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Abstract

The fifth generation of telecommunication networks comes with various use cases such as Enhanced
Mobile Broadband, Ultra-Reliable and Low Latency Communications and Massive Machine Type
Communications. These different types of communications have diverse requirements that need to
be satisfied while they utilize the same physical infrastructure. By leveraging Software Defined Net-
work (SDN) and Virtual Network Function (VNF) technologies, the 5G network slicing concept
can provide end-to-end logical networks on the same physical infrastructure that satisfy the required
Quality of Service (QoS) constraints for these communication types. Optimal placement of VNFs on
these network slices is still an open problem. Although state-of-the-art research covers the resource
allocation of these VNFs, they do not consider optimizing energy consumption under strict security
requirements while embedding them into the network. In this paper, we propose a VNF placement
strategy using an integer linear programming (ILP) model for 5G network slicing under strict security
requirements, which optimizes energy consumption by the core network nodes. Simulation results
demonstrate that the proposed model achieves significant power savings over a greedy approach per-
forming VNF placement under the same QoS and security constraints.
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1 Introduction

The Internet of Things (IoT), enabling the connectivity of physical and virtual objects to create smart
environments, has witnessed exponential growth in the past decade with the advances in networking in-
frastructures and smart devices. Among major applications of IoT are smart homes integrating various
sensors for security, elderly care and smart energy consumption, wearables for personal health moni-
toring, smart manufacturing expected to be prevalent in the logistic chain and production line, smart
energy grids, smart cities utilizing data from various sensors for long term development planning, con-
nected vehicles, smart farming improving the agri-food supply chain, earth/ocean observation systems
addressing environmental issues, and surveillance/safety warning systems for emergency response. The
wide adoption of IoT is expected to provide immense economic benefits in the whole world through the
creation of a sustainable ecosystem, as it enables crossing over borders between different industrial sec-
tors, creating more efficient processes, reduced consumption, and increased sharing of resources, despite
bringing along an enlarged attack surface [1].
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As a major difference from existing mobile networks, 5G networks that will support various IoT use
cases and mobile cloud computing [2] will significantly rely on network virtualization technologies
including software-defined networking (SDN) and network functions virtualization (NFV) for effective
dynamic resource allocation and end-to-end (E2E) operation. Accordingly, network slicing has arisen
as a concept to provide the required flexibility for the operators in managing their resources effectively
to provide the desired quality of service (QoS) guarantees to their customers. Through creating multiple
virtual networks called slices on top of shared physical infrastructure, network slicing will enable the
creation of isolated networks, allowing the operators to dynamically provision only resources necessary
to support the requirements of specific IoT applications, providing effective utilization of the physical
infrastructure, hence cost savings. Network slicing is expected to enable enhanced security management
through isolating traffic for different applications, preventing attacks such as denial of service (DoS) on
a particular slice from affecting the traffic on other slices.

While network slicing is seen as a compulsory technology for the successful operation of next-
generation mobile networks, its effective implementation faces many challenges to be solved before
widespread adoption by telecommunication operators can take place:

• Security is a critical problem [3], [4] due to sharing of physical resources between slices, each of
which may have different security requirements [5]. The security requirements of one slice could
affect the overall performance of other network slices.

• Given the concerns regarding the huge energy consumption expectations for 5G networks, one of
the key performance indicators will be energy efficiency [6] as in other wireless networks [7].
Jointly optimizing energy consumption and QoS parameters like delay, bandwidth and throughput
while meeting strict security requirements is a challenge, as these are conflicting in most cases.

• Dynamically embedding slices onto a network topology is challenging; operators need to consider
changing requirements of the network slices themselves, e.g., traffic volume and QoS requirement
may change [8].

To address the above challenges, this paper proposes a novel energy-efficient and secure network slice
embedding model for 5G core networks with Integer Linear Programming (ILP) based optimization.

The major contributions of this paper to the literature on secure network slicing are as follows:

• We propose an optimization model for the virtual network embedding problem in 5G core network
slicing that achieves significant power savings in overall core network power consumption under
strict security requirements for virtual network function placement.

• We provide a network topology generator that can be used to test optimization models on a variety
of topologies with different requirements.

