
Blind software-assisted conformance and security assessment of
FIDO2/WebAuthn implementations

Athanasios Vasileios Grammatopoulos1*, Ilias Politis2, Christos Xenakis1

1Systems Security Lab., University of Piraeus, Greece
avgrammatopoulos@ssl-unipi.gr, xenakis@unipi.gr

2InQbit Innovations SRL., Romania
ilias.politis@inqbit.io

Received: December 19, 2021; Accepted: May 18, 2022; Published: June 30, 2022

Abstract

With passwords being a problem in today’s digital world, FIDO2 through WebAuthn brought an
alternative password-less authentication model for web applications and services, which is more us-
able and secure than the legacy password-based systems. The adoption of WebAuthn standard is
undoubtedly a step forward in improving and strengthening online services, however it may carry
potential risks if not implemented correctly. To minimise the risk of leaving implementations vul-
nerable to attacks, a more systematic approach has to be followed for testing and securing emerging
FIDO2 services. Towards this end, the paper proposes a novel tool for testing FIDO2/WebAuthn
implementation’s conformance, configuration and security by analysing the WebAuthn requests and
emulating the client’s WebAuthn responses. The proposed tool and associated tests aim towards
empowering application developers and security auditors with the ability to effectively and quickly
improve WebAuthn implementations by identifying and resolving flaws and security vulnerabilities
in their password-less services. A detailed analysis of various commercial and open source WebAu-
thn services has been conducted, revealing common security weaknesses and faulty configuration,
thus highlighting the significance of the proposed methodology.

Keywords: WebAuthn, FIDO2, Password-less, Authentication, Security, Assessment

1 Introduction

The use of passwords bears security risk for both users and organisations, hence to mitigate such risk
popular password policies require the use of relatively lengthy and complex passwords, while others
suggest the frequent change of old passwords. Although such policies may increase the security, they
compromise the usability of the passwords. Evidently, these policies contribute to the users’ tendency
to use the same or similar passwords, by just slightly modifying them, across multiple websites and
applications. Therefore, the leakage of a single password has the potential to compromise multiple
accounts of a single user. The latter is a major security problem which is often exploited through email
and website phishing [1, 2] or by cracking weak password hashes [3] leaked online through data breaches.

These disadvantages of password authentication methods led to the deployment of multi-factor au-
thentication mechanisms and the development of alternative password-less authentication methods, such

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), 13(2):96-127, June 2022
DOI: 10.22667/JOWUA.2022.06.30.096

*Corresponding author: System Security Lab., University of Pireus, Greece

96

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

as the Fast ID Online (FIDO) framework by the FIDO Alliance [4]. With FIDO, users can use secure
authenticator devices instead of passwords and authenticate with applications and web services easily,
quickly, and securely in a privacy preserving way [5]. Since the release of the first version of W3C’s We-
bAuthn [6] in September 2019, which enabled FIDO2 to be integrate with the web browsers, FIDO has
gained popularity and it is currently supported out-of-the-box by several platforms and websites. WebAu-
thn defines a way to allow web applications to request access and communicate with FIDO authenticator
devices (hardware or software based) to provide FIDO2 registration and authentication services to their
users. During the last years, due to the increase of the support by operating systems, FIDO became avail-
able to a wider range of developers. In the effort to eliminate the password problem, libraries, servers
and tools are required to facilitate the adoption of FIDO2 and WebAuthn.

FIDO’s goal is to bring easy and secure authentication, while mitigating the traditional password
authentication problems. Some of the main advantages of FIDO through WebAuthn are: a) support for
biometric authentication, b) mitigation of phishing attacks targeting credentials, c) strong authentication
through elliptic curve public key cryptography and d) secure authentication across multiple services with
a single authenticator. Although FIDO is based on an easy-to-understand concept (i.e.,that of challenge
and response), the protocol defines a large ecosystem of components across multiple domains. This
complexity which is usually hidden from developers behind an API, (i.e., WebAuthn JavaScript API),
often makes FIDO difficult for developers to understand and adopt correctly within their applications and
services.

