to inexperienced users. The framework provides the following
functionalities:

• Two app installation modes for apps that are about to be installed: trusted mode and probation
mode. In probation mode, at run time, an app has to request permission from users to access
sensitive resources (e.g. GPS traces, contact information, friend list) when the resource is needed.
In trusted mode, the app is fully trusted and all permissions are all granted.

• An architecture to intercept and collect apps’ permission requests and responses, from which rec-
ommendations are made as for what permission from which apps should and should not be granted.

• A recommendation system to guide users with permission granting decisions, by serving users
with recommendations from expert users on the same apps.

• A user-based ranking algorithm to rank security risks of mobile apps.

5.5.2 FireDroid

FireDroid [43], is a policy-based framework for enforcing security policies by interleaving process sys-
tem calls. In FireDroid, an application monitor is created to track all processes spawned in Android and
allow/deny them based on human managed policies. FireDroid identifies at runtime if an application
is executing illicit or potentially dangerous actions by intercepting the system calls the application exe-
cutes. No matter if the malware is new or a repackaged version of an existing one: when the malware
executes dangerous system calls, FireDroid can detect and enforce the appropriate security policies.

In FireDroid, they use the ptrace() function to monitor the applications’ behavior at runtime without
modifying the application or Android framework. Figure 14 show the architecture of the FireDroid and
its existing components.

The main advantage of FireDroid is that it is completely transparent to the applications as well as to
the Android OS. This fact means that users are not involved with a heavy interaction. Users only need
to define the policies for the applications and load them into the system through the FireDroid provided
policy portal.

5.5.3 MockDroid

The aim of the MockDroid [41] is avoiding of giving out sensitive data by granting fake permission and
allowing the user to provide fake or ’mock’ data to applications interactively as the application is being
used. MockDroid allows users to revoke access to particular resources at execution time and encourage
them to consider the trade-off between functionality and the disclosure of personal information whilst
they use an application. For example, providing ”no location fix available” for GPS location access could
be a way to protect from sensitive data disclosure.

While such approaches reduce the risk of leaking private information and critical resources, Mock-
Droid requires users to make decisions on every resource permission request, which is difficult for inex-
perienced users and time consuming for others.

18

Android Security Threats and Defenses Rashidi, Fung

Figure 15: TaintDroid Components and Architecture

Android community

with Crowdsourcing

application

Generated output files

Behavior-Based

Malware detection

remote server

Figure 16: Crowdroid Architecture

5.5.4 Crowdroid

Crowdroid [45] is a behavior based malware detection system. In Crowdroid, they detect anomalously
behaving applications through a crowdsourcing framework. The authors propose a framework to analyze
the behavior of Android applications to distinguish between applications that have the same names and
versions, but behave differently.

As Figure 16 shows, it has two components, a lightweight client application which needs to be
installed on users’ devices and a remote malware detection server. The application records the behavior
of the installed applications such as system calls and send them as a log file to the centralized remote
server. The application records the system calls through a system utility called Strace. The log file
consists of the device information, list of installed applications, and behavioral data. On the server side,
the remote server will be in charge of parsing data and creating a system call vector per interaction
for users within their applications. Finally, the collected data will be clustered by 2-means partition
clustering to detect whether the applications are benign or malicious.

Since the client applications must always be available, draining the available device resources is the
main limitation of Crowdroid. The main drawback of this work is that they transfer the data on FTP
protocol, which is not safe.

5.5.5 TaintDroid

TaintDroid [97] is a data flow tracking system, which allows users to track and analyze flows of sensitive
data and potentially identify suspicious apps. TainDroid provides a tool for expert users to discover
misbehaving from potential apps. The sensitive data is automatically tainted in order to keep track
whether the labeled data leaves the device. When the labeled data leaves the device, TaintDroid records
the label of the data and the app which sent the data along with its destination address.

TaintDroid uses fine-grained labels Variable-level, Method-level, File-level, and Message-level. Us-
ing Variable-level semantics provided by the interpreter provides valuable context for avoiding the taint
explosion observed in the x86 instruction set. TaintDroid uses Message-level tracking between applica-
tions’ messages in order to minimize IPC overhead while extending the analysis systemwide. Method-
level tracking is used for Android native libraries that are not directly accessible to apps but through
modified firmware. Finally, TaintDroid uses File-level tracking to ensure persistent information conser-
vatively retains its taint markings. The above scenario is displayed in Figure 15.

19

Android Security Threats and Defenses Rashidi, Fung

Policies

Rewriter
Management

Untrusted

App

Untrusted

App

Logging
Monitor

Figure 17: AppGuard architecture

Android Framework

Policy Database

Low-Level MAC queries

Context Providers

User-Space

Security Server

SE Android
Resource

(Filesystem,…)

A
p
p
lic

a
ti
o
n

User Policy App

Package Manager

Services
(Location, Telephony)

ContentProviders

(Contacts, SMS,…)

API / Hook

(
API / Hook

R

API / Hook

App

Policy

System Apps User

U
p

d
a
te

 B
o
o
le

a
n
 f

la
g
s

M
A

C
 q

u
e
ri
e
s

A
P

I
a
c
c
e
s
s

Rules update

Set active context Feedback

User Space

Kernel Space

Figure 18: Overview of FlaskDroid

5.5.6 AppGuard

AppGuard [42], is a flexible system for the enforcement of user-customizable security policies on un-
trusted Android apps. Indeed, AppGuard works based on Inline Reference Monitoring (IRM) [98], and
helps users to enforce pre-defined user policy on third’party apps. AppGuard, not only restricts the
outreach of the third-party apps but also the operating system.

Figure 17 shows the overall view of the AppGuard. First, this solution modifies the APK packages
of third-party apps in a way that it invokes a security monitor before each security-relevant program
operation at runtime. In fact, it calls the security call before each function call to the Android system
libraries. Second, the security monitor checks whether currently enforced security policies allows the
system call from the application, and then depends on the pre-defined policy by user grant the permission
to execute or deny the requested permission and call a function to return a dummy data as result.

In order to define the policies by user, AppGuard provides user with a standalone application, which
is installed on the user device. Since AppGuard only modifies the application package and not the
operating system, it allows for enforcing policies without rooting phones or modifying the operating
system, which is the main advantage of this solution.

5.5.7 FlaskDroid

FlaskDroid [99] is proposed as a generic security architecture, in order to provide Mandatory Access
Control (MAC) simultaneously on both Android’s middleware and kernel layers. FlaskDroid support
as a flexible and effective ecosystem to instantiate different security solutions and multiple fine-grained
security policies. In order to extract operational semantics at the Android middleware, they design a
policy language inspired by SELinux [100] tailored to the specifics of Android’s middleware semantics.

They evaluated the flexibility of the FlaskDroid by policy driven instantiations of selected security
models such as the existing work Saint [101] as well as a new privacy protecting, user-defined and fine-
grained per-app access control model. They also evaluated the efficiency and effectiveness of the work
on SE Android 4.0.4 [102]. Figure 18 illustrates FlaskDroid architecture and its components.

5.5.8 Porscha

In order to protect DRM-based contents (e.g., MP3-based MMS, SMS, or email), Ongtang et al. propose
Porscha [103] as a system, developed in content proxies and reference monitors within the Android mid-
dleware to enforce DRM policies embedded in received content. The main goal of Porscha is improving
the DRM policy enforcement mechanism to ensure: (1) authorized access to protected content (2) content

20

Android Security Threats and Defenses Rashidi, Fung

Figure 19: XManDroid architecture

App
Application layer

App

Policy Manager

Firewall

Manager

Package

Manager

Kernel MAC

Manager

TrustDroid component TrustDroid extension Default component

MACMAC

FWMAC

MACDAC
Network sockets

File system

Linux IPC

Kernel layer

Middleware layer

ICC

Figure 20: TrustDroid architecture

accessibility by provider-endorsed applications, and (3) ability to access contents under policy-defined
contextual constraints, e.g., time limitation, a maximum number of viewings, etc.

In Porscha, policy enforcing is a two-stage process: protection of transmitted content to the device,
and the regulation of content use on the phone. For the first stage, Porscha binds policy and ensures
content confidentiality ”on the wire” using constructions and infrastructure built on Identity-Based En-
cryption [104]. For the second stage, Porscha enforces policies by proxying content channels (e.g., POP3,
IMAP, Active Sync) and placing reference monitor hooks within Android’s Binder IPC framework. They
evaluated the Porscha using the three most popular content types: SMS messages, MMS messages, and
email. In the reported experimentation, Porscha has low content delivery latency less than 1 second.