The remainder of this paper is organized as follows: Section 2 provides an overview of related work
in energy-efficient and secure network slicing. Section 3 introduces the concept of network slicing and
its enablers, including NFV and SDN. Section 4 describes our proposed approach for energy-efficient,
secure core network slicing. Section 5 provides an evaluation of the proposed approach with realistic
simulation experiments. Section 6 concludes the paper with future work directions.

2 Related Work

Network slicing is a new technology that has been proposed to support effective management of
5G networks and beyond, for which many research and development efforts are still in progress, with

58



GreenSlice Akin et al.

no mature standards in place. 5G is expected to provide increased performance as compared to the
previous generation of mobile networking technologies. As the utilized bandwidth gets wider, connected
devices get larger in number, and data rates become faster, the energy needed for these operations will
also increase. Therefore, it is an important research problem to optimize the energy consumption of 5G
networks while providing the required services with the required QoS. Below we provide an overview of
existing approaches that address the aspects of network slicing that we focus on in this work.

In [9] a security-aware slice instance allocation model for 5G core networks was proposed. Security
limitations such as some of the VNFs having to be hosted on the same server and some of the VNFs not
being able to coexist on the same server were given to the ILP solver as constraints. Their work showed
that there is a trade-off between slice security and embedding performance metrics such as execution
time and average revenue cost ratio for accepted requests. Although they considered security aspects of
resource allocation, they did not look at energy efficiency. [10] handles virtual network security functions
(VNSFs) placement as an ILP problem while considering security and QoS requirements of the network
slices. For this purpose, they give total maximum end-to-end latency as a QoS constraint and VNSF
execution order, VNSF network position, and operational mode as security constraints. However, energy
efficiency optimization was not considered in the model. Guan et al. [11] also implemented an algorithm
that places VNSFs onto a network topology using routing characteristics instead of ILP, and tested their
security performance in a simulation that mimics computer virus and worm attacks on the network.

There has been research being conducted on energy efficiency in 5G networks in every layer of the 5G
architecture, from base stations to radio access network (RAN) and to core 5G networks. In this research,
our focus is on achieving an energy-efficient secure network slicing scheme on the core network. Energy
efficiency in networking is usually considered as a fractional programming problem since providing more
service with as little energy as possible is, by its very nature, a trade-off problem. Therefore, researchers
have approached the energy efficiency issue as a ”fraction” to be maximized, where the numerator and
denominator are two sides of a trade-off. Nguyen proposed in [12] a hybrid resource allocation scheme
that considers spectrum allocation, interference alignment, and energy efficiency simultaneously since
all three of them are important for providing good performance in the network. In [13], Matthiesen et
al. developed a QoS framework for a sliced radio network (RAN), where two network parameters were
considered: throughput and energy efficiency. They built Pareto boundaries of two different algorithms,
which are based on utility profile and scalarization, respectively. In [14], the researchers focused on the
energy efficiency vs. delay trade-off problem in wireless network virtualization. They modeled the issue
as a stochastic optimization problem with predefined delay constraints, where users are queued on virtual
base stations.

Mathematical optimization is not the only approach used in optimizing energy consumption in net-
working. With the advancements in hardware technology and data science in recent years, reinforcement
learning-based models have proven successful in network resource allocation and optimization. [15]
proposed an algorithm that considers both energy efficiency and spectral efficiency of the network while
using Dueling Deep Q-Network and shows successful results compared to Q-learning and DQN. In [16],
base stations’ sleep modes were optimized with the help of Q-Learning, a variant of reinforcement learn-
ing. The aim was to find the optimal operating duration of base stations with respect to the delay and
energy consumption requirements and activate and deactivate them accordingly. Laroi et al. [17] devel-
oped a VNF slice placement algorithm for core networks using Deep Reinforcement Learning (DRL)
algorithms as well as an ILP algorithm and compared their performances. Results showed that the DRL
model consumes less energy and time than ILP and reinforcement learning algorithms. However, they
did not consider the security aspects of VNF placement. Particularly in network slicing, there have been
many works optimizing the resource allocation between network slices [18], [19], [20], though not par-
ticularly on optimizing the energy consumption in network slices. Fendt et al. [8] proposed a model that
handles slice instance mapping onto a given network topology using ILP. They focused on network slice
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instance and link embedding, and resource allocation to these slices. In their work, link capacity, latency,
and graph constraints were given as constraints to the ILP model.