There is a need to ensure the correct implementation of the WebAuthn standard on current and future
web based services and improve the security of critical components [7]. The motivation for developing
a novel methodology for assessing the conformance and security of FIDO2/WebAuthn implementations
springs from the need to reduce the developer’s frustration and improve their understanding of the stan-
dard, so that fewer mistakes are made during the implementation and/or the configuration of a WebAuthn
service. There are several complementary approaches to achieve this end goal. Firstly, the production of
in-depth explanatory guides, videos and the development of code playgrounds will lay the basis for more
application developers to incorporate WebAuthn in their designs. Additionally, the development of new
tools to assist developers during the implementation from both the debugging and the testing side should
reduce the occurrence of security flaws in WebAuthn services. Enabling the developers to monitor the
communication between WebAuthn client and the server, while allowing them to emulate various authen-
ticator devices, should allow them to identify and address such issues which otherwise remain obscure.
Finally, an efficient and user-friendly methodology for assessing new implementations and minimise se-
curity faults in production is required. To address all these requirements, new tools and efficient solutions
capable to empower pen-testers to conduct security assessment of emerging applications and services is
required.

The aim of this paper is to introduce a novel methodology to capture and analyze FIDO2/WebAuthn
requests and responses and propose a novel tool to implement this methodology, thus enabling the appli-
cation and services development community with the to deep inspect WebAuthn traffic. To our knowl-
edge we are the first to present such a methodology for evaluating and testing WebAuthn implementa-
tions. Furthermore, we emulated a number of components of the FIDO2 and WebAuthn specification (i.e.
FIDO2 Authenticator, WebAuthn Javascript methods) inside the browser environment to overcome the
limitations of the web context sandbox, allowing us to put our methodology into practice and released an
open-source tool [8] that analyses the WebAuthn requests and conducts assessment tests automatically.
The scope of the proposed solution includes:

• the facilitation of instant inspection of essential for the validation of the information provided by
the FIDO2 server WebAuthn parameters, passed to the authentication;

• the provision of deep decoding and analysis of the authenticator’s WebAuthn response,thus en-

97

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

abling faster debugging of WebAuthn processes at the browser level;

• the featuring of a novel virtual FIDO2 authenticator, which allows for platform independent We-
bAuthn response simulation for implementation testing;

• a WebAuthn playground with the ability to generate custom WebAuthn requests for experimenta-
tion and familiarisation with the WebAuthn API;

• a modular and extensible web tool, which can facilitate the development of new features and
security tests;

Our tool is available on GitHub and as it was developed in components, it can be extended even
further. To prove that, we extended our tools’ supported algorithms to include the first fully functional
WebAuthn post quantum signing algorithm (using FALCON), which we used to develop and test a cus-
tom quantum resistant FIDO2 server.

This paper is an extended version of a paper presented in ARES 2021 [9], including additional
analysis of the proposed methodology, in-depth look into the developed tool, introduction of the tool’s
new testing features and enhancements. Furthermore, this paper takes one step further and evaluates
FIDO2/WebAuthn implementations using the proposed tool.

The rest of the paper is organized as follows. Section 2 includes an overview of the FIDO2 and
WebAuthn protocols and their role in the web application market as well as other related work on the
field. Section 3 analyses the proposed WebAuthn Analyser tool proving detailed of the modules and
components it incorporates. The testing and evaluation sessions which demonstrate the capabilities and
added value of the proposed implementation is included in Section 4, while Section 5 concludes the
paper and highlights the future work.

2 Background

2.1 FIDO2/WebAuthn overview

FIDO2 at its core uses a challenge-response scheme based on public key cryptography as depicted in
Figure 1. The server (i.e., relying party) prepares a challenge in the form of a random value and forwards
it to the client. The client must sign this challenge with a private key and send the signature back to
the server, to prove its identity. Then, the server needs to verify the authenticity of the signature given
by the client using the public key of the user that the client is claiming to be. Prior to the execution of
the challenge response scheme, the server would need to be in possession of the user’s public key. This
simple conception ensures the security of the scheme, the compatibility, and ease of use of FIDO.

