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Abstract

Smartphones contain access to user-sensitive information such as contacts, e-mails, e-payments
among others. Therefore, it is imperative that proper smartphone authentication tools guarantee
that only the smartphone proprietary has full control of its mobile features and data. Following this,
this paper proposes an overview of smartphone authentication, with the purpose to delve into two
biometric viable solutions: Habitude Pattern Lock and ECG unlocking services. For that aim, it is re-
quired to provide a clear meaning about the different forms how authentication can be performed. As
the next step, an introduction to biometrics is offered, which includes behavioral, hidden, and phys-
iological approaches with the purpose of addressing their scopes and weaknesses. Then, to enrich
the smartphone authentication environment, we propose the study of Pattern Lock and ECG verifi-
cation tools. The Pattern Lock section discusses the study of topics like measure of pattern strength,
commonly suffered attacks, and our proposal Habitude Pattern Lock, which includes the user habit
patterns while drawing the lock pattern. Then, the ECG authentication section covers the features
of this potentiality technology, ongoing research and products related to the ECG authentication on
mobiles devices, and research topics like current limitations, specific acquisition concerns, and im-
provement proposals.

Keywords: Smartphone Authentication, Mechanism of Authentication, Biometrics applications, Pat-
tern Lock, ECG

1 Introduction

Smartphones have been designed to facilitate Internet functions, focusing on services in apps. These
devices allow people to communicate and manage information wirelessly while attempting to maintain
their privacy. There have been several milestones in the development of smartphones, the first of which
was the Simon Personal Communicator in 1992 from IBM without success in sales. Then, in 2007 Apple
launched the first iPhone [1] which kick-started the smartphone phenomenon. In 2016 and 2017 alone,
smartphone sales skyrocketed 1.4 and 1.5 billion units per year [2]. Despite a drop in 2020, this market
reached its peak with 1.5 billion units in 2019 and 2021 [2, 3, 4].

This handheld system has become society’s remote control [5]. Our mobiles are capable of keeping
personal contacts, emails, files, conversations, and user preferences. Phones can also perform sensitive
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operations like making e-payments or performing specific operations through an app, for example, smart
home services or e-health monitoring. Therefore, access to these devices by unauthorized people be-
comes a violation of the phone owner’s privacy. The consequences of a data leak could be catastrophic
depending on the type of information that was compromised and how it is used. There are multiple
examples of authentication scams, such as the e-Transfer theft of 19,000 CAD [6] apparently as a result
of a shoulder surfing attack. In the United States, the Federal Trade Commission (FTC) exists to prevent
identity theft. This agency provides a series of recommendations [7]. In an attempt to mitigate the impact
of identity theft, the FTC has created a web portal where victims can report cases, creating an identity
recovery plan [8]. In the case of smartphones, the FTC suggests that the easiest way to avoid access by
unidentified users is simply to lock down the device and to require a valid user verification request to
unlock and reuse the phone features.

Nowadays, a sizeable group of users exist who do not lock their smartphones. These people prefer
quick access over recognition methods such as PINs, passwords or pattern locks. This indicates that
users prefer usability preference over privacy protection [9]. This trade-off between confidentiality and
usability option opens a new variable parameter in user interaction studies. Overall, most people prefer
usability over any slow locking service. Thereby, smartphone attributes like confidentiality and usabil-
ity contain a time response restriction; it implies a compensation evaluation between performance and
accuracy in the verification engine. Among the most common authentication techniques are a PIN code
or secret pattern; unfortunately, both are susceptible to a spoofing attack [10]. Consequently, once the
secret code is exposed and the verification step is broken, it renders unrestricted access to the mobile and
the whole system is disclosed.

Regarding biometric authentication, their HW/SW market has grown from $2.4 billion in 2016 with
an expected growth of $15.1 billion to 2025, all of it within a $50 billion biometrics global business by
2024 [11]. Not limited to smartphones, camera biometrics will also grow to a market of $19 billion by
2024 [12] and iris recognition $4.1 billion by 2025, according to Tractica forecast [13]. In units, over 1
billion devices in 2020 contain facial and fingerprint recognition [14, 15]. However, some people do not
trust or do not want to use biometrics in their smartphone [16]; consequently, they lock their phone with
a password instead [16].

Popular methods such as fingerprint or facial recognition have the possible weakness of being copied
to unlock the smartphone [17, 18, 19]. Indeed, each method under specific conditions can achieve its
best rate of success. But, every single biometric method has its own kind of weakness. Between the con-
ventional authentication techniques, none are fail-safe [20]. We have to take into account that biometric
systems will inherit their sensor limitations.

In this paper, we intend to present some weaknesses and open gaps in current smartphone authen-
tication. Indeed, our intention is not to discredit knowledge-based support or highly rated traits like
fingerprint, iris, or face. On the contrary, we seek to raise awareness of the limitations of some unlocking
methods and suggest alternative ways to verify a user. Besides, the goal of this paper is to provide a gen-
eral map of smartphone authentication. In the last chapter, we will focus on two unusual proposals, one
talking about enhanced proposals for pattern lock, taking advantage of smartphone current embedded
sensors, and the other using ECG biosignal for user verification. Indeed, these proposed mechanisms do
not have a technological limitation; furthermore, they can be implemented, providing a new possibility
to support the current verification procedures cooperatively.

In the next list, we show the series of contributions of this text.

1. We will produce a comparative biometric performance table. Category descriptions including
physiological, hidden, and behavioral approaches, making emphasis on each method’s weakness.
(Section 3)

2. Following biometric trait identification requirements by Dasgupta et al. [21] and Maltoni et al.
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[22], we will produce a comparative evaluation that includes together physiological, hidden, and
behavioral approaches. (Section 3)

3. We will gather various studies studies on pattern lock. To the best of our knowledge, we have not
found an article that collects multiple strands of research about it. It includes functionality, shapes
proposals, entropy, preferability, attacks, and enhancements. (Section 4)

4. We propose the term habitude pattern lock (HPL) in state of the art. (Section 4)

5. Within our HPL proposal, time acquisition is highly essential. In this way, we made a study of the
best Android function to perform this task. (Section 4)

6. We contribute a comparative feature-based parallel between different researches in state of the art
close to pattern lock and HPL. (Section 4)

7. Regarding smartphone authentication with ECG, we will cover topics like thermal noise presence,
leads quantity, an approach to T wave contribution, and verification of heart disease conditions.
(Section 5)

8. We submit a collection of current limitations, specific acquisition concerns and improvement pro-
posals in ECG biometrics and HPL.

Authentication for

Authentication
g With Pattern
Introduction [ Authentication smartphones using Lock (sec. 4)
-> ~> . -
(sec. 1) types (sec. 2) biometric approaches

Authentication
-> with ECG
(sec. 5)

(sec. 3)

Figure 1: General paper sequence

The structure of this work (Figure 1) continue in section 2 with the authentication concept and mech-
anisms. We decided to introduce this concept because of different applications usage of the verification
procedure, but they do not offer the same features in their services. Thus, it is necessary to discriminate
each reach in user verification to understand and cover the authentication in mobile devices. In the next
stage (section 3), we provide an invitation to understand the handset authentication with a biometric-
based approach. Sections 2 and 3 have the purpose of knowing the current state in smartphone authenti-
cation, as an opening point for understanding the space of the initiatives of the next sections. Section 4
(pattern lock authentication) and section 5 (ECG authentication) both include current limitations, specific
acquisition concerns, and improvement proposals. Lastly, we conclude this article our final opinion of
the topics mentioned in this text.

2 Authentication types

This section in our article will categorise the different smartphone authentication attributes, creating a
point of reference for further analysis. The importance of verifying the origin of any interaction makes
the use of the word authentication necessary in different fields of study. One example is the definition
of security in communications, where secure data transmission needs to be composed of three elements:
confidentiality, integrity, and authenticity. The last component, a machine to machine context means
to trust in the source/destination parties through encrypted message exchange. In the case of email
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login, authentication comprises of a user/password and a token code number; the session is on until the
account owner, signs-out. Similar to an ATM, the user trusts the PIN-code and the credit card acts as
the token, but the session expires after the selected operation ends. For that reason, in the face of several
authentication procedures, it is necessary to classify them and determine the best mechanism for their
application. Consequently, the following subsections (2.1 and 2.2) define human-machine authentication
ways and mechanisms oriented to the smartphone-perspective.

2.1 Human authentication strategies

There are three strategies [21, 23] to authenticate humans. Listed below:
* Something you know: With this technique, the device asks the user to enter some numerical,
alphanumeric, or sequence code that ideally only the right user knows. The most common methods

here are PIN code, password, or pattern lock (Figure 2). This method is the primary trust source
for the operating system. An extension of knowledge-based validation is in section 4.

Pin-code

Pattern lock

Keyboard place

N——————4
« @ =

Figure 2: Knowledge-based authentication examples

* Something you have: Also known as token operation, it is used for instance, in financial operations
when the user/password is enriched with a specific code provided by an external entity. This
One Time Password (OTP) changes each verification request. Curiously, today’s cellphones have
included an option to incorporate bank tokens as apps [24, 25], or by way of supporting the opening
of the email signature in non-common computers (Figure 3), among others. Therefore, in object-
based validation, the smartphone is the entrance key but not the way to check the user proprietary;
one more reason to be aware of phone-unlocking. Due to our scope, this work is oriented to protect
a smartphone active session, and as such, this authentication method is not extended in this paper.

Bank Token Email to step
app validation

Figure 3: Object-based authentication examples

* Something you are: This study is geared towards the study of unique user patterns that can be
physiological, hidden, or behavioral (Figure 4). Forgetting codes does not apply in this situation
and the user presence is mandatory and highly appropriate for smartphone usage. This approach
is extended in section 3.1.
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Fingerprint

<

Figure 4: Biometric-based authentication examples [26]

2.2 Authentication mechanisms types

The smartphone can request user-authenticity credentials through a challenge or in a pervasive interac-
tion. In a challenge oriented evaluation, the user needs a mandatory time while executing a requested
operation, for example, taking a photo, device shaking, fingerprint reading, among others. This pro-
cedure often uses knowledge-based, physiologic biometrics, and some behavioural biometric methods.
On the flip side, the pervasive oriented evaluation offers the user validation without interference in their
daily dynamics. This implementation allows the device to evaluate the user validity but in a parallel way.
In other words, the user and their context interacts with the device ubiquitously without interrupting the
regular phone use or requiring any action from the user [27].
The different authentication mechanisms [23] that guide the user verification types are:

* One-Shot authentication: The user is validated before the session opening, and it finishes when the
user closes the session.