5.5.9 QUIRE

In order to deal with ICC-based attacks and regulating interapp ICC, Dietz et al. proposed QUIRE [105],
a security mechanism, which is based on a call-chain tracking technique that provides important context
in the form of provenance and OS managed data security to local and remote apps communicating by
IPC and RPC respectively.

QUIRE is developed based on two main techniques. The first technique, which is based on tracking
the call chain of IPCs and annotating IPCs occurring within the phone such that the recipient of an IPC
request can observe the full call chain associated with the request. Second, QUIRE uses simple cryp-
tographic mechanisms to protect data moving over IPC and RPC channels. This way, QUIRE enables
applications to propagate call chain context to downstream callees and to authenticate the origin of data
that they receive indirectly.

They evaluated QUIRE through performing a set of experiments were on the standard Android de-
veloper phone using two self-developed apps. In the reported experimentation the overhead of QUIRE
for network RPC is practically insignificant.

5.5.10 XManDroid

In order to privilege escalation attacks Bugiel et al. presented XManDroid [106]. XManDroid is a secu-
rity framework that extends the monitoring mechanism of Android OS to detect and prevent application-
level privilege escalation attacks at runtime based on a system-centric system policy.

XManDroid monitors all interactions between apps and dynamically analyzes applications’ transi-
tive permission usage. Monitored communication links should pass a verification process against a set of
policy rules. Finally, depending on predefined policies, system representation allows for an effective de-

21

Android Security Threats and Defenses Rashidi, Fung

Application Process Android System Service

Inter-Process Communication (IPC)

Android KERNEL

Host App

Android SDK

Service A Service B
AdDroid

Service

Android Permission Checks

AdDroid

lib

Phone

Web
Advertising

Network

Advertising

Network

API Calls

Figure 21: AdDroid design

Original App

DroidRanger

Client App

Service App

Launcher Activities

Other Classes / Rec

Native Libraries

Impl. of AIDL Interface

for JNI / NDK Calls

Declaration of

AIDL Interface

for Native Calls

Modified Launcher

Activities
Other Classes / Rsc

Proxy Native Libraries

Impl. of AIDL Interface

for Native Calls

Declaration of AIDL

Interface for

JNI / NDK Calls

Native LibrariesStub Libraries

Figure 22: NativeGuard architecture

tection of (covert) channels established through the Android system services and content providers while
simultaneously optimizing the rate of false positives. XManDroid architecture is shown in figure 19.

They evaluated the effectiveness of XManDroid on our test suite that simulates known application-
level privilege escalation attacks (including Soundcomber), and demonstrate successful detection of at-
tacks that use Android’s inter-component communication (ICC) framework (standard for most attacks).

5.5.11 TrustDroid

Bugiel et al. proposed TrustDroid [107], a security architecture, that enables lightweight domain isolation
on each layer of the Android software stack. In the other words, TrustDroid tries to isolate data and
applications of multiple trust levels in a lightweight way. Here, each domain stands for a security level
of Android OS including kernel layer, middleware layer and network layer.

In order to address the three domain isolations mentioned above, they modify three layers of the OS:
extending the Android middleware and the underlying Linux kernel to mediate IPC apps associated to
different domains, modifying the standard Android kernel firewall to filter network traffic using netfilter
and managing the file system through extending the current Android Linux kernel with TOMOYO Linux
based Mandatory Access Control [108] and corresponding TOMOYO policies. They evaluated Trust-
Droid on an Android devices (Nexus One) and in the reported results, TrustDroid performance has a low
overhead, and a low butter consumption. Figure 20 depicts TrustDroid architecture.

5.5.12 AdDroid

AdDroid [109] is proposed to manage and to separate privileged advertising functionality from host
applications in a way that applications show advertisements without requesting privacy sensitive permis-
sions. AdDroid modifies the Android OS and tries to separate host application and the core advertising
code run in separate protection domains. It also introduces a new advertising API and corresponding
advertising permissions for the Android platform. It is worthy to note that, AdDroid introduces two new
Android permissions, namely ADVERTISING and LOCATION_ADVERTISING. The AdDroid design
and its key components are presented in Figure 21.

AdDroid contains a new Android privilege separation service in order to manage advertising privi-
leges. In this way developers can incorporate advertisements into their application using the predefined
AdDroid advertising APIs. Therefore, apps are able to display advertisements without granting privacy-
sensitive permissions. In the reported experimentation, using AdDroid, 27% of advertising-supported
applications do not need Internet access, 25% do not need location information, and 8% do not re-

22

Android Security Threats and Defenses Rashidi, Fung

Client Side

Tamper-evident

storage

Server Side

Encode/filter

Tracer

Synchronise

Security

checks

Replayer

Proxy API
S it

Smartphone

emulator

PROXY

Logging data Mirrored traffic

M
ir
ro

re
d

 t
ra

ff
ic

Data

Figure 23: Paranoid Android overview

quest for phone state information. They report that AdDroid would reduce over-privileging in 46% of
advertising-supported applications.

5.5.13 NativeGuard

In NativeGuard [110], Sun et al. present a framework that utilizes Android’s process isolation to sandbox
native libraries of an application. NativeGuard leverage the process-based protection in Android through
isolating native libraries from other components in Android applications. Architecture of NativeGuard
is shown in Figure 22.

NativeGuard isolation process has two main aspects. First, it separates the native libraries within an
Android application and a standalone application, where native code is not granted to have full access
to the entire application address space and the interactions between the native libraries and Java code is
fulfilled via IPC mechanism. Second, after the isolation process the native libraries are not granted the
permissions which are granted to the app at the installation process. In this way, NativeGuard decreases
the chance of permission misusing and over-privileging attacks.

5.5.14 Paranoid Android

Paranoid Android [111] is a security check system which is applied on a remote security server (cloud-
based detection framework) that host exact replicas of the phones in virtual environments. Moving the
checking process from the user device to a remote server is the main novelty of this work. It is worthy to
note that the main reason for doing the security checks on a remote server is because of lack of enough
computational resources and battery consumption on smartphones. Figure 5.5.13 shows the Paranoid
Android architecture overview.

The security check mechanism that PA follows is a two-stage process. The first stage, which should
be done on-device, is monitoring the apps’ activities and collecting and transferring logs to the server. In
order to reduce the overhead of log transfer, it sends the log only if the device is awake and connected
to the Internet. The second stage is analyzing the collected logs from devices. PA uses a ClamAV
based antivirus [112] to scan files. In addition, PA performs a taint analysis to detect memory corruption
attacks. They evaluate the system and it is reported that it is both practical and scalable: generating no
more than 2KiBps and 64Bps of trace log for high-loads and idle operation respectively, and supporting

23

Android Security Threats and Defenses Rashidi, Fung

Table 1: Comparison results of the proposed solutions for addressing the permission management on Android OS

Solution
Objective Mechanisms Deployment Tech. Properties

Pr
ev

en
tio

n

A
ss

es
sm

en
t

A
na

ly
si

s

D
et

ec
tio

n

St
at

ic

D
yn

am
ic

B
eh

av
io

ra
l

Sy
st

em
C

al
l

R
ec

om
m

en
da

tio
n

C
ro

w
ds

ou
rc

in
g

Po
lic

y-
ba

se
d

O
n-

D
ev

ic
e

O
ff

-D
ev

ic
e

D
is

tr
ib

ut
ed

O
S

M
od

ifi
ca

tio
n

A
va

ila
bi

lit
y

To
ol

s

RecDroid [40][93][94] 3 3 3 3 3 3 3 3 3 3 3

FireDroid [43] 3 3 3 3 3 3

MockDroid [41] 3 3 3 3 3 3 3

Crowdroid [45] 3 3 3 3 3 3 3 3 strace

RiskMon [44] 3 3 3 3 3 3 3 3

TaintDroid [97] 3 3 3 3 3 3 3

AppGuard [42] 3 3 3 3 3 3 3

AndroSimilar [38] 3 3 3 3

DroidMOSS [30] 3 3 3 keytool

AppInk [51] 3 3 3

RiskRanker [55] 3 3 3 3

DroidScope [57] 3 3 3 3 3 3 3 QEMU

DroidRanger [30] 3 3 3 3 3 3

Kirin [46] 3 3 3 3 3 3

WHYPER [61] 3 3 3 3 NLP

Pscout [62] 3 3 3 3 soot

FlaskDroid [99] 3 3 3 3 3 3 3

ComDroid [65] 3 3 3 3 dedexer

Porscha [103] 3 3 3 3 3 3

QUIRE [105] 3 3 3 3 3

XManDroid [106] 3 3 3 3 3 3 3 3

TrustDroid [107] 3 3 3 3 3

Paranoid Android [111] 3 3 3 3 3 ClamAV

AdDroid [109] 3 3 3 3 3

NativeGuard [110] 3 3 3 3 3 apktool

more than a hundred replicas running on a single remote server.