Although there exist approaches focusing on optimal network slicing/virtual network embedding,
none of them consider both energy efficiency and security constraints of the network. As we show later
in the paper, one should consider security while optimizing network slicing since security comes with a
cost. Our approach handles the VNF allocation problem more comprehensively than other approaches
in the state-of-the-art. It provides a solution for the secure slice embedding problem while minimizing
energy consumption.

3 Preliminaries

Based on the definition by the 3GPP foundation, a network slice is a logical end-to-end network that
can be created on demand on a physical network infrastructure, where users can access multiple slices
over the same radio interface [21]. These slices contain network slice instances that consist of several
network functions. Network functions have a detailed functional behavior and well-defined 3GPP in-
terfaces [21]. These logical networks will provide various use cases like enhanced mobile broadband,
ultra reliable low latency communications and massive machine type communications. Figure 1 shows
the network slicing concept with several use cases of the slices and network slice instances.

SDN and NFV are the key technologies for network slicing [22]. NFV is the virtualization of net-
work functions on the shared hardware, such as firewalls, VPNs and 5G Evolved Packet Core functions.
ETSI has published a standard [23] for NFV, which is widely accepted in both academia and industry.
Figure 2 demonstrates the three layers of network slices. In the lower layer, which is called VNFI,
there is the physical infrastructure of the network. This layer consist of storage, computing and network
hardware, hypervisors and virtual machines that run on the physical infrastructure. The middle layer is
virtualized network functions (VNFs)[21]. The uppermost layer is called Operational Support Systems
and Business Support System (OSS/BSS). The OSS/BSS layer consists of management functions for
network operators such as inventory, service provisioning, network configuration and fault management.
These layers are managed by the Management and Orchestration (MANO) component of the network.

Software defined networks (SDN) decouple the data plane from the control plane, as opposed to
legacy networks, which have a strong coupling between these two layers. While the control plane makes
decisions regarding the routing of packets over the network, the data plane is only responsible for for-
warding packets based on the flow rules decided by the control plane. One of the essential benefits of
using SDN is that it significantly decreases the capital expenses of the operator. Since the control plane
is separated and usually runs in the cloud, operators can use less expensive switches in the transport
layer. SDN also provides advantages for the security management of the network. As the controller can
monitor the whole traffic in the network, it can more easily detect anomalies and hence maintain the
security of the network. In addition to that, due to the centralized control in SDN, any security policy
configuration could be deployed more efficiently compared to legacy decentralized networks [22].

4 Proposed Network Slicing Approach

This section introduces the proposed ILP model for secure VNF placement in core network slicing,
which aims to minimize power consumption while meeting the given memory, throughput and latency
requirements. Our model is an extension of the model proposed by Fendt et al. [8]. The primary
purpose of the VNF placement problem is mapping VNFs into servers in the network in the most effective
manner. One of the main challenges in this virtual network embedding problem is solving this embedding
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Figure 1: Network Slicing Architecture

problem in a security-aware way. The presented mathematical model can be used with an Integer-Linear
Programming Solver, such as Gurobi1 which is used in this paper.

4.1 Definitions

In this section, important parameters and definitions are covered, before delving into the details of
the ILP model.

An undirected graph G is an ordered pair (V,E), in which V stands for the set of v nodes in the graph,
and E stands for the edges in the graph. Each ei j represents an edge between two nodes vi and v j that are

1Gurobi - The Fastest ILP Solver https://www.gurobi.com/
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Figure 2: ETSI NFV architecture

connected with each other.

V = {v1,v2, ...,vk} (1)

E = {e12,e23, ...,ei j} , where vi,v j ∈V (2)

Pi j = {eir, ...,et j}, where vi,vr,vt ,v j ∈V (3)

P, an ordered set of nodes, describes a path in the graph G. Note that P is a subset of V . Pi j defines a
path between nodes vi and v j.