* Periodic authentication: It incorporates one-shot authentication characteristics, but the session
remains open until an idle time is over.

» Single Sign-On authentication: It manages a long-term open session that can be closed by the
user anytime. If the system finds some change in the context (network, location, habits), a user
re-authentication is required.

* Multifactor authentication: It can combine the different authentication strategies seen in section
2.1. One example could be to request a password and then request a fingerprint measure, or an
OTP.

 Static and Dynamic authentication: Static authentication uses the same set of challenges as user
verification. Meanwhile, dynamic authentication varies the challenges for each session opening.

» Continuous authentication: Regularly the user is validated through their habits during all the open-
sessions, without interfering with their smartphone usage.

» Transparent authentication: With or without requiring a session opening, transparent authentica-
tion evaluates the user interaction with the smartphone in the background without a mandatory
direct user operation being necessary. Transparent authentication can be used with other mecha-
nisms like one-shot or continuous.

* Risk-Based authentication: According to the context, this mechanism evaluates a different set of
variables pondering them to calculate a risk factor. This value is a threshold that determines if the
entrance is valid or not.

* Adaptive authentication: It can reorganize its authentication criteria due to the changes in the
environment because of different conditions or situations.
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* Unimodal and Multimodal authentication: This modality is oriented to biometric approaches. Uni-
modal refers to acquiring one trait validation to verify someone; instead, multimodal works with
two or more different traits to evaluate the owner’s entry.

The previous list summarizes different authentication orientations in systems to deploy. However,
maybe some readers could find some of these approximations unavailable to carry out. In that case, the
next two pieces of evidence that could help to expand those implementations possibilities. First, Figure
5 shows a set of sensors that are already embedded in our smartphones. Indeed, each sensor gener-
ates enough data that can be turned into information. Consequently, different information sources allow
it to collect enough knowledge to authenticate a user. For example, the camera can provide user cate-
gories like age, facial attributes, background-location, sex, and motion, all of them having discriminatory
richness. Indeed, the camera example can be extrapolated to another sensor to extract complementary
information. Therefore, the smartphone contains a plethora of sensors that provides sufficient data to au-
thenticate a user. Second, Table 1 extends and depicts the authentication mechanism types and includes
categories like request mode, session permanency, session close condition, and some related work.

i-Fi Gyroscope
BT/Cell/\Wi-Fi ¥ : P = Swipe
&% l F'aﬁjn Pattern
5\.“ e

- k- Phone
NTTS!BS | Public Places | & Handedness
BIWOrKs

Public Places GPS

i Phone
App Handedness
Preference — -

® e Temperature @

£, = G _“j_\,
i Barometer

Applications

Periodic

Behavior Background/Location Atmosphere Atmosphere

Figure 5: Information possibility from cellphone sensors [28]

3 Authentication for smartphones using biometric approaches

3.1 Overview

Biometric coverage, as an authentication tool that tests users to access all smartphone utilities, applica-
tions, and data, is still growing. Biometrics aims to measure specific and unique person bodily features
unique to each individual; meanwhile, the knowledge-based approach requires it to keep some code in
mind. Conversely, smartphone biometrics demand the user’s presence, eliminating the need to memorize
some code or sequence or the requirement to carry something (token).

The standard verification sequence consists of seven different blocks described briefly in Figure 6.
1) The sensor module contains a transducer device that captures the signal of interest. ii) The prepro-
cessing component includes at least one of the next options like signal amplification and filtering to
signal improvement and highlighting the region of interest (ROI). iii) The Feature extraction block trans-
forms the ROI to derive values that represent meaningful information that describe the smartphone user.
iv) The template generator component collects the set of calculated features, similarly to the user data
reference in the registration and verification steps. v) The stored-templates element is a database that
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Table 1: Brief of authentication mechanisms

Session close

Mechanism\ Category Request Session keep-alive condition Examples
Challenge or L.
One-shot corront craontial No-condition Screen-off [29, 30, 31]
Periodic One-shot variant No idle state Idle timeout [29, 32]
. - Aeonian. .
Single Depends on the If spatial context change.
Sign-On chosen method - If context change ->. .. Sign off [33, 34, 35]
re-authenticate
Two or more
. S Depends on the Depends on the chosen
Multifactor auth_entlcatlon chosen method method [36, 37, 38]
strategies requested
Static Fixed and shifting Depends on the Depends on the chosen (39, 40, 41]
and Dynamic challenges approval chosen method method >
- Normal usage.
- . - Under some .
Continuous ‘Within session abnormality ->... Inconsistent usage and [42, 43, 44]

constant analysis wrong re-authentication

re-authentication
prompt

Various user sensing

Transparent sources through their Acceptable confidence

Low device confidence [45, 46, 47]

g . level
mobile interaction
- Contextual risk-score
profile evaluation. Context ch
. - If no risk, No risk after ntext change ->...
Risk-based entry automatically. evaluation vﬂlfﬁnfogﬁe%f-jt.iéis [48. 49, 50]
On the contrary, user most g
provide information
- Continuous user
context learning.
. - Authentication method Unsafe context due to
Adaptive can change due to the Context safe previous learning [51,52,53]
environment. If the context]
is secure, it enters
U;ﬁ?ggﬁ};;id User trait/traits No-condition Screen-off [54, 55, 56]
Stored
Enroliment T
Preprocessin Feature Template Application
P 9 Extraction Generator device

Figure 6: General architecture of a biometrics system

contains and stores the enrollment templates. vi) In a new smartphone entry attempt, the matcher sec-
tion is responsible for numerically scoring the comparison between enrollment database samples and the
new template. This evaluation considers a specific closeness metric, for both templates; near or far. vii)
Application-device module uses the information provided by the Matcher and grants or denies access
using a threshold criteria.

There are two famous biometrics trends on behavioral and physiological analysis, as explained by
ISO/IEC 2382-37 [57] and NIST.SP.800-12 [58]; we extend this separation in a general map in figure
7. The behavioral approach focuses on the analysis of specific user movement habit patterns, even if
different people perform the same action. One example is the trait of gait, which has demonstrated to be
an unique characteristic among human beings [59].

In a formal way within the smartphone context, behavioral biometrics comprehend some of the next
study fields: touch dynamics (gesture), keystroke dynamics, gait recognition, behavioral profiling, hand-
waving authentication, voice, and signature. Setting aside the last two and in order to avoid the cross-use
of contradictory meanings, each of these will be explained below.
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1. Gesture-touch dynamics: It is a hand-drawn form over the smartphone touch-screen composed by
a set of strokes that contains a group of ordered-pairs X and Y [60, 61, 62, 63, 64].

2. Keystroke dynamics: It studies how the user interacts during the use of the smartphone-keyboard
typing service [65, 66, 67, 68, 69].

3. Gait recognition: It identifies the user following how the user walks [70, 71, 72, 73, 74].

4. Behavioral profiling: This field focuses on creating a user profile based on network-based technol-
ogy. It can include app usage and location services [75, 76, 77, 78, 79].

5. Hand-waving: This orientation centres on how the user holds, rotationally moves, waves or shakes
their smartphone [80, 81, 82, 83, 84].

Significant surveys have covered behavioral approaches like Mahfouz et al. [85], Alzubaidi et al.
[86], Bhatt et al. [87], and Abuhamad et al. [88]. In our criteria, all of them cover the state-of-the-art
around the behavioral authentication oriented to smartphones.

On the other hand, physiological biometrics also involve structural (static-external) and hidden user
traits. Structural biometrics examples are face, retina, iris, and fingerprint with a minimal template vari-
ance over time, and their employment is profoundly expanded to more than just smartphones [89]. Hid-
den biometrics (HB) covers bio-signals such as Electroencephalography (EEG), Photoplethysmogram
(PPG), and Electrocardiography (ECG), among others. Although these signals are used for health mon-
itoring, different studies have found specific patterns among people which are suitable for verification
approaches. We extend ECG hidden biometrics in section 5.

Structural

Fingerprint
Iris

Face
Retina

Hidden

ECG
Biometrics { ggg
EMG

Physiological

Gait
Signature
Keystroke
Writing
Running
Voice/Speech

Behavioral

Figure 7: Biometric overview. Based on [90]

3.2 Current limitations

Smartphone biometric usage has increased in the last years in both market and research using different
traits including behavioral, hidden, and physiological modalities. Biometrics mobile solutions gain trust
between users [91]. However, it is advisable to know the features and scope of each technique, for
instance, their weaknesses. In that sense, Table 2 provides a scope of different biometric characteristics,
including evaluation score, the sensor used for signal acquisition, and the disadvantage column. The
biometric score is a point of reference to understand the fulfillment of the biometric acquisition and
processing engine. These values are the result of a series of tests in specific conditions evaluating the
possible person verification states: genuine or impostor. The biometric engine evaluates the terms of
probability represented within the parameters False Acceptance Rate (FAR), False Reject Rate (FRR),
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and Equal Error Rate (EER). FAR counts the number of times a set of templates from a fake person
is recognised by the system as an authentic one. Meanwhile, FRR counts the system rejection of the
right user. Finally, EER is a performance indicator value of the process where FRR and FAR both meet,
meaning the minimal and optimal point of the system. The letter [x] in Table 2 means the absence of the
category in the cited paper.

Each value such as accuracy, FAR, FRR, and EER correspond to a specific environmental condition
that helps to reach the best classifying score. In that way, it is necessary to know the different variables
that could interrupt, hinder, limit, condition, or decrease the trait evaluation. Some of these variables are
in the last column in Table 2. For now, there is no unimodal fail-safe scheme covering all involved risks
such as measurement quality, template reproduction, safe context, among others [20].