FIDO’s ecosystem spans from secure hardware authenticator devices to full scale cloud-based ser-
vices, embedding a wide range of technologies. Looking at the client side, FIDO’s Client to Authentica-
tor Protocols (CTAP1 and CTAP2) define how devices can communicate with FIDO compatible authen-
ticators. FIDO Universal Authentication Framework (UAF) describes how a FIDO UAF server should
communicate with client devices (usually a mobile phone with a fingerprint sensor) to offer password-
less authentication using biometrics. Lastly, the more recent FIDO2, improves the older Universal 2nd
Factor (U2F) authentication, and through WebAuthn JavaScript API and server side WebAuthn libraries
or services, brings FIDO to the web.

2.1.1 FIDO2 in web applications

Through the WebAuthn JavaScript API, web applications are able to request from the browser (WebAu-
thn client) and the underlying operating system credentials creation (i.e., public key pair generation),

98

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

sign challenge
respond with signature

private key

Client

send challenge
wait a response

Server

verify signature

generate random challenge

challenge

signature

public key

Figure 1: Client authentication using challenge-response and public-private key cryptography

private key

Authenticator

sign

relying party ID, challenge

signature, (user handle)

WebAuthn
credentials.get

Browser Server

request to login

challenge

signature, (user handle)

logged in / error validate

public key

Figure 2: Simplified FIDO2/WebAuthn client authentication flow using credentials.get

as well as credentials retrieval (i.e., proof of secret key possession). The credentials creation method,
which is accessible through the JavaScript window.navigator.credentials.create method and
the public key options, defined at the WebAuthn specifications [10], allow the creation of asymmetric
cryptography keys (e.g. ECDSA key-pairs). These keys are bind to the caller web application’s do-
main (relying party id) and a user identifier (user handle) is linking the credentials with an account.
Moreover, through the corresponding credential get method, which is accessible through the JavaScript
window.navigator.credentials.get and its public key options, the web applications can verify the
client’s possession of previously created credentials (key-pairs) by requesting the generation of a random
challenge’s signature. Thus, the identity of a user can be verified through a challenge-response scheme,
as illustrated in Figure 2.

2.1.2 Authentication flow

A typical use case of FIDO2, using the above mentioned JavaScript methods, is an online password-less
authentication. That is, the secure login of a user into a website without the use of a secret password.
Figure 2 depicts the authentication process as a diagram. To start the process, the user loads the website
through a WebAuthn compatible browser and selects to login password-less. The website’s back-end
generates a random high entropy challenge (usually 128 bits or more, as suggested by the specification)
and communicates it with the website’s front-end (the user’s browser). The front-end is then able to
invoke the WebAuthn window.navigator.credentials.get JavaScript method to request from an

99

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

authenticator device to sign the challenge. The browser then sends the challenge along with the website’s
domain name (relying party id) and some more data (list of accepted credentials, list of excluded creden-
tials, extensions etc.) to the available authenticator devices for signing, assuming that on of those authen-
ticators possesses a key pair for the website in question (or one of the key pairs requested). Depending
on the system and the support, the browser may contact the authenticator devices directly through the
CTAP protocol [11] or call custom methods of OS specific WebAuthn Client implementations (such as
Android’s FIDO2 API [12]). Eventually, the browser gets a response that then parses and forwards to
the corresponding JavaScript handler. The response includes the identifier of the key used for generat-
ing the signature (credentials id), the actual signature, the data structure used to generate the signature
as reported by the authenticator, a user identifier (user handle), a signature counter and several flags.
Then the website’s front-end forwards the response data to the relying party’s back-end (the web appli-
cation server) for verification. Upon successful verification, the user is logged in and his session (usually
implemented using cookies) is updated.

The described use case assumes that the authenticator supports resident keys (i.e., discoverable cre-
dentials) and can report back the user identifier (user handle). To support older U2F authenticators, or to
avoid storing information on the authenticator device (leveraging key wrapping techniques), web pages
may store previously used account identifiers as cookies or at the local storage of the browser and in-
clude them at the initial challenge creation request. This way the web pages can provide the account’s
identifier to the server enabling the latter to return along with the challenge a list of credential IDs reg-
istered for this account. This list of credentials could then be added on the invocation of the WebAuthn
window.navigator.credentials.get. A similar process can be used for second factor authentica-
tion flows, as the user’s identifier should already be known through the active session. This later method
could also be used when there is a need to re-authenticate an already authenticated user, commonly used
to renew sessions of returning users,by requesting a fingerprint or PIN authentication when relaunching
a mobile application (usually found on banking related applications).