An illustration of an example network graph can be found in Figure 3, and Figure 4 shows an ex-
ample placement of a VNF in the network. The colored lines between user equipment nodes and VNF
shows the paths used for connections between them. The paths are organized using the constraints and
requirements, and this is why the paths used are not the shortest paths. For example, although there is
a shorter path U-2, S-8, VNF in Figure 4 between node U-2 and VNF, our algorithm picked the path
U-2, S-8, S-1, VNF to meet the constraints and requirements.
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Figure 3: Example network that consists of server
and user equipment nodes

Figure 4: Example VNF placement that consists
of paths between VNF and user equipment nodes

4.2 Model Parameters

In the proposed model, it is assumed that a physical network contains a number of server nodes and
user equipment nodes. The main target of this solution is embedding VNFs into the server nodes in a way
that optimizes the total power consumption under the given security requirements and QoS constraints.

The set ∆ defines the list of VNFs which will be used in the network slices.

∆ = {δ0,δ1, ...,δm} (4) Lk = {l0, l1, ..., li} (5) Nk = (V,E,∆,L) (6)

Let’s call a VNF δ , and let ∆ be a set of VNFs. We can define the kth network slice, namely
Nk = (V,E,∆,L), where V stands for nodes, E for physical links, and ∆ for virtual network functions,
and L for virtual links that connect user equipment nodes with server nodes. A virtual link l ∈ L is a set
of edges (e) that connects a user equipment node to a VNF running in a server node in the graph.

Fk = {δr, ...,δm} (7) LSk = {δr, ...,δm} (8)

The equations 7, 8 are used for providing security constraints, which will be covered in the following
section.

The parameters of the model are given below:

• Nk: kth network slice.

• sw: wth server node.

• uv: vth user equipment node.

• e j: jth physical link.

• Fo: Forbidden set of VNF o.

63



GreenSlice Akin et al.

• LSm: Locate-Same set of VNF m.

The parameters below are the limits which will be used during the optimization process.

• Ms
w: maximum memory of the server node sw.

• Rs
w: maximum number of requests of the server node sw.

• Ps
w: power consumption of a virtual network function running in the server node sw.

• T e
j : maximum throughput of the physical link e j.

• Le
j: maximum latency of the physical link e j.

• δk,m: mth VNF which runs in the kth slice.

• lk,i: ith virtual link in kth slice, which connects a user equipment node and a VNF. This value is
computed using the the sets sw, uv, and δk,m.

• Pδ
k,m: the additional power consumption of the VNF δm in the kth network slice, in addition to Ps

w.

• Mδ
k,m: the memory usage of the VNF m in the kth network slice.

• Rδ
k,m: the average requests usage of the VNF m in the kth network slice.

• T l
k,i: the instantaneous throughput of the ith virtual link in kth slice, lk,i.

• Ll
k,i: the maximum latency of the ith virtual link in the kth slice, lk,i.

These are the static parameters that are a part of the graph and constraints and cannot be changed
after the infrastructure has been set. In addition, there are some related dynamic parameters that changes
in the embedding process.

The variable Φr, j defines a physical link e j used for constructing Pr

Φr, j =

{
1 if Pr uses e j

0 otherwise
(9)

The integer variable in the equation 9 is not a part of the proposed ILP model. It has no effect on the
proposed solution. On the other hand, this variable is changed after the optimized solution is found by
the model. It defines whether path P uses physical edge e j. By using this variable, the visualized version
of the network topology is created, which will be demonstrated below.

4.3 Decision Variables

In the proposed ILP model, there exist binary and linear decision variables whose values change
during the optimization process, which are the key points of ILP. By changing the values of decision
variables, the ILP model tries to find the optimized solution from among the feasible solutions.

Here are some variables that have been adapted from [8] to our model:

µk,m,w =

{
1 if δk,m is mapped on sw

0 otherwise
(10)
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ρk,i,r =

{
1 if Pr is used in lk,i
0 otherwise

(11)

The integer variable in Equation 10 decides whether a virtual network function δ is mapped on a
server node sw. In addition, the variable in Equation 11 does the same operations on virtual links over a
physical path.

4.4 Objective Function

As mentioned earlier, the purpose behind the objective function is minimizing the power consumption
while mapping VNFs and server nodes by providing the requirements and limitations. In Equation 12,
there exists a static power consumption of every VNF if it is mapped to a server node, which increases
the overall power consumption of the network.

min∑
k

∑
m

∑
w
[(Ps

w +Pδ
k,m) ·µk,m,w] (12)

4.5 Optimization Constraints

4.5.1 Graph constraints

∑
w

µk,m,w = 1 ∀k,m (13)

∑
Pr

ρk,i,r = µk,m,w ∀k, i where lk,i is a link from sw to δm (14)

The constraint in Equation 13 maps every virtual network function to a server node in the network
slices so that every virtual network function is mapped to that slice at least once.