Another biometric trait comparison metrics suggested by different textbooks [22, 21] and experts
[92], recommend the trait based categories described below: universality (people generality), distinctive-
ness (individually unique), permanence (stability), collectability (quantifiable), performance (recognition
rate), acceptability (user comfort), and circumvention. These guidelines are in Table 3 based on authors’
criteria [21] defining the qualification as high, medium, and low. Concerning hidden biometrics in Ta-
ble 3, permanence column with a (pending) P mark, that assessment is to our criteria, due to missing
long-term evaluation study [93, 94, 95].

Table 2: Evaluation of different biometric methods

Bi tri IA
Mod, O™ M| Ref [EER(%)] " *YFrr (%)Far (%)  Sensor Disadvantage
trait (%)
96]| 0.47 82.14
Voice 961 X X Microphone Illness, ambient noise
= [86] 15 X X X
£ Signat 7] 62 X X X I Touch Sensitive to fricti
ignature ouch-sensor ensitive to friction
R 081 0.127 | «x x | 023 | ¢
/M 99 94.93 3.89 0 Smartphone location, bod
Gait £ X lAccelerometer| H_la_ P onev oca 1onv oy
[86]| 7.3 86.3 X X injury, object carrying
ECG [100]] 0.87 96.2 X X
oty 15 o7 X X Signal acquisition, usabilit
o2l x x| 0245 02475 Enatl AcquISTHON, UsabIity,
g EMG 03] x 316 < " extend databases testing
3 - Electrodes population
= PPG [104]] x 96.1 X X
[93]] [0.5-6] X X X
EEG [105]] «x 100 X X Signal acquisition, usability,
[106]] x 86.1 X X computational complexity
Face [107] X X X 1:1e6
[108] X 90 X X
Hand [[109] 0.3198 99 X X Illumination,
_‘;‘ Geometry [110]] x 88.2 X X Camera Power consumption,
§° Iris [111]f 0.008 X 0.013 | 0.001 extra resource for
-% ) [112] 16.76 92.82 | 0.014 0 liveness detection
>
o Retina [113] 5.5 98.3 5 5
[21]] 1:10e6 X 0.31 0.31
Fineerorin [21]| 2.07 X X X FP-sensor High exposition to be copied,
1 1nt; -S|
gerp [21] 5 X 2 2 situation awareness

In the following lines current acquisition methodology will be discussed. The first approach to clas-
sification is related to the kind of interaction between the user and the smartphone. That relationship
can be a straight interaction or employing a propagation medium. While optical technology like cam-
eras or sound sensors like microphones are examples of non-contact interaction, lock patterns focus on a
straight contact with the touchscreen. In regards to camera and microphone performance, they are highly
sensitive to the lack of light or noisy environments. Additionally, camera authentication in most cases,
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Table 3: Biometric traits comparison according to identification requirements [22]

Biometric UniversallyDistinctiveness&’ermanenceCollectabilityPerformanceAcceptabilityCircumvention
'Technology
Voice Medium Low Low Medium Low High High
Signature Low Low Low High Low High High
Gait Medium Medium Low High Medium High Medium
ECG* High Medium  |Medium - P High High Low Low
EMG* High Low Low - P High - Low Low
PPG* High Low Medium - P High - Low Low
EEG* High High High - P High High Low Low
Face High Low Medium High Low High High
Hand Medium Medium Medium High Medium Medium Medium
Geometry
Iris High High High Medium High Low Low
Retina High High Medium Medium High Low Low
[Fingerprin§ Medium High High Medium High Medium Medium

requires the screen being on during the authentication process. For that reason, a mobile consumption
description in Table 4 contains a list of smartphone components with their power estimation. This helps
differentiate between the camera and display power [114]. Additionally, camera authentication needs
a liveness-detection module with a minimal image quality that increases device price. Regarding the
power description in Table 4, the camera consumes a large proportion of a device’s battery, which is a
disadvantage for consumers.

Table 4: Smartphone component consumption estimation. Based on [115]

Component COH[S;I:VTIOH %
Display 400 15%
Active cell radio 800 29%
Bluetooth 100 4%
Accelerometer 21 1%
Gyroscope 130 5%
Microphone 101 4%
GPS 176 6%
Camera, focusin
and picture previgew 1000 37%
Total 2728 100%

Regarding fingerprints, during the Mobile World Congress in 2016, the Chinese company Vkansee
Technology Inc. experimented with iPhones supporting Touch ID recognition, debuting its authentication
system with silicone clay and a piece of Play-Doh [116, 117]. Then, using a similar method with gelatin
and Play-Doh, Goicoechea et al. managed to unlock five different smartphones working with people
with no expertise in biometrics [19]. Moreover, there is another phenomenon involved with a fragmented
fingerprint acquisition. In this case, the system took partial samples due to the small sensor size [18].
If the new partial sample matches with a stored partial sample, the unlocking process is approved. The
risk in this scenario, owing to this partial acquisition, opens the possibility of other users of gaining a
partial sample that could be similar to the owners’. Ray et al. evaluate this possible threat increasing
the probability of failure acceptance when using additional finger samples of both hands to train the
smartphone biometric model [18]. A further issue to deal with fingerprint technology is to validate the
state of consciousness of the user prior to granting approval [16].

In the case of hidden biometrics, their advantage is the self-liveness-detection property, but they
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contain several challenges to overcome, like acquisition and signal dynamics. For example, PPG being
used in a daily living activity, needs an oximeter fixed steadily and its signal quality can depend on
user’s skin color. Another matter found in electrode-based HB is their sensor setup location since it
demands a specific configuration to get an acceptable potential difference. As a consequence, placing
the electrodes incorrectly will cause poor quality signal. As a matter of fact, ECG requires a mandatory
configuration which is unattractive to most users. Besides, factors like humidity and muscle noise are
highly demanding in the acquisition of these kinds of signals. The last challenge in the HB analysis is
the signal fluctuation in relation to changes in posture and emotional state.

Another perspective for analyzing the verification phenomenon, is expanding how biometrics ap-
proaches human beings. Commonly, the user verification works in just one way to validate the user
employing the unimodal approach. Admittedly, the physiological trait approach has been used as the
preferred biometric validation. This approach is actually the most robust scheme implemented in smart-
phones. Nowadays, with the current sensors embedded in the smartphone or either with some external
ones, it is possible to collect additional information. Also, it is expected that using them all together
could help to improve the owner’s verification process. Multimodal biometrics are an emerging option
that could arguably enhance accuracy authentication by fusing different data according to the specific
layer of work.

Taking into consideration company criteria in biometrics usage, NCC Group, a global expert in
cyber-security and risk mitigation. Its technical director Matt Lewis commented that FRR is prioritized
over FAR. Because, in case the system doubts the authenticity of the user, it would reject them temporary
instead of granting access to an unknown one [107]. One particular example is Apple, upon checking the
Face ID Security Guide they only provide FAR values for Face ID (1:1000000) and Touch ID (1:50000)
[118]. Lewis proposed three security range measurements based on FAR values: 1:100 as low security,
1:10000 as medium security, and the highest security range as 1:1000000. Another principle is user
acceptability. This aspect is bounded by user-experience and the time of the requested procedure. For
example, the duration ranges for some code-based lock are: simple sequence pattern lock: 1.336s+
0.286s, for a complex pattern: 2.313s5+0.420s, and for a 4-digit PIN: 1.015s540.183s[10].

With the previous background (section 1-2-3), the smartphone authentication atmosphere is reach-
able. As we stated in section 1, the forwarding approaches (section 4-5) do not claim the place of smart-
phone owner recognition through fingerprint, face, voice or iris. Unlike mobile-biometric orientation it
is robust, usable, reliable, scalable, but not perfect as mentioned in section 3. The authors are aware of
the existing authentication gaps and view this situation as an opportunity to put forward the development
of authentication engines that could overcome some of the current weaknesses. The next sections will
present two emerging ways that can be implemented with current resources (section 4), or which still
need to be inside the research field (section 5). The next two chapters include the introduction, current
limitations, specific acquisition concerns and improvement proposals oriented to pattern lock, and ECG.

4 Authentication with Pattern Lock

4.1 Introduction

Knowledge-based authentication focuses on learning a personal text or code as a key to protect owner’s
data. Nowadays, this secret data-sequence input is user-supplied through the touchscreen with famous
mechanisms like pattern-lock, PIN, and password. Text-based passwords enhance in strength as the char-
acter length increases, but human memory is limited , and people likely forget complicated passwords in
the short-term. Moreover, regular long-text entries require more user interaction, increasing the digital
friction usage. The typical user solution is to handle a short code that allows fast access but reduces the
key strength. Indeed, 60% of North Americans do not have the habit of updating their passwords [119]
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and their codes are short and not frequently updated. An example of low-strength passwords is the Chi-
nese case in 2011, in which there were 100 million hacked accounts containing emails, usernames, and
passwords [120]. Following this, Lin et al. studied password creation habits in China and found common
characteristics like re-used passwords, birthdates of relatives, daily-usage words, personal information,
and culturally common numerical sequences. Within the context of smartphones, the eavesdropping PIN
code attack is an effective method as it is only necessary to learn four digits. According to Americans
and Cybersecurity research, 35% of US citizens use PIN codes [119] and the smartphone unlocking risk
increases up to 28%, with Americans that do not lock their smartphones.

To facilitate this memory issue with text-based and PIN lock methods, graphical passwords emerged.
This change is based on the dual-code theory that suggests that there are two analysis components that
exist in the brain, a verbal one and a non-verbal one. Drawing an image is easier for the brain than
memorizing an alphanumeric code as there is no interpretation step in the middle [121]. The touch
pattern was introduced in 2008 by Android, and according to Sun et al., by 2014 there have been few
studies addressing their weaknesses [122]. Usually, the pattern is in the path /data/system with the name
gesture.key turned in an SHA-1 key sequence [123].

The standard pattern lock is generally made up of nine nodes (Figure 8), connections, intersections,
and overlaps. The visual code strength must face factors like user memorability, number of connections,
input convenience, and privacy needs [122]. In short, an acceptable solid pattern must fulfill the following
rules:

* The drawing must be continuous and should contain at least four dots.
* Each node can be connected just once.
* Straight lines should include middle dots [124].