A true password-less authentication without the need to provide any username or password requires
information to be stored on the authenticator device, which may increase the cost of the authenticator,
limit the maximum number of keys that can be generated and need key management utilities to be able
to remove stored keys not needed any more. On the other hand, the password-less authentication, which
requires the knowledge of an account’s identifier (e.g., a username) does not share such limitations, since
the information can be wrapped securely and stored at the relying party’s server, through server-side
credential storage modality.

2.1.3 Registration flow

Prior to FIDO2’s authentication process, clients would need to register an authenticator device with the
relying party server. During the registration process, shown in Figure 3, the client can generate a public-
private key pair supported by the relying party server and send the public key along with its credentials
identifier to the server, to be saved and linked with the client’s account. To register an authenticator, the
client should already be logged into the website, hence, a session linked to an account would already be
set up. The registration process starts with a request for credentials creation, created by the WebAuthn
client, for a challenge generation by the server. The server will return a random challenge and a user
handle, linked to the user’s account, a list of supported credentials types (e.g., ECDSA or, RSASSA-PSS
or RSASSA-PKCS1-v1.5), authenticator filtering criteria (e.g., allow only external authenticators), a list
of already registered credentials (to exclude already registered authenticators) and the server’s preference
for authenticator attestation (to request information about the used authenticator device). These param-
eters can be used as options when calling the window.navigator.credentials.create JavaScript
method (as defined by the WebAuthn specification) to request credentials creation. After the credentials

100

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

private key

Authenticator

generate

key pair

relying party ID, challenge, user handle

key id, public key, (device attestation)

WebAuthn
credentials.create

Browser Server

request to register authenticator

challenge, user handle

key id, public key, (device attestation)

registered / error
validate

& store

public key

Figure 3: Simplified FIDO2/WebAuthn authenticator device registration flow
using credentials.create

creation procedure is handled by an authenticator device successfully, the browser will return the created
credentials to the appropriate JavaScript handler defined by the method caller. The response includes
the generated credentials identifier, the generated public key, the challenge generated by the server and
device attestation data (e.g., a device certificate). The received data are forwarded to the relying party
server. Upon receiving the data, the server will first validate the provided information and then store at
least the credentials identifier and the public key under the account the challenge was generated.

2.1.4 Security mechanics

One of the main features of WebAuthn that makes it unique with respect to other authentication methods
is that it is resistant to phishing attacks. By design its methods do not allow cross domain credentials
access unless, they are created under the same top domain. Thus fraudulent websites are not able request
authentication for another legitimate website. This is achieved through the web browser’s validation of
the relying party id of the request, which should be the domain name of the website (note that authenti-
cator devices should bind the credentials with the relying party id and the user handle.

To ensure the integrity and the confidentiality of the processes described above, web browsers expose
the WebAuthn API only under secure context (web pages loaded under HTTPS), with the exception of
“localhost” origins that are commonly used for development purposes. By requiring HTTPS, the browser
can assure the authenticity of the server (by validating the server’s certificate) and thus mitigate man-in-
the-middle attacks at the network traffic level. In simple terms, to secure the schema, FIDO builds a
trusted communication channel between the relying party and authenticator device.

Form the relying party’s side, in order to validate the correct execution of the authentication process,
the server has to verify a number of information returned on the response apart from just the signature.
First, the challenge returned should match the one generated by the server. To ensure the use of a correct
key used, the credential identifier returned should be already registered to the user account in question
and bind under the user identifier received (if one was returned). In the case of challenge generation
for a specific user (U2F or second factor), the user id should be temporary stored upon the challenge
generation and cross checked after the response. Additionally, since the challenges are generated for use
within a limited time frame, the server should expire unused challenges. To protect users against cloned
authenticator devices, the server may also save for each credentials the signature counter and ensure that
for every authentication procedure this number increases. Lastly, the server may check the flags returned

101

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

by the authenticator and check, for example, whether the user interacted with the authenticator device
(which may be required for security reasons).