The constraint in Equation 14 ensures that the virtual links that connect virtual network functions in
slices and user equipment nodes are synchronized with the paths.

4.5.2 Capacity constraints

∑
k

∑
i
[(∑

r
ρk,i,r ·Φr, j) ·T l

k,i]≤ T e
j ,∀ j (15)

∑
k

∑
m
(µk,m,w ·Mδ

k,m)≤Ms
w,∀w (16)

∑
k

∑
m
(µk,m,w ·Rδ

k,m)≤ Rs
w,∀w (17)

The constraints above guarantee that if a VNF is mapped on a server node, that server node must meet
the QoS needs of the VNF. In addition, these requirements cannot exceed the limitations of server nodes.
Every server node has predefined throughput, power usage, and memory usage limits. These are given
as static data. Every VNF has a throughput requirement that needs to be provided by server nodes. The
constraint in Equation 15 ensures that the throughput on every virtual link does not exceed its maximum
value. In addition to that, for every VNF, there exist memory requirements that should be maintained by
the mapped server node. This gives the constraint in Equation 16, which ensures the maximum memory
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usage does not exceed its maximum possible value. Similarly, Equation 17 ensures for each server node,
the maximum required number of requests does not exceed the total number of requests in the server
node.

4.5.3 Latency constraints

∑
j
[∑

r
(ρk,i,r ·Φr, j) ·Ll

j]≤ Le
k,i ,∀k, i (18)

One of the critical points in network slicing is that while mapping the server nodes and network
functions, the latency requirements must be met. The constraint in Equation 18 ensures that the latency
in every virtual link is in the required range.

4.5.4 Security Constraints

µk,m,w ·µk,o,w = 0 , ∀o ∈ Fm (19)

µk,m,w = µk,o,w , ∀o ∈ LSm (20)

Inspired by [9], to meet security requirements, two different static sets are defined, including Forbid-
den and Locate-Same. If VNF m contains VNF o in its forbidden set, then these VNFs will not be placed
on the same server node. If VNFs create a security vulnerability for each other or for a server node, then
the Forbidden sets (Equation 19) of those VNFs will contain other VNFs that create a vulnerability. The
Locate-Same set works entirely in the opposite way. VNFs may need other network functions to have a
secure environment. For example, VNFs may require a firewall in the same server node to have a safe
environment. Then, in the Locate-Same sets (Equation 20), these VNFs will contain the network func-
tions that are required for them. These are static sets that never change while the proposed solution is
running. These sets will change the placements of VNFs so that they will meet the security requirements
given with these Forbidden and Locate-Same sets.

4.6 ILP Model

The proposed model uses the constraints given in the previous section and creates the network topol-
ogy by optimizing the objective function. While doing this, graph, capacity, latency, and security con-
straints are maintained by the optimizer. The network topology generated using the ILP model is a
system that meets all the requirements and constraints and also a system that has minimum power con-
sumption in given parameters. In addition to that, the wanted VNF types, the memory, power, or latency
constraints can be defined for each server node, physical link, or slice separately.

5 Experimental Evaluation

To evaluate the ILP algorithm we introduced in the previous section, we have developed a simulation
framework using the Gurobi integer linear programming simulation library. We have used Python for
implementing the algorithm and the simulation environment. We have run the benchmarks on a MacBook
Pro 16, 2.6 GHz 6-Core Intel Core i7 with 32 GB RAM. We have also developed a dataset generator to
run the simulations on our own generated comprehensive, fully customizable datasets. Below we present
the details of the evaluation environment and the results.
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Table 1: Dataset generation parameters used for the simulations

Count of slices 2
Count of edge nodes 2
Min number of VNFs per slice 10
Max number of VNFs per slice 20
Min additional power usage per VNF 10
Max additional power usage per VNF 500
Min latency per physical link 5
Max latency per physical link 25
Min throughput per virtual link 100
Max throughput per virtual link 500
Min latency per virtual link 50
Max latency per virtual link 150