* The pattern can be over a busy node but is not counted as a valid connection.

While the first rule applies for a minimal strength, the other rules eliminate ambiguity in the drawing
[125].

000
000
000

(a) Pattern template (b) Pattern example

Figure 8: Pattern lock

Pi et al. calculates the total number of possible patterns to be 389,112 [126]. Lee et al. concluded
that a total of 9.86e+5 and 3.6e13 is the number of visible nodes that can be reached by a point with
patterns for 3x3 and 4x4 grids [127]. In 2013, researchers at the University of Notre Dame performed a
predilection survey (n = 150) regarding smartphone unlocking methods. They found that approximately
51% of the sample population used pattern-lock, 14% used text lock, and 35% did not lock their smart-
phone at all [128]. Another poll with 8,286 participants that included eight countries (Australia, Canada,
Germany, Italy, Japan, the Netherlands, the United States and the United Kingdom) found that 32%
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of people proceeded to unlock the smartphone with pattern-lock, 32.1% with slide unlock, and 18.7%
with PIN [129]. The same survey found that pattern-lock was the most popular unlocking method with
48% of participants using this method. Finally, analyzing different drawing sequence with 506 partici-
pants, 41.1% start the pattern in the top-left node and 20% finish in the bottom right node according to
Zezschwitz et al. [130].

Looking for ways to assess the pattern-lock power, Uellenbeck et al. [125] were the first to study a
strength metric oriented to the information theory, calculating the sequence entropy in 9.1 bits. Zezschwitz
et al., through the Kolmogorov similarity, measured the strength among geometrical shapes, regardless
of the orientation. Similarly, Sun et al. proposed a pattern-lock, entropy-based strength real-time visual
indicator [122]. This score level is carried out with the next categories: size, physical length, number of
intersection points and number of overlaps; all of them are criteria to perform equation 1.

Pentropy = #iors + logZ(Iengthphysical + #intersection + #overlaps) (D

4.2 Current limitations

The previous subsection tackled categories like pattern-lock complexity and memorability; those are
internal or user-related issues. In contrast, this section address external or intentional breach intrusion by
an impostor. The main strategies for obtaining the pattern lock sequence are: smudge attacks, shoulder
surfing, and side channel. The smudge vulnerability is due to oil remnants on the smartphone screen
after finger swiping contact [131]. It becomes an attack when someone uses the oil remnants to guess
the pattern, as can be seen in figure 9a.

The second attack is shoulder surfing; it is when a person or camera [132] close to the user to watch
and learn the password [133]. The side-channel technique is another attack that is a type of reverse
engineering that uses an external computational system to exploit the entity to attack[134]. Aviv et al.
introduced a study about the side-channel, considering only the usage of the smartphones’ accelerometer
[135]. Using touch-related events to synchronize the software engine and collecting the accelerometer
data in an uncontrolled condition, the model can predict the original pattern with a 40% of accuracy [135].
This study supports the importance of controlled access to the sensor layer and suggests suspending the
sensor data exposure during sensitive operations. Another side-channel study by Zhang described a new
way to predict sequences called wireless sniffing, which consists of measuring and detecting how the
signal changes while the user draws their pattern-lock [136]. A further experiment proposed by Andriotis
et al. describes using an optical camera and microscope looking for oil traces [121] as an additional way
to perform a side-channel pattern detection. They used a thermal camera to analyze the heat distribution
to determine the pattern, as illustrated in Figure 9b. In the second part of experiment of Andriotis et
al.’s experiment, a psychological survey extracted the user’s preferences and merged the results with the
accelerometer data. Both the sensor and the survey data were used to infer several pieces of the pattern
[121].

Another attack is by brute force. The modus operandi is to input every possible combination of
designs until it lands upon the owner’s sequence. One brute-force approach proposed by Pi et al. has
a GPU parallel thread modelling with an adjacent matrix and Hamiltonian Path problem to break the
pattern [126]. Their break-time with the maximum number of nodes is 170 ms, as shown in table 5, and
contains the relationship between dots, threads, and breaking off time.

In conclusion, obtaining the owner’s lock pattern is possible through the different attacks highlighted
in this section. These risks are an open gate to the data privacy exposure because once the secret code
is known, the user data and their privacy are uncovered. Due to this weakness, different modifications
have been evaluated and the habitude pattern-lock proposal (HPL) has been developed, like alternatives
to enhance this system (section 4.4.2), joining behavioral biometric during the trace. One kind of data ac-
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(a) Smudge attack

(b) Thermal attack [137]

Figure 9: Example of pattern lock attacks

Table 5: Brute-force algorithm performance [126].

# of dots | # of threads | time [ms]
4 512 0.076
5 4,096 0.086
6 32,768 0.349
7 262,144 2.596
8 2,097,152 21.139
9 no-report 171.794

quisition in HPL is the between node drawing time. Consequently, the next section will discuss particular
acquisition concerns to obtain the best precision in collecting time-based measures.

4.3 Specific acquisition concerns

Throughout the pattern-lock entrance, each connection time between nodes is stored with labelled times-
tamps following a sampling rate. Each touch on a new dot is the synchronization mark for the analysis
model. Although different operating systems have its epoch [138], the most famous timestamp is the
Unix format which counts the number of seconds since January 1, 1970 (midnight UTC/GMT). Over-
all, the point of reference for examining the time passed is with the clocking options in any embedded
system. According to the android.os package, the SystemClock class [139] contains three clocks:

» System.currentTimeMillis(): This expresses the time in milliseconds and can be configured by
both mobile network or user. The time count can change unpredictably with leaps forward or

backwards, depending on who updates it.

» uptimeMillis(): This counts in milliseconds from the time that the system is booted until the system
goes into deep sleep mode. Usually, it is used in interval timing such as thread.sleep, object.wait
and system.nanotime(). However, we recommend using it when the routine interval execution is
less than the deep-sleep time interlude. Unlike the currentTimeMillis method, the clock that guides

uptimeMillis is monotonic.

* elapsedRealtime(): With their couple partner function elapsedRealTimeNanos() return the time
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since the system was booted. Both counts even if the system enters in low-power mode. The oscil-
lator that leads the count of elapsedRealtime/Nanos is monotonic. Finally, Android recommends
this clocking scheme for interval timing purposes.

The functions, currentTimeMillis, uptimeMillis, elapsedRealtime are not constructed in Java; in con-
sequence, they use the reference native for Java Native Interface [140], indicating that this function runs
in another language. In this case, the functions run with C++ in a lower-layer scheme in the file an-
droid_os_SystemClock.cpp. With that design, it is expected for Java to reach an OS resource with a
critical time response. By timing function, the next tree-kind references show the service calling chain
with their containing file [141].

uptimeMillis():
android_os_SystemClock uptimeMillis()
(android_os_SystemClock.cpp)
L uptimeMillis() (SystemClock.cpp)
systemTime (SYSTEM_TIME_MONOTONIC) (Timers.cpp)
clock_gettime() (time.c)
__vdso_clock_gettime() (vclock gettime.c)

L do_monotonic() (vclock_gettime.c)

elapsedRealtime():
android_os_SystemClock_elapsedRealtime ()
(android_os_SystemClock.cpp)
elapsedRealtime() (SystemClock.cpp)

/dev/alarm

elapsedRealtimeNano():
android_os_SystemClock_elapsedRealtimeNano ()
(android_os_SystemClock.cpp)
L elapsedRealtimeNano() (SystemClock.cpp)

/dev/alarm

Among the different clocks available in Android, the least accurate is currentTimeMillis due to its un-
predictable change in time. Regarding uptimeMillis and elapsedRealtime/Nanos, the Android literature
affirms their monotonic behavior [139]; indeed, the Linux programming textbook confirms the mono-
tonic clock behavior as being strongly trustworthy [142]. A steady oscillator possesses linear increments
and allows a reliable counting since booting time (Android case), assuring a deterministic operation.
Quote verbatim: The important aspect of a monotonic time source is not the current value but the guar-
antee that the time source is strictly linearly increasing and thus useful for calculating the difference
in time between two samplings [142]. In summary, the accuracy in uptimeMillis and elapsedRealtime
timing is guaranteed.

There is an extra factor to take into account regarding timing accuracy expectations during a function
invocation. Linux and Android are not real-time operating systems [143, 144]; therefore, they are not
deterministic. Non-RTOS (Android case) involves the function call procedure in Java; consequently, it
gets a delay between the execution method and the returning value. Evaluating this OS nature, a test
is performed with the Android smartphone ASUS ZenfoneGo 2 that contains a processor Snapdragon
200 Quad-Core 1.2GHz and 1GB of RAM. The experiment consists of evaluating the execution time
response of uptimeMillis() and elapsedRealTimeNanos() including their mean and standard deviation.
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Per function, the experiment is executed 100 times, getting the results presented in table 6; both services
differ sharply in their std. In conclusion, the best timestamp is with elapsedRealtimeNanos on applica-
tions involved in continuous and pervasive authentication from the authors’ concept. In contrast, timing
extraction involved in one-shot and transparent authentication for pattern-lock, both uptimeMillis and
elapsedRealtime, are useful Android methods.

Table 6: Function executing time

Function mean time [ns] o [ns]
uptimeMillis 9847.63 5388.9
elapsedRealtimeNanos 10157.6 886.67

4.4 Improvement proposals
4.4.1 Pattern lock modifications

Pattern-lock weaknesses have favored different improvement proposals; in this subsection, a brief shape-
based suggestion is covered. TinyLock, [145] created by Kwon et al., aims to prevent the smudge attack
by reducing the distance between nodes without altering the operation time significantly compared to the
usual matrix size. In this case, the finger can cover much of the area of interest, avoiding a clear pattern
of smudges. Also, it includes the option to rotate the finger directly over the grid, deleting all traces of
the smudge pattern.

For its part, Colley et al.’s methodology is focused on allowing already selected-nodes to break the
one-usage node rule with the use of sequential duplication and time-based duplication. Accordingly, the
dot permutation raises the pattern possibilities [146]. Instead, Lacharme et al. [147] synchronize an OTP
using the pattern as the seed for a bio-hashing pseudo-random code generation.