Depending on the relying party’s policies, the authenticator’s attestation data can also be requested
and used to assess the authenticator device information provided by the FIDO metadata service. For
example, a server may try to identify whether an authenticator device is among the white-listed devices
supported by the service or furthermore save the model information of the device to unregister authenti-
cators if they were to be found vulnerable in the future (e.g., due to an exploit or leak of the manufacture’s
master keys).

FIDO2/WebAuthn servers must take into consideration several things in order to correctly validate a
response. That complexity makes it difficult to develop FIDO2 services without the use of a FIDO2 server
or a FIDO2/WebAuthn library. However, even with the use of 3rd party software to handle the verification
process, still, the service may be left vulnerable to attacks due to poor or faulty configuration. To give
some examples, in many cases developers don’t configure the services not to use deprecated algorithms,
and don’t handle invalid signature counter errors appropriately (by disabling the authenticator device).
Hence it is essential for the developers to deeply understand how FIDO2 and WebAuthn work, to deploy
such solutions even if a 3rd party library or a server is handling the registration and authentication flows.

2.1.5 Types of authenticator devices

FIDO authenticators can be categorized based on their type into two categories, platform authenticators
and cross-platform authenticators. Cross platform authenticators are external devices that connect with
the system through USB, NFC, or Bluetooth (e.g., USB Keys or NFC Keys) and communicate through
FIDO’s CTAP1 and CTAP2 protocols. On the other hand, platform authenticators are embedded into
the system (e.g., Android internal authenticator, Windows Hello authenticator) and may communicate
with applications directly through the underlined system’s calls and libraries (e.g., Microsoft WebAuthN
Win32 headers [13]). Independent of the type of an authenticator, the device should be able to protect
the private keys so that they cannot be extracted by an adversary that may have physical access to it.

Another practical characteristic that we can use to categorize the authenticator devices is the available
methods they support to verify the user presence. Although the authenticator itself is a way the user to
prove possession of the authenticator it self, in many cases the authenticator will have to verify the user’s
identity first before executing an FIDO/WebAuthn operation. Many authenticators (usually mobile or
laptop devices) leverage access to bio-metrics sensors (e.g., fingerprint, face recognition, iris scan) to
securely verify the user. Other simpler (usually USB cross-platform) authenticator devices features just
a button, which the user press to verify its presence. To mitigate the risk of unauthorized use of such a
FIDO2 device, an operation system may also ask the user for a PIN to authenticate him.

2.1.6 Authenticator device attestation

The WebAuthn requirement of a secure connection (through HTTPS) not only protects the information
exchanged between the client and the server but also verifies the authenticity of the server (managed
by the relying party), through the trusted certificate issued to the domain name used by the service. In
a similar way, depending on the application needs of a WebAuthn deployment, the relying party may
want to verify that the client’s authenticator device is compliant with its policies. For example, the re-
lying party may have to verify before registering a new authenticator device, that this new device has
the appropriate security level required by the service’s security policy. To achieve this, the relying party
server may request additional attestation information from the authenticator device, during the registra-
tion phase, and assess them before finalising the registration process. The returned attestation statement
would ideally prove the original identity of the authenticator device or verify the trustworthiness of the

102

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

device. Depending on the attestation conveyance method, the authenticator may return its Authenticator
Attestation GUID (AAGUID), exposing the authenticator’s maker and model, as well as provide a way to
verify its authenticity (e.g., by providing a certificate). Furthermore, using an authenticator’s AAGUID,
relying parties may query the FIDO Alliance Metadata Service (MDS) [14, 15], to get more information
about the authenticator device (e.g., authenticator security level, available user verification methods and
combinations) and verify any attestation certificate returned.

Nevertheless, such an attestation of the authenticator device may expose too much information (e.g.,
Authenticator Model and Number), which may be used to track a user between multiple services. For this
reason, an attestation conveyance preference can be defined, stating the relying party’s preference to, no
attestation (“none”), anonymised attestation through a CA (“indirect”), or authenticator generated attes-
tation (“direct” or “enterprise”). Thus, authenticator devices respond with different attestation responses
based on the requested preference and their supported attestations or ignore the suggested attestation
opting for user privacy. The relying party from its side, may have to reject the authenticator registration
if the needed attestation statement returned is not supported or the given or retrieved information does
not satisfy its policies (e.g., due to failure of verifying any given certificate).