In addition to described works in this section, there are many other related works: BayesDroid [113],
TISSA [114], AppFence [115], LP-Gaurdian [116], Andromaly [117], AirBag [118], AdSplit [119],
AFrame [120], LayerCake [121], CRePE [122], Apex [123], ASM [124], Aurasium [125], Dr. An-
droid and Mr. Hide [126], Saint[101], IPC Inspection [127], MalloDroid [128], L4Android [129],
AppSealer [130], Pyandrazzi [131], Morbs [132], PatchDroid [133], CryptoLint [134], IccTA [135],
DroidBox [136], Drozer [137], CooperDroid [138], DroidPAD [139], DroidTracker [140], ProtectMyPri-
vacy [92], Ismail et al. [141]. These works all capture apps’ activities and system calls, and using a set
of predefined policies to restrict apps’ activities.

24

Android Security Threats and Defenses Rashidi, Fung

6 Comparison and Discussion

In this section we have a comparison on the covered solutions in this survey. As we described before,
depending on the objective of them, they can be categorized into Assessment, Analysis, or Detection
categories. In addition, based on the used techniques and methodologies, we can classify them into
crowdsourcing-based, policy-based, dynamic, static, and recommendation-based classes. Considering
the way that they implement the proposed solution, they can modify the framework or not. Table I shows
the comparison results for all the covered works in this survey.

In this section we describe following four important aspects that can be concluded from the compar-
ison table and covered works:

First, most of the dynamic-based solutions use crowdsourcing and policy-based techniques. Since
dynamic-based solutions try to assess, analyze, or detect malicious apps based on the behavior of the
apps, it is not possible to make an exact decision on maliciousness of the apps. Although, some the
proposed solutions make decisions on resource access requests with high level of accuracy, most of them
involve users to make their decisions more accurate. Making users responsible for their devices and
granted permissions is another advantage of the involving users in defining policies.

Second, as we described before, the way of implementation for proposed works are different. They
can be implemented on the application level or framework and Linux kernel level. As you can see in the
Table I, most of the dynamic solutions modify the framework and Linux kernel. The need to modify the
low level of Android OS comes from this fact that dynamic solutions are based on the apps’ activities.
Therefore, the only way to monitor the applications’ activities such as system calls is modifying the
kernel or the framework.

Third, rooting the device and implementing the solution in application level is another way of imple-
mentation. In this case, they root the device and manage resource access requests through an application
service. The main problem of this type of implementation is that in fact they make the device unsafe.

Fourth, the only solution, which is based on crowdsourcing, and recommendation is RecDroid [40].
As we mentioned before, the missing key in the policy-based solutions is that none of them helps users
to make a decision on the resource requests. RecDroid is the only work that assists users through making
safe recommendations on granting the permissions to the applications.

7 Conclusion

Along with the increasing prevalence of Android smartphones, the number of Android apps including
malware is increasing daily. In spite of deployed Android security mechanisms, malware take advantage
of the Android security holes to misuse the granted resources. Thereby, many efforts have been proposed
to restrict the outreach of vulnerabilities in Android devices. In this survey we investigated the current
proposed works in two static and dynamic groups. The proposed works are primarily behavior-based and
their main contribution is tracing the apps’ system calls and analyzing the activities to restrict them from
high risk activities. After reviewing these works we came up with two questions that proposed works are
not capable of answering appropriately. First, are those behaviors necessarily inappropriate?. Second,
can we label the apps as malware or benign based on the behavior?.

References

[1] Gartner, “Gartner: 1.1 billion android smartphones, tablets expected to ship in 2014,” Online; accessed at
June 5, 2015, http://tinyurl.com/n8t3h9y.

25

Android Security Threats and Defenses Rashidi, Fung

[2] Victor, “Android’s google play beats app store with over 1 million apps, now officially largest,” Online; ac-
cessed at May 12, 2013, http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-
over-1-million-apps-now-officially-largest id45680.

[3] “Number of available applications in the google play store,” 2015, http://www.statista.com/.
[4] W. Rothman, “Smart phone malware: The six worst offenders,” Online; accessed at April 17, 2015, http:

//www.nbcnews.com/tech/mobile/smart-phone-malware-six-worst-offenders-f125248.
[5] “Bit9 report: Pausing google play: More than 100,000 android apps may pose security risks,” 2012,

https://www.bit9.com/files/1/Pausing-Google-Play-October2012.pdf.
[6] “Number of android applications,” Online; accessed at August 7, 2015,

http://www.appbrain.com/stats/number-of-android-apps.
[7] “Pandaapp,” Online; accessed at August 7, 2015, http://www.pandaapp.com.
[8] “Pandaapp,” Online; accessed at August 7, 2015, http://www.getjar.mobi.
[9] W. Enck, “Defending users against smartphone apps: Techniques and future directions,” in Proc. of the 7th

International Conference on Information Systems Security (ICISS’11), Kolkata, India, LNCS, S. Jajodia
and C. Mazumdar, Eds., vol. 7093. Springer Berlin Heidelberg, December 2011, pp. 49–70. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-25560-1 3

[10] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to estimate app energy consumption,”
in Proc. of the 18th annual international conference on Mobile Computing and Networking
(CMCN’18), Istanbul, Turkey. ACM, August 2012, pp. 317–328. [Online]. Available: http:
//doi.acm.org/10.1145/2348543.2348583

[11] O. R. E. Pereira and J. J. P. C. Rodrigues, “Survey and analysis of current mobile learning applications and
technologies,” ACM Computing Surveys, vol. 46, no. 2, pp. 27:1–27:35, Dec. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2543581.2543594

[12] B. Liu, S. Nath, R. Govindan, and J. Liu, “DECAF: Detecting and characterizing ad fraud in mobile
apps,” in Proc. of the 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’14), Seattle, WA, USA. USENIX Association, April 2014, pp. 57–70. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616448.2616455

[13] E. Fernandes, B. Crispo, and M. Conti, “Fm 99.9, radio virus: Exploiting fm radio broadcasts for malware
deployment,” Information Forensics and Security, IEEE Transactions on, vol. 8, no. 6, pp. 1027–1037, June
2013.

[14] R. Fedler, J. Schütte, and M. Kulicke, “On the effectiveness of malware protection on android,” June 2013.
[15] C. Jarabek, D. Barrera, and J. Aycock, “Thinav: Truly lightweight mobile cloud-based anti-malware,” in

Proc. of the 28th Annual Computer Security Applications Conference (ACSAC’12), Orlando, Florida, USA.
ACM, December 2012, pp. 209–218. [Online]. Available: http://doi.acm.org/10.1145/2420950.2420983

[16] S. Brahler, “Analysis of the android architecture,” 2010. [Online]. Available: https://os.itec.kit.edu/
downloads/sa 2010 braehler-stefan android-architecture.pdf

[17] Android, “Google android documents, android framework architecture,” Online; accessed at May 28, 2015,
https://source.android.com/devices/. [Online]. Available: https://source.android.com/devices/

[18] N. Elenkov, Android Security Internals: An In-Depth Guide to Android’s Security Architecture, 1st ed. San
Francisco, CA, USA: No Starch Press, 2014.

[19] Android, “Google android documents, android application architecture,” Online; accessed at
May 28, 2015, http://developer.android.com/guide/components/fundamentals.html. [Online]. Available:
http://developer.android.com/guide/components/fundamentals.html

[20] J. Annuzzi, L. Darcey, and S. Conder, Introduction to Android Application Development: Android
Essentials, ser. Developer’s Library. Addison Wesley, 2014. [Online]. Available: https://books.google.
com/books?id=c1kXAgAAQBAJ

[21] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. Gaur, M. Conti, and R. Muttukrishnan,
“Android security: A survey of issues, malware penetration and defenses,” 2015. [Online]. Available:
http://dx.doi.org/10.1109/COMST.2014.2386139

[22] K. Makan and S. Alexander-Bown, Android Security Cookbook. Packt Publishing, 2013.