As another option, Xiong et al. proposes discarding the use of some nodes randomly and changing
the layout interface; as a result, this platform presents a system entropy increment [148]. Guerar et al.
considers clicking as an alternative instead of swiping the pattern to bypass the smudge attack [10]. In
this scheme, each dot in the application contains a row randomly numbered from 1 through 9 in the
screen bottom-side. Then, the user selects the numeric sequence related to the pattern and it also has the
option to turn numbers into colors, limiting eavesdropping.

4.4.2 Habitude pattern lock

This sections turns the sight to implement the pattern lock validation regarding user habits instead of
extending the philosophy of memory-based key (Figure 10). The Habitude pattern lock seeks to join the
knowledge of the pattern sequence with the evaluation of the user device interaction, creating a behavioral
model with the data provided by the smartphone sensors. Citing for a while the behavior orientations in
section 3.1, HPL belongs to gesture dynamics due to the hand-drawn form on the touchscreen, containing
sequences of numerical coordinates. It consists of checking the user authenticity through its interaction
with the device analyzing movement patterns. This kind of evaluation has been previously analyzed
in typing. For instance, Schweitzer et al. used visualization techniques and studied custom practices
during password input by keyboard and categorized them. They found common elements without using
a dictionary attack [149]. Similarly, Frank et al. [150] dealed with touchscreen behavioral biometrics,
using 30 features from movements like up-down and left-right getting an equal error rate less than 4%
one week after the intra-session phase. Their test was with k-nearest neighbours (k-NN) and Support
Vector Machines (SVM) implemented over 41 people.
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Habitude Pattern Lock

Behavioral
biometrics

Figure 10: Habitude Pattern Lock

The next paragraphs address different contributions from authors that have had a close up extracting
movement-user-features during their pattern-lock draw. One of them is Alpar [151]. He analyzed a
four-node pattern measuring the touch-time by each dot as feature-set, creating a visual and a ghost
password. Due to this, the classification was conducted with artificial neural networks, adaptive neuro-
fuzzy inference and RGB histogram, getting an EER of 8.75%, 2.5%, and 7.5% [151]. On the other
hand, Luo et al. with ten subjects, discriminated each one primarily with the embedded pressure sensor
data, including x/y coordinates and time [152].

Equally important, an alternative input parameter with two fingers is proposed by Meng et al. [124] to
achieve the pattern trace by reusing each dot expanding, the complexity. Then, with the use of an app de-
veloped in Android CyanogenMod, they extracted the touch timing, x/y coordinates, slide-down/slide-up
inputs, and pressure values. Furthermore, the comfortability score was implemented with a survey where
the users confirmed that pattern input was not as tricky, preferring a multi-touch option over the classical
drawing. By the same token, De Luca et al. executed a long-term scheme in laboratory conditions out-
side without informing the users about the implicit verification, assuring natural conditions throughout
pattern entering [61]. Afterwards, with 31 subjects, the attributes extracted were: XY-coordinates, pres-
sure, size, time, and speed. Additionally, it was found that users who were informed about stroke-line
analysis got better results. Alpar et al. [153] sought to configure the user identification from the distance
and angle formed between the touched-node section and the operating-node central coordinate. The
patterns were simulated in Matlab and classified with ANN and weight-optimized with Gauss-Newton
and Levenberg-Marquardt. The score for LM was: {FAR=0% FRR 7.5%} and GM was: {FAR=22.5%
FRR=0%}. They considered the epoch’s number as a restriction to get a better classifier. On the other
hand, Wajeeh et al. used singular value decomposition of the feature matrix composed of node timing,
pressure, and finger area [154]. After that, the eigenvalues of eight subject samples were evaluated,
getting an accuracy of 92.27% compared to the Naive Bayes approach with 76.16%.

Li et al. compared the use of pattern-lock and PIN-code using a smartphone and a tablet to obtain
the user and device interactional attributes [155]. Then, with 16 individuals implementing DTW (Dy-
namic Time Warping) and Histogram approaches, they found that the Histogram method can stand aging
templates better than DTW. Unfortunately, they do not evaluate memory and computational complexity.
In contrast, Beton et al. separated samples of intra-class and inter-class entry attempts and evaluated
the authentication with ten people through the Pearson Correlation coefficient and DTW [156]. Each
technique performed an EER of 36% and 28%; then, fusing X and Y positions with time-based features
obtained an EER of 17%.

Another proposal is a sequential scheme composed of phone angle, pattern shape, and drawing time
suggested by Agrawal et al. [157]. In this study, the accuracy was between 60% and 95% with 20
individuals. Instead of the nine nodes grid, Ganesh et al. suggested a pentagon with ten dots that included
the orientation and pressure data [158]. Besides, each node contained an associated number-label which
changed its position after each new unlock. Then, with a set of fuzzy rules, the user-identification
analysis was performed. A different strategy proposed by Liu et al. recommended adding orientation and
acceleration sensor statistics [159]. After that, they classified the user posture with K-means reaching
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an FAR of 4.36% and FRR of 5.03%. Then, with the identified posture (standing, sitting, and lying),
they created a pattern drawing sample user-identification SVM model. Similarly, Nohara et el. used
acceleration and angular velocity to differentiate by axis among touch, release, and distance attributes,
with all seventeen attributes from the pattern trace [160]. Commonly, data processing was performed
locally. However, their classification computing was achieved since the server-side, using self-organized
maps for user-verification. This cloud-orientation is given when hard data processing is needed to save
the smartphone [161].

Phone angle

Speed = D(1-2)/C1 X, Y coordinates
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/Magnituc(i);& angles
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C1: Connection time
O ! Finger size & touch !
i pressure i
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Total Drawing time

Figure 11: Lock pattern behavioral features. Photos from [162, 163]

For a general understanding of the information given in this section, Table 7 presents a summary of
the papers related to pattern-lock current work. Then, considering state-of-the-art in the features linked
with the user-dynamics during the pattern-lock trace, we generalize and cluster the values extracted com-
posed of 5 data-sets: time, pressure, area, IMU and distance. In summation, the attributes extracted are:
Pressure, holding time, finger-area size, movement, orientation, finger orientation, accelerometer, angu-
lar velocity (gyroscope), pressed-nodes location, inter-node time, and the phone waving model through
pattern input. A graphic compilation of these attributes-sets is in Figure 11. Finally, Table 8 presents,
with the five categories proposed separated by columns, a group of studies that implemented different
dynamical-user-trace features during their investigations.

From this table, with an initial glance at the firsts four rows, we can conclude the predominance of
time-based data. Likewise, from the fifth row until the end, there is a frequent relationship presence
between pressure and finger area. Moreover, from the sixth row until the ninth, including the work of
Agrawal et al. [157], there appears a new group that uses the IMU sensor. That category covers 45% of
the presence in Table 8, followed by the distance-based category with 54%. Overall, in the work relayed
in Table 8, the number of subjects does not exceed forty people; indeed, the best EER = 1.8% worked
with 15 individuals [159]. To conclude, an optional option to validate future implementations is joining
the different attributes of Figure 11. That fusion scheme can be evaluated by any of the next strategies:
sensor-level, feature-level, with dynamic classifier selection, match-score level, and decision-level. This
option assesses the discrimination capacity, choosing the best combination and enhancing this classic
unlock system.
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Ref Sample Focus Feature Technique Performance
[10] 51 Alternative drawing Slide anq random Time .
numeration evaluation
GM: FAR=22.5%
. . Gauss-Newton; FRR=0%
[151] Authentication Distance-Angles Levenberg-Marquardt LM: FAR=0%
FRR 7.5%
[157] 20 Authentication Sequential: P.h one angle, Do not say [60-95]%
pattern, drawing time.
Amount of data, Survevs and
[128] 197 Behavioral #sms, screen vey
statistics
lock method, surveys.
Acceleration, angular
[160] Behavioral flicks  acceleration, distance, SOM N/A
time=17.
Pressure, xy
[61] 31 Behavioral pattern coordlgates, size (finger DTW 77%
area), time, speed
(time btwn 2 coordinates).
EER
. Touching nodes duration ~ ANN; ANFIS; ANN: 8.75%
[151] 35 Behavioral pattern and connection time. RGB Histogram ANFIS: 2.5%
RGB: 7.5%
.. . .. EER
X-y position, point position, Corr: 36%
[156] 10 Behavioral pattern time inside the node, time Correlation; DTW DTW' 239
. (o]
between nodes. Fusion: 17%
[158] Behavioral pattern Patte.rn shap c . fuzzy if-then rule
3-axis orientation, pressure.
[154] Behavioral pattern Timing, finger pressure and SVD 92.27 %
area of finger pressure.
11: Posture features
39: gesture feature
. based on x-y position, FAR =4.36%
[159] 20 Behavioral pattern pressure, size, timestamp, K-means FRR = 5.03%
3-axis acceleration
and orientation.
24 =x-y
coordinates-magnitude-
[155] 15 Behavioral pattern; anglf:, pressure, size, DTW: histogram EER= 1.8:7.5
PIN 3-axis accelerometer,
3-axis angular acceleration
and derivatives.
Biohashing; Pressure, x-y position, . . Estimated
(1471 34 behavioral pattern  fingersize, tilt. Hamming distance EER=0%
[126] Brute force Hamiltonian Path 170 mS
problem
Touch timing, x and y
[124] 45 Multitouch coordinates, press down Survey

and press up
inputs and pressure.