To allow the extension of the available attestation information, plug-able Attestation Statement For-
mats are supported by WebAuthn. Due to the nature of this scheme, the implementation of a relying party
may not support all of the attestation statement formats. The latest WebAuthn standard [16] describes the
following attestation statement formats: None, Packed, TPM, Android Key, Android SafetyNet, FIDO
U2F and Apple Anonymous. The corresponding Attestation Statement Format Identifier values are listed
and maintained in the appropriate registry by IANA [17].

2.2 Related work

Due to the relative recent standardization of WebAuthn, the scientific literature is lacking of research
papers and studies on the field of developing and testing FIDO2/WebAuthn services implementations.
FIDO Alliance offers a certification program [18] for FIDO2 servers, focusing on conformance and self-
validation to ensure interoperability testing rather than their security. This is not the case for authenticator
devices though, as the equivalent certification [19] not only focused on the conformance but also on the
security level of the device.

The most relevant documentation of research activities related to WebAuthn services implementa-
tions are either in the form of websites with WebAuthn demo implementations, or ”offline” decoder
tools. Demo WebAuthn websites [20] mostly showcase the FIDO2/WebAuthn processes, while others
reveal parts of their own parameters or the returned response (as the interactive WebAuthn debugger [21]
and the work in [22, 23]). Such demo applications, can be used to test the client-side implementations,
demonstrating that the FIDO2 technology is currently available, rather than serve as tools designed for
developers to test or debug server-side FIDO2 implementations.

Apart from these demos, developer tools for analysing WebAuthn traffic (usually called “debuggers”)
can be found online. Such tools, take as an input a JSON version of the whole WebAuthn response or
just a Base64 representation of the values and decode it (for example the WebAuthn Previewer [24, 25]
or the fido2viewer [26]), which can be used by developers to unpack, decode or even validate WebAuthn
traffic, though the capturing and analysis has to be done manually.

The proposed solution which is inspired by the above-mentioned demos and the analysers, uses
JavaScript to connect all these functionalities and many more directly to third party external implemen-
tations.This paper can be considered as the first systematic research work on the assessment of WebAuthn
services.

103

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

3 WebAuthn Analyzer tool

Following the overview of the FIDO2/WebAuthn operations, it is evident that the appropriate imple-
mentation of the standard is not trivial and the application developers could benefit from effective and
easy-to-use tools that would shed light into the functionalities of WebAuthn. Since the adaptation of
standards does not always follow the appropriate paths, it results in poor implementations with various
vulnerabilities. It is important to facilitate a smooth and correct adoption of standard associated with
critical modules [7]. For the purposes of this work, the standard involves the authentication of users
considering the needs of the developers.

The invocation of credential creation and get JavaScript methods requires the correct configuration
of the public key options by the web application. In most cases these options are automatically generated
by the web application’s back-end. Usually a specialised FIDO/WebAuthn library or server without or
minimum configuration from the developers and the service administrators. The generated options are
passed to the application’s front-end, which uses them accordingly to contact the authenticator devices.
Since the output and input data are generated and validated at the back-end, it is quite difficult to monitor,
debug or assess the correct execution of the process at the client side (front-end). Due to this automati-
zation and simplification, quite often developers who may not be specialised in WebAuthn, do not have
a clear view and understanding of the information passed to and from the client-side JavaScript methods
as they see the system as a black box. This lack of understanding and obscurity of WebAuthn may cause
miss-configuration problems producing unintended bugs and even security flaws which may be hard to
identify and resolve.

The current processes for debugging and testing WebAuthn are complicated and time consuming as
they require to retrieve the data given by the server or returned by the authenticator. Furthermore, they
need manual effort to unpack the encoded values which requires deep understanding of the WebAuthn
specification. The same complexity can be observed during the review of the information passed from
the relying party server to validate the correct configuration and implementation of the FIDO2 back-end
as well as, the compliance with the WebAuthn. This lack of tools for aiding the developers in conducting
essential analysis of the WebAuthn traffic, leave the implementations prone to miss-configuration errors,
security vulnerabilities or even policy violations.