26

_id45680
http://www.nbcnews.com/tech/mobile/smart-phone-malware-six-worst-offenders-f125248
http://www.nbcnews.com/tech/mobile/smart-phone-malware-six-worst-offenders-f125248
http://dx.doi.org/10.1007/978-3-642-25560-1_3
http://doi.acm.org/10.1145/2348543.2348583
http://doi.acm.org/10.1145/2348543.2348583
http://doi.acm.org/10.1145/2543581.2543594
http://dl.acm.org/citation.cfm?id=2616448.2616455
http://doi.acm.org/10.1145/2420950.2420983
https://os.itec.kit.edu/downloads/sa_2010_braehler-stefan_android-architecture.pdf
https://os.itec.kit.edu/downloads/sa_2010_braehler-stefan_android-architecture.pdf
https://source.android.com/devices/
http://developer.android.com/guide/components/fundamentals.html
https://books.google.com/books?id=c1kXAgAAQBAJ
https://books.google.com/books?id=c1kXAgAAQBAJ
http://dx.doi.org/10.1109/COMST.2014.2386139

Android Security Threats and Defenses Rashidi, Fung

[23] Android, “Google android documents, android application sandboxing mechanism,” Online; accessed
at May 25, 2015, http://developer.android.com/training/articles/security-tips.html. [Online]. Available:
http://developer.android.com/training/articles/security-tips.html

[24] C. Efstratiou and I. Leontiadis, “What is the price of free,” Online; accessed at April 17, 2012,
http://www.cam.ac.uk/research/news/what-is-the-price-of-free.

[25] S. Gunasekera, Android Apps Security, 1st ed. Berkely, CA, USA: Apress, 2012.
[26] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android permissions: User

attention, comprehension, and behavior,” in Proc. of the 8th Symposium on Usable Privacy and
Security (SOUPS’12), Pittsburgh, PA, USA. ACM, July 2012, pp. 3:1–3:14. [Online]. Available:
http://doi.acm.org/10.1145/2335356.2335360

[27] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demystified,” in Proc. of the
18th ACM conference on Computer and communications security (CCS’11), Chicago, IL, USA. ACM,
October 2011, pp. 627–638.

[28] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege escalation attacks on android,” in Proc.
of the 13th Information Security Conferenec (ISC’11), Boca Raton, Florida, USA, LNCS, M. Burmester,
G. Tsudik, S. Magliveras, and I. Ilic, Eds., vol. 6531. Springer Berlin Heidelberg, October 2011, pp.
346–360. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-18178-8 30

[29] H. Huang, S. Zhu, P. Liu, and D. Wu, “A framework for evaluating mobile app repackaging
detection algorithms,” in Proc. of the 6th International Conference on Trust and Trustworthy Computing
(TRUST’13), London, UK, LNCS, M. Huth, N. Asokan, S. Čapkun, I. Flechais, and L. Coles-
Kemp, Eds., vol. 7904. Springer Berlin Heidelberg, June 2013, pp. 169–186. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-38908-5 13

[30] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone applications in third-party
android marketplaces,” in Proc. of the 2nd ACM Conference on Data and Application Security and
Privacy (CODASPY’12), San Antonio, Texas, USA. ACM, March 2012, pp. 317–326. [Online]. Available:
http://doi.acm.org/10.1145/2133601.2133640

[31] E. Kovacs, “Wi-fi direct flaw exposes android devices to dos attacks,” Online; accessed at July 8, 2015,
http://www.securityweek.com/wi-fi-direct-flaw-exposes-android-devices-dos-attacks.

[32] C. Marforio, A. Francillon, and S. Capkun, Application Collusion Attack on the Permission-Based Security
Model and Its Implications for Modern Smartphone Systems. Department of Computer Science, ETH
Zurich, 2010. [Online]. Available: https://books.google.com/books?id=nvszMwEACAAJ

[33] J. Crussell, R. Stevens, and H. Chen, “MAdFraud: Investigating ad fraud in android applications,”
in Proc. of the 12th annual international conference on Mobile systems, applications, and services
(MobiSys’14), Bretton Woods, NH, USA. ACM, June 2014, pp. 123–134. [Online]. Available:
http://doi.acm.org/10.1145/2594368.2594391

[34] A. Gember, C. Dragga, and A. Akella, “ECOS: Leveraging software-defined networks to support mobile
application offloading,” in Proc. of the 8th ACM/IEEE symposium on Architectures for networking and
communications systems (ANCS’12), University of Texas in Austin, TX, USA, October 2012, pp. 199–210.
[Online]. Available: http://doi.acm.org/10.1145/2396556.2396598

[35] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang, “Expectation and purpose: Understanding
users’ mental models of mobile app privacy through crowdsourcing,” in Proc. of the 12th ACM Conference
on Ubiquitous Computing (UbiComp’12), Pittsburgh, PA, USA. ACM, September 2012, pp. 501–510.
[Online]. Available: http://doi.acm.org/10.1145/2370216.2370290

[36] D. Barrera, J. Clark, D. McCarney, and P. C. van Oorschot, “Understanding and improving app installation
security mechanisms through empirical analysis of android,” in Proc. of the 2nd ACM workshop on
Security and privacy in smartphones and mobile devices (SPSM’12), Raleigh, NC, USA. ACM, October
2012, pp. 81–92. [Online]. Available: http://doi.acm.org/10.1145/2381934.2381949

[37] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping my phone awake?: Characterizing
and detecting no-sleep energy bugs in smartphone apps,” in Proc. of the 10th international conference on
Mobile systems, applications, and services (MobiSys’12), Low Wood Bay, Lake District, UK. ACM, June
2012, pp. 267–280. [Online]. Available: http://doi.acm.org/10.1145/2307636.2307661

27

http://developer.android.com/training/articles/security-tips.html
http://doi.acm.org/10.1145/2335356.2335360
http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://dx.doi.org/10.1007/978-3-642-38908-5_13
http://doi.acm.org/10.1145/2133601.2133640
https://books.google.com/books?id=nvszMwEACAAJ
http://doi.acm.org/10.1145/2594368.2594391
http://doi.acm.org/10.1145/2396556.2396598
http://doi.acm.org/10.1145/2370216.2370290
http://doi.acm.org/10.1145/2381934.2381949
http://doi.acm.org/10.1145/2307636.2307661

Android Security Threats and Defenses Rashidi, Fung

[38] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal, “Androsimilar: Robust statistical feature
signature for android malware detection,” in Proc. of the 6th International Conference on Security of
Information and Networks (SIN’13), Aksaray, Turkey. ACM, November 2013, pp. 152–159. [Online].
Available: http://doi.acm.org/10.1145/2523514.2523539

[39] A. Gosain and G. Sharma, “A survey of dynamic program analysis techniques and tools,” in Proc.
of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications
(FICTA’14), Odisha, India, S. C. Satapathy, B. N. Biswal, S. K. Udgata, and J. Mandal, Eds.,
vol. 327. Springer International Publishing, November 2015, pp. 113–122. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11933-5 13

[40] B. Rashidi, C. Fung, and T. Vu, “Recdroid: A resource access permission control portal and
recommendation service for smartphone users,” in Proc. of the 2014 ACM MobiCom Workshop on Security
and Privacy in Mobile Environments (SPME’14), Maui, Hawaii, USA. ACM, September 2014, pp. 13–18.
[Online]. Available: http://doi.acm.org/10.1145/2646584.2646586

[41] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: Trading privacy for application
functionality on smartphones,” in Proc. of the 12th Workshop on Mobile Computing Systems and
Applications (HotMobile’11), Phoenix, Arizona, USA. ACM, March 2011, pp. 49–54. [Online]. Available:
http://doi.acm.org/10.1145/2184489.2184500

[42] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-Rekowsky, “Appguard: Enforcing user
requirements on android apps,” in Proc. of the 19th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’13), Rome, Italy. Springer-Verlag, March 2013, pp.
543–548. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-36742-7 39

[43] G. Russello, A. B. Jimenez, H. Naderi, and W. van der Mark, “Firedroid: Hardening security
in almost-stock android,” in Proc. of the 29th Annual Computer Security Applications Conference
(ACSAC’13), New Orleans, Louisiana, USA. ACM, December 2013, pp. 319–328. [Online]. Available:
http://doi.acm.org/10.1145/2523649.2523678