Min memory per VNF 16
Max memory per VNF 2048
Min request count per VNF 100
Max request count per VNF 1000
Min power usage per server node per VNF 1000
Max power usage per server node per VNF 50000
Min memory count per server node 2048
Max memory count per server node 10240
Min request count per server node 10000
Max request count per server node 100000
Min throughput per physical link 10000
Max throughput per physical link 20000

5.1 Evaluation Environment

In the experimental evaluation, we used various simulation settings with different parameters. The
parameters used in the simulation are listed in Table 1. Each configuration was used five times to gen-
erate 50 different datasets in total, and we took the average of the metric values we obtained from the
simulations.

As a baseline for comparison, we also implemented a greedy approach in Python that performs VNF
placement in the network topology. The greedy approach places VNFs in server nodes with the given
capacity, security, and graph constraints, without optimizing power consumption. Moreover, to measure
the cost of the power optimization during the ILP-based optimization process, we have also run our ILP
model on 10 of our datasets without an objective function, which basically does VNF placement under
the given constraints.

To verify the correctness of our ILP model and greedy approaches, we have also built a verifier that
checks each graph, security, and capacity constraint. The verification code confirms that both the ILP
and the greedy algorithms are compatible.

5.2 Evaluation Results

We have compared the evaluation results of the greedy and ILP algorithms, and the comparison of
these two algorithms both from the aspect of time and power can be seen in Figure-5 and Figure-6. The
line plot in Figure-5 shows the change of problem-solving time with respect to the server node count.
As it can be seen from Figure-5, the build time of the ILP algorithm is much more than the optimization
time. In addition, when the server node count increases, the build time of this model is also increased. On
the other hand, when the server node count increases, the time difference between ILP optimization and
the greedy algorithm decreases. The bar plot in Figure-6 shows the total power consumption difference
between the ILP and greedy algorithms vs. server node count. The greater the value, the better the ILP
algorithm is in outperforming the greedy algorithm.

As can be seen in the optimization time versus server count on the plot in Figure-5, both of the
algorithms seem to follow an exponential time complexity for finding the solutions. Also, there is a
constant level of difference between the data points of both algorithms, and we can say this difference is
because of the model building time of Gurobi, the ILP framework that we have used.
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Figure 5: Total problem solving time by server
node count plot, in logarithmic scale

Figure 6: Optimization result difference between
Greedy Implementation and ILP Implementation

by server node count plot

Figure 7: Total problem solving times (model
build time + model optimization time) for

non-power optimized and power-optimized ILP
implementation, by server node count plot, in

logarithmic scale

Figure 8: Optimization result difference between
non-power optimized and power-optimized ILP

implementation by server node count plot
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On the other hand, the optimization unit difference in Figure-6 shows that the difference in power
consumption between the two algorithms follows a generally increasing pattern as the server count in-
creases. These units are calculated by our objective function of the ILP model. These results show that
our proposed improvements provide a high value of savings in power consumption.

Furthermore, as can be seen in Figure-7, while there is no considerable amount of optimization time
difference between non-optimized and optimized ILP algorithms, Figure-8 shows a huge value of power
consumption difference between the two algorithms. Considering the greedy algorithm results from
Figure-6, we can say that unless there is an optimization target, using the greedy approach rather than
ILP could perform better. However, with the power optimization perspective, our ILP solution results in
a huge amount of power savings.

6 Conclusion

In this paper, an ILP-based model was proposed to solve the power optimization problem in end-to-
end network slice embedding under strict security requirements. Because of using binary variables in
the model and simple objective functions, our model is suitable for large problem instances. The data
generator we have built has enabled us to test the model with different network topologies of different
sizes and parameter values. Through simulation experiments, we have demonstrated that the proposed
model provides important power savings while meeting the strict QoS and security requirements.

As future work, some improvements to our model will be performed. Our current ILP model is
suitable for static network slicing environments. However, real-time telecommunication networks are
highly dynamic due to the constantly changing environment. For this purpose, dynamic slice creation
or deletion will be considered in the optimization model. Deep reinforcement learning algorithms have
proven to work successfully in dynamic environments for various problems. Hence, these algorithms
will also be evaluated to add dynamicity to our modeling.
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