Continued on next page
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Table 7: Pattern lock related work

Ref Sample Focus Feature Technique Performance
[146] 36 Node p]ultiple
inclusion.
Size: Dots number
connected
[122] 81 Pattern strength physical length (min 1)
# overlaps
# intersections
simple
[132] 215 Shoulder surfing Video pattern: 60%

complex: 87.5%
776=3x3x86 [STATS (6),

3D-Poly-Deg (4), Logistics regression;

[135] 24 Side Channel 3D-Poly-STATS (6), HMM 40%
iFFT-Poly (35),
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Th 1 and optical
[121] Smudge attacks ermat and optica
camera
[125] 584 Strength analysis Entropy
[130] 496 Strength analysis Kolmogorov Similarity
Time - 6 fingers-in-dot; EER = 10.39%
164] 32 . . ’ Random Forest
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Table 8: HPL features compilation
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5 Authentication with ECG

5.1 Introduction

Hidden biometrics (HB) is an emerging area that works with signals produced consistently by the human
body. They must fulfill biometric requirements such as universality, uniqueness, and measurability. One
important signal in HB is the electrocardiogram (ECG). This wave is generated by following the electrical
activity of the heart through the use of electrodes, which are metal or gel pads, that make contact with
the skin. The concept of difference in electrical potential is the foundation of ECG acquisition. The
heart is a muscle, and each heartbeat produces an electrical current over the skin, which is captured by
the conductive section of the electrode. To begin the measurement only requires a minimum of two
electrodes in a function that involves time and voltage variation. The simplest connections are depicted
in Figure 12.

Figure 12: Bipolar Limb Leads

Lead I captures the signal between the points L and R, Lead II from F to R, and Lead III from
F to L, taking into account the Einthoven triangle approach. Each heartbeat is the raw material to be
evaluated, thereby, the elementary ECG signal analysis starts with the point of interest regions called
fiducials. These peaks have the labels P, Q, R, S, and T, as Figure 13 shows. The Pan-Tompkins algorithm
developed in 1985 is a well-known procedure to perform the fiducials search [165]. Real-time ECG-
oriented applications implement this routine, achieving a 99.79% =+ 0.34 of sensitivity [166].

R

Q
S

Figure 13: Fiducial PQRST. Based on [167]
A comprehensive study related to the ECG signal focuses on observing heart behavior and following

cardiac abnormalities. In past years, newer ECG-related applications have emerged and have been im-
plemented for cryptography [168], gender recognition [90], and biometrics [169], such as an option for
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smartphone unlocking [90].

During the ECG study in this section, three aspects need to be covered. First, the possible features
for which ECG authentication may be utilized as an emerging technology for smartphone authentication.
Second, addressing some current applications that use ECG authentication in the context of smartphones.
Third, current limitations, specific acquisition concerns, and improvement proposals for ECG as a bio-
metric trait.

5.2 Motivation

ECG authentication, as it has potential to be ubiquitous, is appropriate for the Biometrics of Things ap-
plied in Smartphones. Additionally, ECG poses as an implicit liveness detection property. This promising
smartphone authentication field could be used in continuous, transparent, or one-shot related schemes.
Moreover, ECG signal reproduction is impossible to be suppressed by the user as those movements
are involuntary. Nonetheless, the user may alter the signal cadence consciously or unconsciously given
the daily activity dynamics, but that does not interrupt their generation. Each ECG-ROI poses a non-
negligible variability as a challenge to overcome, especially for the classification training phase. But,
this behavior simultaneously enriches the captured signal information, rendering it difficult to replicate.
Between these sets of issues, the most challenging are the user sensor comfortability, computational
complexity, and signal time acquisition. These demanding criteria, particularly the sensor ubiquity over
the user’s body, nowadays make the development of this technology non drop-down, advancing at a slow
pace. However, once it overcomes these difficulties, ECG smartphone authentication may become a
powerful biometric tool because in practice, ECG spoofing would require direct contact with the user’s
body, which renders this technique quite difficult to be hacked.

Independent of the processing unit (i.e., smartphone), during the last years, ECG focus on authenti-
cation has demonstrated an exciting evolution. Since Biel et al. started this research field [169], different
approaches of evaluation have emerged. Among the conventional methods of evaluation are correlation
[170, 171] and machine learning approaches such as Bayesian Networks (BN) [172], Neural Networks
(ANN) [173], k-nearest neighbors (KNN) [174], Naive Bayes (NB) [175], Support vector machines
(SVM) [176, 177], and deep learning [178]. Some examples of features to extract from heartbeats are
the temporal or amplitude distance between distinct fiducials. Also, another set of possible attributes
can be the application of space transformations like Fourier, Wavelet, Hilbert, among others. With these
stack of values, a feature vector can be described.

There are noteworthy surveys that have dealt with ECG authentication, like the one proposed by
Fratini [100], Agrafioti [179], Tantawi [180], and Pinto [181]. However, a common problem in ECG
is the unbalanced comparison between most of researchers models with other classifiers. It happens
because each work creates its own descriptor set and model, but the discrimination score is not widely
contrasted. Cabra et al. [90] point out this problem and evaluate the same feature vector with 19 classi-
fiers, including the model complexity variable estimation.

5.3 Ongoing research and products

This section tackles advances in ECG smartphone authentication oriented to both fields, research and
market. The different set of investigations in Table 9 explore different approaches applied to mobile
ECG authentication. From the hardware perspective, Cherupally et al. [182] and Yin et al. [183] develop
a chip dedicated to user verification, that also includes acquisition, filtering, and a compressed neural
network processing. Also, their chips achieve a power consumption of 62.37 uW [182] and 50.4 uW
[183], a great advantage compared with 31.75 mW [184] with a implementation over a FPGA with a
similar ECG chip solution.

44



Mechanisms of Authentication: Overview Cabra, Parra, Mendez, Trujillo

Arteaga-Falconi et al. performed a low weight algorithm that uses a fiducial-based measure, clas-
sifying their user template with a hierarchical rule procedure [185], testing it with MIT/BIH and own
measures. On the other hand, for prototypes creation and testing, Kang et al. [186] implemented a wrist-
band and Chen et al. [187] a finger acquisition user validator, both with interesting approaches, using
Lead I measure for their ECG authentication.

The studies in Table 9 include their databases capabilities and experiment variable design. These
investigations demonstrate, that categories like silicon integration, power consumption, algorithms opti-
mization, classification performance, and signal analysis could be integrated into a smartphone that has
not been built yet.

Table 9: Mobile-related ECG authentication studies

' ' . ' ' Subjects ' . ' L
Author | Year | Evaluation | Data source | | Technique | Description
| | | | number |
| | EER %: | | | |
| | | . | | | ->Hardware processor
[182] 2020 ->1.36 (8X NNc) 9 different Databases 741 Compressed ANN
! ! ! ! ! I ->NN compression (NNc)
[ [ ->1.21 (4X NNc) [ \ | !
! ! ! Database ! ! !
[183] | 2017 | EER %: 2.18 | . | 645 | Compressed ANN | Hardware processor
| | | ECG-ID& in-house | | |
| | | Database | | . |
[184] | 2015 | EER %: 0.058 | | 90 | Deep Learning | FPGA
ECG-ID
il il il il il
[185] 2016 ! ->TAR: 84.93% FAR: 1.29% | ->MIT/BIH DB | >76 Fiducial-based | Low weight algorithm
I I ->TAR: 81.82% FAR: 1.41% | ->Own lead I acquisition | ->10 | hierarchical scheme |  for mobile devices
T T T T T . T
. Non-fiducial-based i
[186] | 2016 | FAR: 5.2% FRR: 1.9% I Own lead I acquisition | 28 I I Wristband prototype
| | | | | degree of similarity
(1871 ! 2017 ! FAR<10% FRR<10% I Own lead I acquisition ! 50 ‘ ANN I Handheld device prototype

One more category to consider is the electrode location. As the limbs used for smartphone usage
are the hands (Figure 12), Lead I configuration was chosen for this kind of technology. Similarly, in
terms of the comfort variable, Lead I is the most appropriate as confirmed by prototypes [186, 187]. This
situation, with the current sensor technology available and variables considered, limits the mechanisms
available to employ (Section 2.2). Continuous authentication requires a constant contact with the elec-
trodes, and transparent connection needs the fingers free to face the implicit challenge. In consequence,
those mechanisms can not be applicable for now. Therefore, supported by portable and wearable devices,
one-shot related mechanism or challenge-based authentication are deployable and feasible methods for
smartphone unlocking.

Recording Single-Lead EKG

Record EKG

Figure 14: KardiaMobile - AliveCor [188]
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There are different companies that have implemented their mobiles ECG services, overcoming the
acquisition challenge and taking strong steps for direct communication with the smartphone through
wearable or external accessories. For example, KardiaMobile (Figure 14) offers services of portable
heart monitoring, approved by the FDA. KardiaMobile is based on HW and Machine Learning services
and can detect heart abnormalities like arrhythmias and atrial fibrillation among others. It is compatible
with Android and iOS smartphones; indeed, it has been tested as an acquisition instrument for mobile
ECG user verification [185]. In addition, this device offers portability because of its size and weight,
including a phone clip to attach to the back side of the smartphone (Figure 15). More details about
KardiaMobile are in Table 10. Alivecor reported sales over 1 million units of KardiaMobile and funding
of USD $65 million by the Series E Financing in November 2020, including investors like Qualcomm
Ventures and OMRON among others [189, 190].

Figure 15: KardiaMobile portable option [188]

Table 10: KardiaMobile specs [188]

Product Price [USD] ' Features

1.) Dimensions : 8.2 cm x 3.2 cm x 0.35 cm
Two 3 cm x 3 cm stainless steel electrodes
2.) Weight: 18 grams

3.) Power: 3V CR2016 coin cell battery

i
.
|
|
|
|
|
|

200 hours operational time |
|
|
|
|
|
|
|

enacnees

12 months typical use
4.) EKG Characteristics: Single Lead ECG
10 mV peak-to-peak input dynamic range

.
|
|
|
|
|
|
79 :
|
|
|
I 300 samples per second sampling rate
|
|

‘
.
|
|
|
|
|
|

KardiaMobile '
|
|
|
|
|
|
|

16 bit resolution

"

”Your Heart is smarter than you think” is the slogan of CardiolD, a company with strong research
background. With the goal to reduce road accidents, they provide Cardiowheel, (Figure 16) ”an Ad-
vanced Driver Assistance System that acquires the electrocardiogram (ECG) from the driver’s hands to
continuously detect drowsiness, cardiac health problems, and biometric identity recognition”[191]. If an
anomaly is detected, an alert emerges. Cardiowheel acquires the ECG signal during the driver’s journey
through a cover over the wheel, also measuring the road attention (wheel hands-on) and fatigue status
during the journey. The collected information is directed to the cloud for data aggregation analysis,
which is reported via the central station on the dashboard. Their close partners have been Bosh and
CEiiA. Likewise, CardiolD requests Intellectual Property in Portugal, Japan, Korea, USA, among other
countries.
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IGNAL PROCESSING MACHINE LEARNING
ACQUISITION

HEALTH AND WELLBEING
Non-intrusive heart monitoring enablos the detect
multiplo cardiac pathologies.