[44] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu, “Riskmon: Continuous and automated risk assessment of
mobile applications,” in Proc. of the 4th ACM Conference on Data and Application Security and
Privacy (CODASPY’14), San Antonio, Texas, USA. ACM, March 2014, pp. 99–110. [Online]. Available:
http://doi.acm.org/10.1145/2557547.2557549

[45] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-based malware detection system
for android,” in Proc. of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM’11), Chicago, Illinois, USA. ACM, October 2011, pp. 15–26. [Online]. Available:
http://doi.acm.org/10.1145/2046614.2046619

[46] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone application certification,” in Proc.
of the 16th ACM Conference on Computer and Communications Security (CCS’09), Chicago, Illinois, USA.
ACM, November 2009, pp. 235–245. [Online]. Available: http://doi.acm.org/10.1145/1653662.1653691

[47] T. Ball, “The concept of dynamic analysis,” ACM SIGSOFT Software Engineering Notes (SEN), vol. 24,
no. 6, pp. 216–234, Oct. 1999. [Online]. Available: http://doi.acm.org/10.1145/318774.318944

[48] WikiPedia, “Wikipedia, crwodsourcing definition,” Online; accessed at May 29,
2015, http://en.wikipedia.org/wiki/Crowdsourcing. [Online]. Available: http://en.wikipedia.org/wiki/
Crowdsourcing

[49] R. Lord, “How to hack a mobile app: It’s easier than you think!” Online; accessed at July 16, 2015,
https://www.arxan.com/hack-mobile-app-easier-think/.

[50] ARXAN, “Arxan technologies, securing mobile apps in the wild with app hardening and run-time protec-
tion,” Online; accessed at July 16, 2015, https://www.arxan.com/resources/mobile-application-protection-
handbook/.

[51] W. Zhou, X. Zhang, and X. Jiang, “Appink: Watermarking android apps for repackaging deterrence,”
in Proc. of the 8th ACM SIGSAC Symposium on Information, Computer and Communications
Security (ASIA CCS’13), Hangzhou, China. ACM, May 2013, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/2484313.2484315

[52] E. Lafortune, “Proguard: Java shrinker, optimizer, obfuscator, and preverifier,” Online; accessed at June 25,

28

http://doi.acm.org/10.1145/2523514.2523539
http://dx.doi.org/10.1007/978-3-319-11933-5_13
http://doi.acm.org/10.1145/2646584.2646586
http://doi.acm.org/10.1145/2184489.2184500
http://dx.doi.org/10.1007/978-3-642-36742-7_39
http://doi.acm.org/10.1145/2523649.2523678
http://doi.acm.org/10.1145/2557547.2557549
http://doi.acm.org/10.1145/2046614.2046619
http://doi.acm.org/10.1145/1653662.1653691
http://doi.acm.org/10.1145/318774.318944
http://en.wikipedia.org/wiki/Crowdsourcing
http://en.wikipedia.org/wiki/Crowdsourcing
http://doi.acm.org/10.1145/2484313.2484315

Android Security Threats and Defenses Rashidi, Fung

2015, http://proguard.sourceforge.net.
[53] M. Zheng, P. P. C. Lee, and J. C. S. Lui, “Adam: An automatic and extensible platform to stress test

android anti-virus systems,” in Proc. of the 9th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA’12), Heraklion, Crete, Greece. Springer-Verlag, July
2013, pp. 82–101. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-37300-8 5

[54] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “AppContext: Analyzing contextual use of
permissions in android applications,” in Proc. of the 37th International Conference on Software Engineering
(ICSE’15), Florence, Italy. IEEE, May 2015.

[55] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: Scalable and accurate zero-day android
malware detection,” in Proc. of the 10th International Conference on Mobile Systems, Applications, and
Services (MobiSys’12), Low Wood Bay, Lake District, UK. ACM, June 2012, pp. 281–294. [Online].
Available: http://doi.acm.org/10.1145/2307636.2307663

[56] WikiPedia, “Zero-day attacks,” Online; accessed at July 8, 2015, https://en.wikipedia.org/wiki/Zero-day.
[57] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik semantic views for

dynamic android malware analysis,” in Proc. of the 21st USENIX Conference on Security Symposium
(Security’12), Bellevue, WA, USA. USENIX Association, August 2012, pp. 29–29. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2362793.2362822

[58] F. Bellard, in Proc. of the 2005 USENIX Annual Technical Conference, FREENIX Track, Anaheim, CA,
USA. USENIX Association, April 2005, pp. 41–46.

[59] S. Server, “Fuzzy clarity: Using fuzzy hashing techniques to identify malicious code,” Online; accessed at
July 8, 2015, http://www.shadowserver.org/wiki/uploads/Information/FuzzyHashing.pdf.

[60] D. French, “Fuzzy hashing techniques in applied malware analysis,” Online; accessed at July 8, 2015,
http://blog.sei.cmu.edu/post.cfm/fuzzy-hashing-techniques-in-applied-malware-analysis.

[61] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards automating risk
assessment of mobile applications,” in Proc. of the 22nd USENIX Conference on Security (SEC’13),
Washington, D.C., USA. USENIX Association, August 2013, pp. 527–542. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2534766.2534812

[62] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the android permission
specification,” in Proc. of the 2012 ACM Conference on Computer and Communications Security
(CCS’12), Raleigh, North Carolina, USA. ACM, October 2012, pp. 217–228. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382222

[63] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demystified,” in Proc. of
the 18th ACM Conference on Computer and Communications Security (CCS’11), Chicago, Illinois, USA.
ACM, October 2011, pp. 627–638. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046779

[64] S. Jana and V. Shmatikov, “Memento: Learning secrets from process footprints,” in Security and Privacy
(SP), 2012 IEEE Symposium on (SP’12), San Francisco Bay Area, CA, USA, May 2012, pp. 143–157.

[65] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-application communication
in android,” in Proc. of the 9th International Conference on Mobile Systems, Applications, and
Services (MobiSys’11), Bethesda, Maryland, USA. ACM, June 2011, pp. 239–252. [Online]. Available:
http://doi.acm.org/10.1145/1999995.2000018

[66] G. Paller, “Dedexer,” Online; accessed at June 25, 2015, http://dedexer.sourceforge.net/.
[67] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, and

P. McDaniel, “Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 259–269, Jun. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2666356.2594299

[68] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general inter-component data flow analysis
framework for security vetting of android apps,” in Proc. of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS’14), Scottsdale, Arizona, USA. ACM, November 2014,
pp. 1329–1341. [Online]. Available: http://doi.acm.org/10.1145/2660267.2660357

[69] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic security analysis of smartphone
applications,” in Proc. of the 3rd ACM Conference on Data and Application Security and Privacy

29

http://dx.doi.org/10.1007/978-3-642-37300-8_5
http://doi.acm.org/10.1145/2307636.2307663
http://dl.acm.org/citation.cfm?id=2362793.2362822
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://doi.acm.org/10.1145/2382196.2382222
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/2666356.2594299
http://doi.acm.org/10.1145/2660267.2660357

Android Security Threats and Defenses Rashidi, Fung

(CODASPY’13), San Antonio, Texas, USA. ACM, February 2013, pp. 209–220. [Online]. Available:
http://doi.acm.org/10.1145/2435349.2435379

[70] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for systematic testing of android
apps,” ACM SIGPLAN Notices, vol. 48, no. 10, pp. 641–660, Oct. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2544173.2509549

[71] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. Zang, “Vetting undesirable
behaviors in android apps with permission use analysis,” in Proc. of the 2013 ACM SIGSAC Conference
on Computer & Communications Security (CCS’13), Berlin, Germany. ACM, November 2013, pp.
611–622. [Online]. Available: http://doi.acm.org/10.1145/2508859.2516689

[72] K. Z. Chen, N. Johnson, S. Dai, K. Macnamara, T. Magrino, E. Wu, M. Rinard, and D. Song, “Contextual
policy enforcement in android applications with permission event graphs,” 2013.