Moreover, the lack of appropriate testing tools for developers and security testers makes it difficult
to ensure the trustworthiness of FIDO services. To avoid insecure implementations or vulnerable miss-
configuration of FIDO2/WebAuthn as well as, to aid developers and increase their productivity, more
effective and easy-to-use developer and penetration testing tools targeting WebAuthn are needed. In this
work, an innovative methodology used to capture and analyse FIDO2/WebAuthn requests and responses
is described. The developed solutions provide the developers with the right tools needed to assess We-
bAuthn implementations. Specifically, the proposed solution:

• sets up a WebAuthn playground with the ability to generate custom WebAuthn requests (for ex-
perimentation and getting familiar with WebAuthn API);

• enables instant inspection of the WebAuthn parameters passed to the authentication (essential for
validation of the information given by the FIDO2 server);

• allows the deep decoding and analysis of the WebAuthn response from the authenticators (facili-
tating faster debugging of WebAuthn processes at the browser level);

• features a novel virtual FIDO2 authenticator (to allow for platform independent WebAuthn re-
sponse simulation for implementation testing);

104

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Hijacker

Credentials Manager

Credentials Analyzers

Credentials
Creation Analyzer

Credentials
Get Analyzer

Virtual
Authenticator

3rd Party
Application

Communication

Manager

User

Application Context Annalyzer Context

Figure 4: Main modules of WebDevAuthn inside each particular context,
indicating user interaction points

• provides the appropriate tools to experiment with new cryptographic algorithms without the need
of specialised hardware authenticators;

• provides an automated assessment of the passed WebAuthn parameters highlighting invalid or
insecure configurations and compliance to the standard (important for identifying common mis-
configuration and security flaws);

• provides various server testing methods to emulate attacks or malicious behaviour (needed to as-
sess WebAuthn implementations);

This section describes the web tool implemented to capture FIDO2/WebAuthn requests and re-
sponses, for analysis and human inspection, as well as for conducting several conformance and security
tests on the server. The proposed implementation enables users to assess the conformance and security
of a WebAuthn service, get familiar with the WebAuthn JavaScript API or test and analyze responses
from FIDO authenticators. The WebDevAuthn tool consists of the following main modules, also shown
in Figure 4, which will be described in more details in the following sections:

• the Hijacker in the form of a browser extension or a website script for development servers,

• the Communication Manager, used to pipe data between the hijacker and the analyzer,

• the Credentials Analyzers that handles and analyses credentials requests and responses, composed
by:

– the Credentials Creation Analyzer, responsible for analyzing credentials creation requests
and responses

– and the Credentials Get Analyzer, responsible for analyzing credentials get requests and
responses,

• the Credentials Manager, tasked to manage all the key information credentials storage used by
the rest of the tool’s modules,

• lastly, the Virtual Authentication, able to create and retrieve custom virtual keys for cross domain
use and authenticator simulation.

105

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Application Code

Credentials

Create Call
parameters

response

WebAuthn API Code

Analyse

Parameters

Credentials

Creation Handler

Analyse

Response

Credentials

Create Handler

Application Context

Figure 5: Code flow of an application calling the credentials create method. To inspect the parameters
or the response, custom code will have to be deployed on the application’s main code as the WebAuthn
API code is implemented by the browser.

3.1 Hijacker

The Hijacker module is responsible for injecting code into the targeted web application and intercepting
credentials create and credentials get WebAuthn method calls. If the Hijacker is configured to use the
virtual authenticator to handle the request, the intercepted WebAuthn calls parameters will be are packed
and forwarded directly to the credentials creations or get analyser module depending on their type and
wait for a response to complete the request. Otherwise, if it is configured to use a real authenticator
device, the parameters will first be forwarded to the original WebAuthn methods of the browser and
then packed and passed along with the returned response to the appropriate analyser. For the proposed
implementation the Hijacker can be deployed as a browser extension (featuring a control panel user
interface) or as a configurable JavaScript script included on the web application (either through the web
browser’s developer tools JavaScript console or as a web page script). To hijack the WebAuthn methods,
they are overwritten with custom code. Two instances of the original methods are stored in two private
variables so as to be able to call them when needed. The Hijacker simulates the behavior of the original
methods (returning a promise) and tries to format the response appropriately, so that no change in the
application code is needed. Figure 5 shows a normal WebAuthn call flow, while the same flow with the
Hijacker injected is shown in Figure 6.