(o) IDENT!
The electr
afingerprint

Q DROWSINESS AND FATIGUE
Your heart can give an insight about your drowsiness and
fatigue levels.

Figure 16: CardiolD working sequence [191]

Extending Cardiowheel person identification philosophy and technology (Figure 17), CardiolD into
their Internet of Things business line, propose that any object can be virtually reachable with their heart
sensing technology, including smartphones [191], sports (Bikeyourheart), or gaming controllers. Cou-
pled with it, sensors over the keyboard wristpad in critical office facilities monitor employees’ heart
identification and fatigue condition classification, a valuable tool to reduce work accidents.

Figure 17: CardiolD methodology in other contexts [191]

NYMI is a company from the University of Toronto that works with portable ECG authentication
technology. NYMI has facilitated Lead I acquisition with their wristband design. The first electrode is
on the back of the case, allowing for direct contact with the upper-side of the wrist. The second electrode
is over the case and is activated when the user touches it with a finger of the opposite hand (one-shot
mechanism).

(Ov) nymi-

Figure 18: Nymi Band [192]

The NYMI band can be linked with a smartphone through the NYMI app allowing unlocking service
[193]. However, this service has increased to be used in access control in working environments. The
NYMI band procedure starts by wearing the band for an on-body detection that includes both ECG
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and fingerprint authentication (Figure 18). As a consequence, the session remains active until the user
removes the band. Nevertheless, NYMI proposes a traceability environment solution connected with
the entire company network. Taking advantage of the NFC tag also embedded in the NYMI band, that
provides an object-based scheme to trigger local events. This NFC authentication allows activation of
elevators, locked doors, computer session access, ping identity (company permission for information
and applications), digital signature (i.e. turning on specialized machines), and bluetooth within range of
presence recognition. More details about the NYMI band are presented in Table 11. Currently, NYMI’s
Technology Partner Program includes around 100+ companies like SAP, Intel, Siemens, ARM among
others.

Table 11: Nymi specs [192]

Product : Price [USD] ' Features Photo

I
L L
| 1.) Biometric sensors: Fingerpint, ECG |
I 2.) Secure Bluetooth Low Energy (BLE 4.2) \
: 3.) Secure Near-Field Communication (NFC) :
| 4.) Secure Credentials: FIDO2, FIDO (U2F), PIV, Nymi PKI, HID Seos |
I '5.) Protection Ingress Ratings: IP66 & IP67 ‘
: 6.) Power: 3+ day battery life :
| 7.) OLED monochrome display (48 x 64 px) |
| |

|
|
|
|
Nymi : 199 [194]
|
|
|
! 8.) Compliance: FCC, CE, IC, MIC , CMIIT, IMDA

5.4 Current limitations

ECG user authentication is still a growing area that contains several challenges to overcome. One is the
study of the signal variability due to body position. In this situation, a robust classifier would need a
sharp detail in the enrollment phase due to the need to capture the distinct moments when the heartbeat
rhythm changes. In this sense, Porée et al. find the standing position ECG-samples as an average position
with the potential to cover the changing shape present in other postures [195]. Another approach seeks
to estimate first the current posture and then apply a specific verification model; this approximation is
extended in section 5.6.

A further open topic is to determine a proportion of how much the ECG-shape could change when
different activities are done. That is to say, the intra-change study to establish a fiducial or morphological
fluctuation criteria. An example of this idea is climbing up to the sixth floor. In this case, there is a
constant movement but the body exerts more effort each time during the sympathetic nervous system
activation, proportionally altering the heartbeat. An opportunity factor is to evaluate these transition
changes because this variation rate needs a period until stabilization. On the other hand, it is missing a
decision framework that includes a parallel model to follow cardiac behavior and another to establish the
user-veracity. In this circumstance, to the best of our knowledge at this time, there is no study about the
biometric-template modification in a person given a physiological variable change. For example, some
experiments could capture the user heart-dynamics case in the middle-term of a user from their idle state
to a fitness state.

Throughout section 5, we are evaluating the current work in this area and the challenges ahead. In
this vein, a clue option for improving user verification is to add signals related to heart dynamics. In order
to do this, some possible sensor adhesion over the user body might be PPG, accelerometer, or gyroscope.
Besides, all of this data follows the same cardiac phenomenon, revealing relationships between them to
increase the discrimination factor. The idea is to use signals to increase the recognition robustness.
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5.5 Specific acquisition concerns

Assuming an optimal signal acquisition, the three major concerns in ECG recording are baseline wander,
powerline interference, and muscle noise [196]. Other considerations to take into account are [197]:

* Electrode contact noise.

* Noise generated by electronic circuit devices.
» High-frequency noises in the ECG record.

* Breathing or bowel motion.

The joint solution for these kinds of noises is the use of filters. The main goal of eliminating noise is
to improve the relationship between signal to noise without altering the desired information. The ECG
spectrum is from 0.01 Hz to 100 Hz with 90% of spectral energy between 0.25 Hz and 35 Hz [196].
Nowadays, processing computing has increased, shifting the solution to the digital field with software
filters over hardware filters [198].

Muscle noise and the baseline wander are in the range of 0.05 Hz to 2 Hz; in the company of a
high-pass filter, the attenuation task in this interval is completed. The powerline issue 50~60 Hz needs a
notch or band suppressing filter. Other effects covered with a low-pass filter are the powerline harmonics
and the anti-aliasing-filter with cut-off depending on the frequency sampling. Then, to reduce the com-
putational complexity and adjust the system to apply to real-time systems, there are two proposals. First,
to execute the filtering operation between the decimation and interpolation, if the system requirements
allow this preprocessing task. Second, another approach is designing the filters with integer coefficients
avoiding the use of floating point modules which would increase the processing time [198].

There are sophisticated methods for filtering the ECG signal such as neural networks [199], adaptive
filters [200, 201], and wavelet-based filters [202, 200, 203], but those approximations are hardly applica-
ble for real-time operations. However, there are innovations in adaptive filters for real-time applications
[204, 196]. The most applied filters for real-time operations are FIR and IIR, choosing the best per-
formance according to the phase, stability and order characteristics [205]. Moreover, assuming a white
Gaussian additive noise, with the set of mentioned filters it is possible to reduce its bandwidth in respect
to the ECG signal, improves the % ratio.

During the ECG user sampling, not all measures have the same quality score; the cause can be noise,
or electrode contact missing. Under this unavoidable scenario and the solution under low quality, this
latter discards some affected ECG beats guided with some criteria. For example, the removal reference
can be a correlation degree or the mean or median of some peak, or a temporal signal distance within
some serial number of beats.

Regarding thermal noise, its behaviour inspection is with the ECG electrode model, that is a parallel
impedance among a capacitor and a resistor. In consonance with the Association for the Advancement
of Medical Instrumentation (AAMI), the ECG standard for a source impedance is 51 kQ in parallel with
47 nF [206]. The thermal noise presence is expressed in equation 2 with the next parameters: i) 7,
temperature in Kelvins, ii) R is resistance, iii) Af is frequency, iv) k is the Boltzmann constant (1 38723

joule y 'y RMS voltage as e.

Kelvins

¢* = 4kTRAf 2

The impedance of the circuit RC after the conjugate complex separating the real and imaginary values
is as follows in equation 3.

R . WRC
1+ (@RC:? 1+ (wRC)?

3)
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With w =27 f and the equation 3, the square voltage is [207]
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Now, back to the electrode model with a capacitance of 47 nF [206] and a body temperature of 37°C
(310.15°K), the thermal noise for one electrode is 301 nV. The typical ECG voltage range is between 0.1
and 2.5 mV [196]; in comparison with the thermal noise, ECG voltage is more prominent 8200 times.
Therefore, although the thermal noise is a present phenomenon, its value does not affect the measure
dramatically.

5.6 Improvement proposals
5.6.1 ECG verification including some postures and activities

As stated before, according to the body’s needs, the ECG signal changes the heartbeat frequency, making
it slower or faster. However, it is not only the time between each heartbeat that changes but also the
amplitude and width of each fiducial within the PQRST complex that can suffer an alteration. From our
perspective, this is the most challenging issue to face in an ECG authentication, especially during the
training phase.

Commonly, in ECG authentication-related studies, the acquisition samples are taken from a resting
position. Nevertheless, we present some work that expands this position variable for user verification. For
instance, Porée et al. worked with three different testing conditions: supine rest, standing, and exercise
[195], following up their participants for almost 20 months. In the same study, they provided a specific
database by posture. Then, with the set of data collected, they designed an independent classification
model by the three stances covered. The three stance conditions had an acceptable performance using
the correlation coefficient with a shape analysis length between 300 and 800 milliseconds. Consequently,
the next research goal was to study which of the three posture classifications already created could cover
most of the possible heart variations. In this sense, for user verification, the experiments of Porée et al.
suggest the standing-pose classification model that covers supine rest and exercise conditions. Lastly, to
the best of our knowledge, no further work has been continued by Porée et al. in search of a general-pose
that roofs other heart-rhythm postures for ECG user-authentication purposes.

On the other hand, applying machine learning algorithms instead of correlation, Shyan-Lung Lin et
al. [208] evaluated the heartbeat of 26 people after exercise with SVM polynomial kernel, reaching a
recognition rate over 80%. With respect to the use of wearable elements, Peter Christ et al. developed
a WSN chest strap for walking and jogging experiments on a treadmill [209]. In the first scenario, the
classifier obtained an accuracy of 98.1% within a speed between 3-9 k/Tm Then, in a second session it
reaches a rate of 11 k,—’" with the recognition reduced to 93.8%. Moreover, in both cases, a fusion of
either gait and ECG records were used with time and frequency features evaluated with ANN, SVM, and
random forest classifiers. Table 12 presents the collection of Wahabi et al. [210], composed of different
papers oriented to user-recognition, including different postures [211, 212, 213, 179]. In addition, table
12 contains a promising verification rate by work reaching an overall median of 79.5%, with data pro-
vided by the UofTDB database. In this study, the results indicate that ECG identification is possible in
different positions and body activities, without denying the need for more population in new studies.