[73] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang, “Appintent: analyzing sensitive data
transmission in android for privacy leakage detection,” in Proc. of the 2013 ACM SIGSAC Conference
on Computer & Communications Security (CCS’13), Berlin, Germany. ACM, November 2013, pp.
1043–1054. [Online]. Available: http://doi.acm.org/10.1145/2508859.2516676

[74] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann, “Mobile-sandbox: Having
a deeper look into android applications,” in Proc. of the 28th Annual ACM Symposium on Applied
Computing (SAC’13), Coimbra, Portugal. ACM, March 2013, pp. 1808–1815. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480701

[75] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable detection of ”piggybacked” mobile
applications,” in Proc. of the 3rd ACM Conference on Data and Application Security and Privacy
(CODASPY’13), San Antonio, Texas, USA. ACM, February 2013, pp. 185–196. [Online]. Available:
http://doi.acm.org/10.1145/2435349.2435377

[76] J. Crussell, C. Gibler, and H. Chen, “Andarwin: Scalable detection of semantically similar
android applications,” in Computer Security (ESORICS’13),, J. Crampton, S. Jajodia, and K. Mayes,
Eds. Springer Berlin Heidelberg, 2013, vol. 8134, pp. 182–199. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-40203-6 11

[77] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A scalable system for detecting code
reuse among android applications,” in Proc. of the 9th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA’12), Heraklion, Crete, Greece. Springer-Verlag,
July 2013, pp. 62–81. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-37300-8 4

[78] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting cloned applications on android
markets,” in Proc. of the 17th European Symposium on Research in Computer Security (ESORICS’12),
Pisa, Italy, LNCS, S. Foresti, M. Yung, and F. Martinelli, Eds., vol. 7459. Springer Berlin Heidelberg,
September 2012, pp. 37–54. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-33167-1 3

[79] Androguard, “Blackhat : Reverse engineering with androguard,” Online; accessed at May 23, 2015,
https://code.google.com/androguard.

[80] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, “Vision: Automated security validation of mobile
apps at app markets,” in Proc. of the 2nd International Workshop on Mobile Cloud Computing
and Services (MCS’11), Bethesda, Maryland, USA. ACM, 2011, pp. 21–26. [Online]. Available:
http://doi.acm.org/10.1145/1999732.1999740

[81] JEB, “Jeb decompiler,” 2013. [Online]. Available: http://www.android-decompiler.com/(Online;
LastAccessed11thFebruary2013).

[82] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. van der Veen, and C. Platzer,
“Andrubis - 1,000,000 Apps Later: A View on Current Android Malware Behaviors,” in Proc. of the 3rd In-
ternational Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BAD-
GERS’14), Wroclaw, Poland, September 2014.

[83] F. Maggi, A. Valdi, and S. Zanero, “Andrototal: A flexible, scalable toolbox and service for testing
mobile malware detectors,” in Proc. of the 3rd ACM Workshop on Security and Privacy in Smartphones;
Mobile Devices (SPSM’13), Berlin, Germany. ACM, November 2013, pp. 49–54. [Online]. Available:
http://doi.acm.org/10.1145/2516760.2516768

30

http://doi.acm.org/10.1145/2435349.2435379
http://doi.acm.org/10.1145/2544173.2509549
http://doi.acm.org/10.1145/2508859.2516689
http://doi.acm.org/10.1145/2508859.2516676
http://doi.acm.org/10.1145/2480362.2480701
http://doi.acm.org/10.1145/2435349.2435377
http://dx.doi.org/10.1007/978-3-642-40203-6_11
http://dx.doi.org/10.1007/978-3-642-40203-6_11
http://dx.doi.org/10.1007/978-3-642-37300-8_4
http://dx.doi.org/10.1007/978-3-642-33167-1_3
http://doi.acm.org/10.1145/1999732.1999740
http://www.android-decompiler.com/ (Online; Last Accessed 11th February 2013).
http://www.android-decompiler.com/ (Online; Last Accessed 11th February 2013).
http://doi.acm.org/10.1145/2516760.2516768

Android Security Threats and Defenses Rashidi, Fung

[84] M. Zhao, T. Zhang, F. Ge, and Z. Yuan, “Robotdroid: A lightweight malware detection
framework on smartphones,” Journal of Networks, vol. 7, no. 4, 2012. [Online]. Available:
http://ojs.academypublisher.com/index.php/jnw/article/view/jnw0704715722

[85] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting android apps for component hijacking
vulnerabilities,” in Proc. of the 2012 ACM Conference on Computer and Communications Security
(CCS’12), Raleigh, North Carolina, USA. ACM, October 2012, pp. 229–240. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382223

[86] T. Debiaze, “Detecting malicious behavior for android applications by static analysis,” Online; accessed at
May 23, 2015, https://github.com/maaaaz/androwarn.

[87] J. Crussell, R. Stevens, and H. Chen, “Madfraud: Investigating ad fraud in android applications,”
in Proc. of the 12th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys’14), Bretton Woods, NH, USA. ACM, June 2014, pp. 123–134. [Online]. Available:
http://doi.acm.org/10.1145/2594368.2594391

[88] B. Liu, S. Nath, R. Govindan, and J. Liu, “DECAF: Detecting and characterizing ad fraud in mobile
apps,” in Proc. of the 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’14), Seattle, WA, USA. USENIX Association, April 2014, pp. 57–70. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616448.2616455

[89] P. P. Chan, L. C. Hui, and S. M. Yiu, “Droidchecker: Analyzing android applications for capability
leak,” in Proc. of the 5th ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WISEC’12), Tucson, Arizona, USA. ACM, April 2012, pp. 125–136. [Online]. Available:
http://doi.acm.org/10.1145/2185448.2185466

[90] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient and Comprehensive Mobile App
Classification Through Static and Dynamic Analysis,” in Proc. of the 39th Annual International Computers,
Software & Applications Conference (COMPSAC), 2015.

[91] S. Matsumoto and K. Sakurai, “A proposal for the privacy leakage verification tool for android application
developers,” in Proc. of the 7th International Conference on Ubiquitous Information Management and
Communication (ICUIMC’13), Kota Kinabalu, Malaysia. ACM, January 2013, pp. 54:1–54:8. [Online].
Available: http://doi.acm.org/10.1145/2448556.2448610

[92] Y. Agarwal and M. Hall, “Protectmyprivacy: Detecting and mitigating privacy leaks on ios devices using
crowdsourcing,” in Proc. of the 11th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys’13), Taipei, Taiwan. ACM, June 2013, pp. 97–110. [Online]. Available:
http://doi.acm.org/10.1145/2462456.2464460

[93] B. Rashidi, C. Fung, and T. Vu, “Dude, ask the experts!: Android resource access permission recommen-
dation with recdroid,” in Proc. of the 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM’15), Ottawa, Canada, May 2015, pp. 296–304.

[94] B. Rashidi, C. Fung, G. Bond, S. Jackson, M. Pare, and T. Vu, “Demo: Recdroid: An android resource
access permission recommendation system,” in Proc. of the 16th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc’15), Hangzhou, China. ACM, June 2015, pp. 403–404.
[Online]. Available: http://doi.acm.org/10.1145/2746285.2764930

[95] B. Rashidi and C. Fung, “A game-theoretic model for defending against malicious users in recdroid,” in the
2015 IFIP/IEEE International Symposium on Integrated Network Management (IM’15), Ottawa, Canada,
May 2015, pp. 1339–1344.

[96] ——, “Disincentivizing malicious users in recdroid using bayesian game model,” Journal of Internet Ser-
vices and Information Security (JISIS), vol. 5, no. 2, pp. 33–46, May 2015.

[97] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid:
An information-flow tracking system for realtime privacy monitoring on smartphones,” in Proc.
of the 9th USENIX Conference on Operating Systems Design and Implementation (OSDI’10),
Vancouver, BC, Canada. USENIX Association, October 2010, pp. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924971

[98] WikiPedia, “Reference monitor,” Online; accessed at July 8, 2015, https://en.wikipedia.org/wiki/Reference
monitor.

31

http://ojs.academypublisher.com/index.php/jnw/article/view/jnw0704715722
http://doi.acm.org/10.1145/2382196.2382223
http://doi.acm.org/10.1145/2594368.2594391
http://dl.acm.org/citation.cfm?id=2616448.2616455
http://doi.acm.org/10.1145/2185448.2185466
http://doi.acm.org/10.1145/2448556.2448610
http://doi.acm.org/10.1145/2462456.2464460
http://doi.acm.org/10.1145/2746285.2764930
http://dl.acm.org/citation.cfm?id=1924943.1924971

Android Security Threats and Defenses Rashidi, Fung

[99] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained mandatory access control on android
for diverse security and privacy policies,” in Proc. of the 22nd USENIX Security Symposium (USENIX
Security’13), Washington, D.C., USA. USENIX Association, October 2013, pp. 131–146. [Online].
Available: https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel

[100] P. Loscocco and S. Smalley, in Proc. of the 2001 USENIX Annual Technical Conference, FREENIX Track,
Boston, Massachusetts, USA. USENIX Association, June 2001.

[101] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically rich application-centric security in
android,” in Proc. of the 2009 Annual Computer Security Applications Conference (ACSAC’09), Austin, TX,
USA. IEEE, December 2009, pp. 340–349.

[102] S. Smalley and R. Craig, “Security enhanced (SE) android: Bringing flexible MAC to android,”
in Proc. of the 2014 Network and Distributed System Security Symposium (NDSS’14), San Diego,
CA, USA. The Internet Society, February 2013. [Online]. Available: http://internetsociety.org/doc/
security-enhanced-se-android-bringing-flexible-mac-android

[103] M. Ongtang, K. Butler, and P. McDaniel, “Porscha: Policy oriented secure content handling in android,”
in Proc. of the 26th Annual Computer Security Applications Conference (ACSAC’10), Austin, Texas, USA.
ACM, December 2010, pp. 221–230. [Online]. Available: http://doi.acm.org/10.1145/1920261.1920295

[104] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in Proc. of the 21st
Annual International Cryptology Conference (CRYPTO’01), Santa Barbara, California, USA, LNCS,
J. Kilian, Ed., vol. 2139. Springer Berlin Heidelberg, August 2001, pp. 213–229. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44647-8 13

[105] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire: Lightweight provenance for smart
phone operating systems.” in Proc. of the 20th USENIX Security Symposium, San Francisco, CA. USENIX
Association, August 2011.

[106] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi, “Xmandroid: A new android evolution
to mitigate privilege escalation attacks,” Technische Universität Darmstadt, Technical Report TR-2011-04,
Apr. 2011.

[107] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and B. Shastry, “Practical and lightweight
domain isolation on android,” in Proc. of the 1st ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices (SPSM’11), Chicago, Illinois, USA. ACM, October 2011, pp. 51–62. [Online].
Available: http://doi.acm.org/10.1145/2046614.2046624

[108] N. D. Corporation, “Tomoyo linux, a mandatory access control (mac) implementation for linux,” Online;
accessed at July 5, 2015, http://tomoyo.osdn.jp/about.html.en.

[109] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege separation for applications
and advertisers in android,” in Proc. of the 7th ACM Symposium on Information, Computer and
Communications Security (ASIACCS’12), Seoul, Korea. ACM, May 2012, pp. 71–72. [Online]. Available:
http://doi.acm.org/10.1145/2414456.2414498

[110] M. Sun and G. Tan, “Nativeguard: Protecting android applications from third-party native
libraries,” in Proc. of the 2014 ACM Conference on Security and Privacy in Wireless &
Mobile Networks (WiSec’14), Oxford, UK. ACM, July 2014, pp. 165–176. [Online]. Available:
http://doi.acm.org/10.1145/2627393.2627396

[111] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid android: Versatile
protection for smartphones,” in Proc. of the 26th Annual Computer Security Applications Conference
(ACSAC’10), Austin, Texas, USA. ACM, December 2010, pp. 347–356. [Online]. Available:
http://doi.acm.org/10.1145/1920261.1920313

[112] L. Gibelli, “Clamav, an open source (gpl) anti-virus engine,” Online; accessed at July 5, 2015,
http://www.clamav.net/index.html.

[113] O. Tripp and J. Rubin, “A bayesian approach to privacy enforcement in smartphones,” in Proc. of the
23rd USENIX Conference on Security Symposium (SEC’14), San Diego, CA, USA. USENIX Association,
August 2014, pp. 175–190. [Online]. Available: http://dl.acm.org/citation.cfm?id=2671225.2671237

[114] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-stealing smartphone applications (on
android),” in Proc. of the 4th International Conference on Trust and Trustworthy Computing (TRUST’11),

32

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
http://internetsociety.org/doc/security-enhanced-se-android-bringing-flexible-mac-android
http://internetsociety.org/doc/security-enhanced-se-android-bringing-flexible-mac-android
http://doi.acm.org/10.1145/1920261.1920295
http://dx.doi.org/10.1007/3-540-44647-8_13
http://doi.acm.org/10.1145/2046614.2046624
http://doi.acm.org/10.1145/2414456.2414498
http://doi.acm.org/10.1145/2627393.2627396
http://doi.acm.org/10.1145/1920261.1920313
http://dl.acm.org/citation.cfm?id=2671225.2671237

Android Security Threats and Defenses Rashidi, Fung

Pittsburgh, PA, USA, LNCS, vol. 6740. Springer Berlin Heidelberg, June 2011, pp. 93–107.
[115] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These aren’t the droids you’re looking for:

Retrofitting android to protect data from imperious applications,” in Proc. of the 18th ACM Conference on
Computer and Communications Security (CCS’11), Chicago, Illinois, USA. ACM, October 2011, pp.
639–652. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046780

[116] K. Fawaz and K. G. Shin, “Location privacy protection for smartphone users,” in Proc. of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (CCS’14), Scottsdale, Arizona, USA.
ACM, November 2014, pp. 239–250. [Online]. Available: http://doi.acm.org/10.1145/2660267.2660270

[117] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “”andromaly”: A behavioral malware
detection framework for android devices,” Journal of Intelligent Information Systems, vol. 38, no. 1, pp.
161–190, Feb. 2012. [Online]. Available: http://dx.doi.org/10.1007/s10844-010-0148-x

[118] C. Wu, Y. Zhou, K. Patel, Z. Liang, and X. Jiang, “Airbag: Boosting smartphone resistance
to malware infection,” in Proc. of the 2014 Network and Distributed System Security Symposium
(NDSS’14), San Diego, CA, USA. The Internet Society, February 2014. [Online]. Available:
http://www.internetsociety.org/doc/airbag-boosting-smartphone-resistance-malware-infection

[119] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: Separating smartphone advertising from applications,”
in Proc. of the 21st USENIX Security Symposium (USENIX Security’12), Bellevue, WA, USA.
USENIX Association, August 2012, pp. 553–567. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/shekhar

[120] X. Zhang, A. Ahlawat, and W. Du, “Aframe: Isolating advertisements from mobile applications
in android,” in Proc. of the 29th Annual Computer Security Applications Conference (ACSAC’13),
New Orleans, Louisiana, USA. ACM, December 2013, pp. 9–18. [Online]. Available: http:
//doi.acm.org/10.1145/2523649.2523652

[121] F. Roesner and T. Kohno, “Securing embedded user interfaces: Android and beyond,” in Proc. of the 22nd
USENIX Security Symposium (USENIX Security’13), Washington, D.C., USA. USENIX Association,
August 2013, pp. 97–112. [Online]. Available: https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/roesner

[122] M. Conti, V. Nguyen, and B. Crispo, “Crepe: Context-related policy enforcement for android,” in Proc. of
the 13th International Conference (ISC’11), Boca Raton, Florida, USA, LNCS, M. Burmester, G. Tsudik,
S. Magliveras, and I. Ilić, Eds., vol. 6531. Springer Berlin Heidelberg, October 2011, pp. 331–345.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-18178-8 29

[123] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending android permission model and enforcement with
user-defined runtime constraints,” in Proc. of the 5th ACM Symposium on Information, Computer and
Communications Security (ASIACCS’10), Beijing, China. ACM, April 2010, pp. 328–332. [Online].
Available: http://doi.acm.org/10.1145/1755688.1755732

[124] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi, “Asm: A programmable interface for
extending android security,” in Proc. of the 23rd USENIX Security Symposium (USENIX Security’14),
San Diego, CA, USA. USENIX Association, August 2014, pp. 1005–1019. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/heuser

[125] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical policy enforcement for android
applications,” in Proc. of the 21st USENIX Conference on Security Symposium (Security’12),
Bellevue, WA, USA. USENIX Association, August 2012, pp. 27–27. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2362793.2362820

[126] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, and T. Millstein, “Dr. android
and mr. hide: Fine-grained permissions in android applications,” in Proc. of the Second ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices (SPSM’12), Raleigh, North Carolina, USA.
ACM, October 2012, pp. 3–14. [Online]. Available: http://doi.acm.org/10.1145/2381934.2381938

[127] A. P. Felt, S. Hanna, E. Chin, H. J. Wang, and E. Moshchuk, “Permission re-delegation: Attacks and
defenses,” in Proc. of the 20th Usenix Security Symposium (Usenix Security’11), San Francisco, CA, USA.
USENIX Association, August 2011.