50



Mechanisms of Authentication: Overview Cabra, Parra, Mendez, Trujillo

Table 12: Detection rate of different methods [210]

Method Posture Sit Stand | Supine | Tripod | Exercise
Chan et al. [211] 88% 94% 94% 96% 84%
Odinaka et al. [212] | 66% 58% 84% 78% 90%
Irvine et al. [213] 78% 88% 84% 82% 92%
Agrafioti et al [179] | 77% 75% 90% 94% 52%

5.6.2 ECG verification including heart disease and substance consumption

Not only can postures and activities alter the ECG signal, but the consumption of certain substances and
some cardiac illness can as well. Odinaka et al. [212] conducted a notable study mixing 269 subjects
with several categories where 40.15% had some heart-related disease, 46.84% used substances that might
alter the ECG signal, and 27.88% were healthy. Among the three sessions, there was a separation from
a week to seven months. The result within-session analysis was an EER of 0.37%; meanwhile, cross-
session recording obtained an EER of around 5.2%.

5.6.3 About ECG lead I and more leads

Most of the current work focuses on Lead I signal acquisition for ECG biometric [179, 100]. However,
there it is possible that in a dataset, when more electrodes and thus more data is available, the possibility
of recognizing the desired category is higher. This section addresses some research that has worked with
a configuration distinct from Lead I. To the best of our knowledge the first work in ECG biometric mea-
suring with a 12-lead was proposed by Biel et al. Their procedure started with PCA for dimensionality
reduction. Next, analysing the correlation matrix, they affirmed that the ECG signal contained redundant
information, and only one lead configuration measure was necessary [169].

As for studies oriented to ECG-acquisition with multiple electrodes for user-recognition, Agrafioti
et al. considered a data fusion experiment with a 12-Lead configuration. During the trial, they found
that the performance in the feature level was not as high as expected, compared with Lead I disposition
[179]. Later, they implemented fusion in the decision-level using a majority vote scheme achieving a
better recognition performance. By the same token Fang et al. created coarse-grained structures with
the phase space trajectory method [214], comparing either single-lead with three-lead, with a rate of
96% and 98%, respectively. In turn, Zhang et al. made use of the Mahalanobis distance with Bayes
discrimination, containing measures from limb I-II and chest V1-V2 leads. Their best results were with
V1 and V2 configuration (figure 19), possibly because these samples had a strong ECG signal by being
near the heart, improving their quality. Alternatively, Jekova et al. [215] studied the optimization of
202 features using 12-lead. After a dimensionality reduction and a classification with LDA, only eleven
features were the most representative, obtaining a sensitivity of 85.3% and a specificity of 86.4%. Their
representative attributes corresponded to different leads: R-amplitude (ILII,V1,V2,V3,V5), S-amplitude
(V1,V2), T),ee amplitude(aVR), and R-duration(aVE,V1).

In short, ECG 12-lead contains several features which can be represented in a small dimension.
Although, in our opinion, based on the previous studies, Lead I configuration is enough for a regular
performance during the person validation.For a proposal of hard acquisition conditions, we deem that
the focus ahead must be on developing adequate materials for the electrodes. In case of a significant
number of invalid heartbeats, it makes it necessary for the application to sacrifice comfort by adding one
more lead. Due to its parallel scheme, an option with multiple Leads measuring is by doing a side by
side authentication, ending with a majority vote evaluation method.
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R o

Figure 19: Positioning of the V1 to V6 leads. From [216]

5.6.4 An approach to T wave contribution

There are applications where the signal quality is low and only recognizable by the QRS complex. This
is because this region contains a large portion of the heartbeat energy [173]. However, as depicted in T
able 13, Lugovaya et al. compared different fragment contribution during the feature selection, showing
that the segment P-QRS-T provides a more discriminative set [217].

Table 13: ECG identification fragments results of Lugovaya et al. [217]

Fragment R P-QR; RS-T | P-QRS-T
| Recognitionrate | 77% | 87% | 76% | 91% |

In comparison, Kyoso et al. [218] extracted four attributes: P wave duration, PQ interval, QRS inter-
val and QT interval. Then, the classification was done by discriminant analysis, using the Mahalanobis
distance. As a result, the outstanding couples were QRS-QT and QRS-PQ, highlighting the influence of
the fiducial T as described table 14.

Table 14: Results of discriminant analysis [218]

P-QRS | P-PQ | P-QT | QRS-PQ | QRS-QT | PQ-QT
76.57 | 56.55 | 57.41 | 85.12 94.20 68.02

Accuracy
mean [%]

On the contrary, Sidek et al. developed the recognition only with the QRS segment tackled in two
papers [173, 219]. In their first work, they achieved a classification of 96.1%, with 30 people having
a normalized QRS with MLP [219]. Then, in their second investigation, they applied the recognition
over smartphones with NB, MLP and KNN, reaching a performance of 99.07% [173]. Unfortunately,
both papers do not provide information on why the authors chose the QRS complex instead of the entire
sequence. In contrast, Silva et al. located electrodes in a car steering wheel to compare the P-QRS-T
and RS-T fragments, evaluating the driver recognition. The results suggest a better performance for the
complete complex, with the second complex results being inside the confidence interval of the P-QRS-T
[220].

The different related papers in this section and others, about the range of participation between the
complex QRS and P-QRS-T are not conclusive [221, 222, 223, 224]. For this reason, we propose an
experiment taking advantage of the scheme of Rezgui et al. scheme that has carefully mapped several
features of the ECG signal [176]. So the purpose was to progressively eliminate the effect of the T
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wave from the set of features, to register and compare the accuracy results. Then, with the attributes
of Tables 15 and 16, the comparison was made with an SVM classifier, accounting for changes in the
feature vector, including and discarding the T-based features. The test was applied to two subjects, each
one against the templates of 89 people. In both cases, acceptance and rejection samples had the same
amount. As a result, Table 17 contains the classifier accuracy discarding one feature at a time, modifying
the feature vector.

Table 15: Temporal and amplitude features. Based on [176]

Extracted

attributes
I.RQH. RL7.RS’[10. S'TTI3. PT
Temporal [2. RS . RP[§.RT [ TI. ST [14. PQ
3 RP|6. RT|9. L'P[12. PQ15. ST
16. PL 17. PQ 18. RQ
19.RS 20. TS 2T.TT

Amplitude

Table 16: Morphological attributes. Based on [176]

H Label [ Description Hl

Pp Maximum amplitude of the positive peak

Pn Maximum amplitude of the negative peak

ArP Area of the positive samples
ArN Area of the negative samples

Ar Area of the QRS complex: Ar = ArP+ArN

Ima Time interval from the QRS complex onset to the maximum positive peak
Imi Time interval from the QRS complex onset to the maximum negative peak
No Number of samples crossing a threshold of 70% of the highest peak amplitude
S1 QRS slope velocity calculated for the time interval between the QRS complex

onset and the first peak
S2 QRS slope velocity calculated for the time interval between the first peak
and the second peak

Table 17: Cumulative accuracy results discarding T features

Al TORT [ ORT [ OST [ OST] OPT [ (ST | OTT
PI[%] | 95.0 94.8 94.8 94.7 94.7 94.6 94.4 94.3
P21%] | 93.7 93.5 93.4 93.3 93.3 93.1 92.7 929

In line with Table 17 in their first and last column, the confusion matrix in Table 18 contains the
values of sensitivity, specificity, precision, and accuracy. Besides, during the classification, there is
a constant value of false positives, which affects the specificity score. Consequently, as T fiducial is
removed, the accuracy results with an SVM Gaussian kernel, decreased by 0.7% and 0.8% for person
one and two. Therefore, this approach detects a minor T wave contribution through the SVM classifier.
In comparison, the next experiment discards P and T contribution and uses only the QRS features of the
same paper: RQ,RS,RS',RQA, RSA,S1 and S2. Therefore, the classification reaches 90% and 92.3%
for person one and two following the results of table 19. In conclusion, the QRS complex is enough
for recognition, but P and T fiducials have essential components that can complement the authentication
rate.

6 Conclusions

From a smartphone authentication perspective, this paper provides a deep understanding of the different
approaches in an authentication service. Thereby, an identity-based authentication orientation, a com-
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Table 18: T contribution with Person #1 and #2

Condition TP TN FP | FN | Sens. Spec. Prec. Accy.
PIwithT | 1235 [ 1128 | 116 9 99.3% | 90.7% | 91.4% | 95.0%
PI

without T | 1237 | 1110 | 134 7 99.4% | 89.2% | 90.2% | 94.3%
P2withT | 1237 [ 1095 | 149 7 99.4% | 88.0% | 89.2% | 93.7%
:)v%thout T | 1236 | 1076 | 168 8 99.4% | 86.5% | 88.0% | 92.9%

Table 19: QRS confusion matrix associated values

TP TN FP | FN Sens. Spec. Prec. Accy.
PI | 1221 | 1019 | 23 | 225 | 84.44% | 97.79% | 98.15% | 90.03%
P2 | 1217 | 1079 | 27 | 165 | 88.06% | 97.56% | 97.83% | 92.28%

parative description, and evaluation of existing biometric traits allowed different operational gaps to be
recognized. This state creates the opportunity to extend the authentication environment with proposals
such as Habitude Pattern Lock and ECG authentication. Habitude Pattern Lock integrates the standard
use of the Pattern Lock but additionally analyze the user drawing habits to enrich the verification state.
Finally, we present the smartphone ECG authentication study offering potential features, related prod-
ucts, and research topics such as current limitations, specific acquisition concerns, and improvement
proposals. This study guides future investigations to make oriented decisions in the use of authentication
services and smartphone biometric-based solutions. As future work for new investigations, we propose
a fusion of dynamic and risk mechanisms, that depending on the peripheral context could prioritize the
best evaluation tool for the user verification.
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