[128] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith, “Why eve and mallory love

33

http://doi.acm.org/10.1145/2046707.2046780
http://doi.acm.org/10.1145/2660267.2660270
http://dx.doi.org/10.1007/s10844-010-0148-x
http://www.internetsociety.org/doc/airbag-boosting-smartphone-resistance-malware-infection
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/shekhar
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/shekhar
http://doi.acm.org/10.1145/2523649.2523652
http://doi.acm.org/10.1145/2523649.2523652
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/roesner
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/roesner
http://dx.doi.org/10.1007/978-3-642-18178-8_29
http://doi.acm.org/10.1145/1755688.1755732
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/heuser
http://dl.acm.org/citation.cfm?id=2362793.2362820
http://dl.acm.org/citation.cfm?id=2362793.2362820
http://doi.acm.org/10.1145/2381934.2381938

Android Security Threats and Defenses Rashidi, Fung

android: An analysis of android ssl (in)security,” in Proc. of the 2012 ACM Conference on Computer and
Communications Security (CCS’12), Raleigh, North Carolina, USA. ACM, October 2012, pp. 50–61.
[Online]. Available: http://doi.acm.org/10.1145/2382196.2382205

[129] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter, “L4android: A generic operating
system framework for secure smartphones,” in Proc. of the 1st ACM workshop on Security and privacy
in smartphones and mobile devices (SPSM’11), Chicago, IL, USA. ACM, October 2011, pp. 39–50.
[Online]. Available: http://doi.acm.org/10.1145/2046614.2046623

[130] M. Zhang and H. Yin, “AppSealer: Automatic generation of vulnerability-specific patches for preventing
component hijacking attacks in Android applications,” in Proc. of the 2014 Network and Distributed System
Security Symposium (NDSS’14), San Diego, CA, USA. The Internet Society, February 2014.

[131] K. Kennedy, E. Gustafson, and H. Chen, “Quantifying the effects of removing permissions from android
applications.”

[132] R. Wang, L. Xing, X. Wang, and S. Chen, “Unauthorized origin crossing on mobile platforms: Threats
and mitigation,” in Proc. of the 2013 ACM SIGSAC Conference on Computer & Communications
Security (CCS’13), Berlin, Germany. ACM, November 2013, pp. 635–646. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516727

[133] C. Mulliner, J. Oberheide, W. Robertson, and E. Kirda, “Patchdroid: Scalable third-party security
patches for android devices,” in Proc. of the 29th Annual Computer Security Applications Conference
(ACSAC’13), New Orleans, Louisiana, USA. ACM, December 2013, pp. 259–268. [Online]. Available:
http://doi.acm.org/10.1145/2523649.2523679

[134] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical study of cryptographic
misuse in android applications,” in Proc. of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (CCS’13), Berlin, Germany. ACM, November 2013, pp. 73–84. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516693

[135] L. Li, A. Bartel, T. BissyandÃ c©, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and
P. McDaniel, “IccTA: Detecting Inter-Component Privacy Leaks in Android Apps,” in Proc. of the 37th
ACM/IEEE International Conference on Software Engineering (ICSE’15), Firenze, Italy, vol. 1. IEEE,
May 2015, pp. 280–291.

[136] A. Desnos and P. Lantz, “Droidbox: An android application sandbox for dynamic analysis,”
Online; accessed at July 2, 2015, https://code.google.com/p/droidbox/. [Online]. Available: https:
//code.google.com/p/droidbox/

[137] Drozer, “Drozer - a comprehensive security and attack framework for android,” Online; accessed
at June 20, 2015, https://www.mwrinfosecurity.com/products/drozer/. [Online]. Available: https:
//www.mwrinfosecurity.com/products/drozer/(Online;LastAccessed11thFebruary2013)

[138] K. Tam, K. Salahuddin, A. Fattori, and L. Cavallaro, “Copperdroid: Automatic reconstruction of android
malware behaviors,” in Proc. of the 2015 Network and Distributed System Security Symposium (NDSS’15),
San Diego, CA, USA. The Internet Society, February 2015.

[139] W. Luo, S. Xu, and X. Jiang, “Real-time detection and prevention of android sms permission
abuses,” in Proc. of the 1st International Workshop on Security in Embedded Systems and
Smartphones (SESP’13), Hangzhou, China. ACM, September 2013, pp. 11–18. [Online]. Available:
http://doi.acm.org/10.1145/2484417.2484422

[140] S. Sakamoto, K. Okuda, R. Nakatsuka, and T. Yamauchi, “Droidtrack: Tracking and visualizing information
diffusion for preventing information leakage on android,” Journal of Internet Services and Information
Security (JISIS), vol. 4, no. 2, pp. 55–69, May 2014.

[141] Q. Ismail, T. Ahmed, A. Kapadia, and M. K. Reiter, “Crowdsourced exploration of security
configurations,” in Proc. of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI’15), Seoul, Republic of Korea. ACM, April 2015, pp. 467–476. [Online]. Available:
http://doi.acm.org/10.1145/2702123.2702370

——————————————————————————

34

http://doi.acm.org/10.1145/2382196.2382205
http://doi.acm.org/10.1145/2046614.2046623
http://doi.acm.org/10.1145/2508859.2516727
http://doi.acm.org/10.1145/2523649.2523679
http://doi.acm.org/10.1145/2508859.2516693
https://code.google.com/p/droidbox/
https://code.google.com/p/droidbox/
https://www.mwrinfosecurity.com/products/drozer/ (Online; Last Accessed 11th February 2013)
https://www.mwrinfosecurity.com/products/drozer/ (Online; Last Accessed 11th February 2013)
http://doi.acm.org/10.1145/2484417.2484422
http://doi.acm.org/10.1145/2702123.2702370

Android Security Threats and Defenses Rashidi, Fung

Author Biography

Bahman Rashidi is a PhD student in Computer Science at the Virginia Common-
wealth University, USA. He received his BSc and MSc in computer engineering from
University of Isfahan and Iran University of Science and Technology, Tehran, Iran, in
2011 and 2014 respectively. He is mainly interested in the Distributed Systems, Cloud
Computing, Mobile Computing, Mobile Devices, and Privacy. Currently, he is doing
research on a Malware detection framework for smartphones. He is the recipient of
Distinguished Masters Student of the year in research award for two consecutive years

in 2012 and 2013 from Iran University of Science and Technology and Outstanding Early-career Student
Researcher, Virginia Commonwealth University, April 2015.

Carol Fung received her Bachelor degree and Master degree in computer science
from the university of Manitoba (Canada), and her PhD degree in computer science
from the university of Waterloo (Canada).Her research interests include collaborative
intrusion detection networks, social networks, security issues in mobile networks and
medical systems, Security issues in next generation networking, and machine learn-
ing in intrusion detection. She is the recipient of the young professional award in
IEEE/IFIP IM 2015, Alumni Gold Medal of university of Waterloo in 2013, best dis-

sertation awards in IM2013, the best student paper award in CNSM2011 and the best paper award in
IM2009. She received numerous prestige awards and scholarships including Google Anita Borg schol-
arship, NSERC Postdoc fellowship, David Cheriton Scholarship, NSERC Postgraduate Scholarship, and
President’s graduate scholarship. She has been a visiting scholar at POSTECH (South Korea), a software
engineer intern at Google, and a research intern at BlackBerry.

35

	Introduction
	Android OS and Applications Architecture
	Framework Architecture
	Applications
	Android Runtime:
	Libraries:
	Kernel:

	Application Structure
	Android .apk package
	App Components

	Android Security Mechanisms
	Android Permission Framework
	Application Sandboxing
	Inter-Component Communication (ICC)

	Android Security Issues and Threats
	Information leakage
	Privilege escalation
	Repackaging Apps
	Denial of Service (DoS) attack
	Colluding

	Proposed Solutions
	Existing techniques and mechanisms
	Static Analysis
	Dynamic Analysis
	Crowdsourcing
	Policy-based
	Recommendation-based

	Taxonomy of existing solution
	Prevention-based
	Kirin
	AppInk

	Analysis-based solutions
	RiskMon
	RiskRanker
	DroidScope
	DroidRanger
	DroidMOSS
	WHYPER
	PScout
	AndroSimilar
	ComDroid

	Runtime Monitoring
	RecDroid
	FireDroid
	MockDroid
	Crowdroid
	TaintDroid
	AppGuard
	FlaskDroid
	Porscha
	QUIRE
	XManDroid
	TrustDroid
	AdDroid
	NativeGuard
	Paranoid Android

	Comparison and Discussion
	Conclusion