Using the Hijacker, the developers can capture the WebAuthn requests and responses without having
to manually edit any part of their application code, thus making the capturing easy and practical by
automating, simplifying, and speeding up the process. Furthermore, the captured traffic is now being
forwarded to the appropriate analyser module where a more advance inspection can take place. We also
have to note that by loading the hijacker as a browser extension, it works out of the box with almost any
WebAuthn enabled application.

3.2 Communication Manager

The Communication Manager module is responsible for setting up a cross-origin communication chan-
nel between the hijacker and the credential creation or get analysers. Additionally, it is responsible to
encode the data appropriately before transmitting them and decoding them upon reception. To set up
a connection, the Communication Manager first creates a new instance of the appropriate credentials

106

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

appexample.com

Application’s

Code

analyserexample.com

Analyse Data

Application Context Analyser Context

Hijack Code

Figure 6: Analyze data through method hijacking code injection
and cross domain web page communication

Application Code

parameters

serialised parameters

serialised parameters

parameters

response

serialised response

serialised response
response

Credentials

Create Call

Credentials

Creation Handler

Credentials
Create

Handler

Analyse

parameters

Analyse

response

Hijacker Code WebAuthn API Code Analyser Code

Application Context Analyser Context

Figure 7: Code flow of an application calling the credentials create method through hijacking. The
analysis of the traffic can be implemented independently from the application code flow on a separate
website

analyser module by opening a new window, as a conclusion the user may be prompt by the browser
to allow popup windows. Following the instance creation, the communication channel is created based
on JavaScript cross-origin communication mechanics (message posting [27]). Custom serialisation and
de-serialisation mechanics (based on JSON) are used to exchange the data between the modules. The
overall flow of the information from the Hijacker to one of the credentials analyser modules through the
channel set up by the Communication Manager is shown on Figure 7.

The Communication Manager module enables the transmission of the captured traffic outside the
context of the application. This allows for the development of a custom analyser application and user in-
terface to facilitate the analysis of the captured traffic separated from the application code. Furthermore,
by separating the analyser context from the application context, the same analyser code can be used to
analyse the traffic from various WebAuthn applications. Essentially for the developers this allows the

107

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Options Selection by the user

Options Generation

Options Analysis

Analyse Response

User Invoke Credentials

Create/Get

Credentials Create/Get

Response Handler

options

response

Browser Handle Request &

Return Response

Receive Options from

External Applications

External

Application Code
Analyser Code

WebAuthn API Code

Figure 8: Analyser’s code flow for handling credentials create & get requests

automatically extraction of the traffic for inspection and analysis in a separate external tool.

3.3 Credentials Analyzers modules

The Credentials Creation Analyser and the Credentials Get Analyser modules are the main modules of
the tool responsible for analysing the server generated WebAuthn parameters (response) and the authen-
ticator returned data (response), as shown in Figure 8. The analysis includes the assessment of the given
parameters (request), the unpacking of the response and the display of the information in human readable
formats.

Firstly, the supplied WebAuthn options (public key credentials creation [28] or get options [29]) are
supplied to the appropriate Credentials Analyzer module and are been decoded based on the WebAuthn
specification. The Analyzer then prints all the options information (e.g., the relying party id, the chal-
lenge) in a human readable format. Then the Analyser check whether the passed options are following
the WebAuthn standard and prints in the note section any deviation. Furthermore, the Analysers will
look for invalid options or insecure configurations. On top of that, tests are conducted on various infor-
mation such as the challenge to check its randomness and the user handle to determined if it leaks private
information (e.g., an email or a phone number is used). Secondly, the Analyzer modules will unpack
and decode any authenticator response into a human-readable form. For credential creation responses,
they are even able to unpack some attestation formats of the device (e.g., allow the export of the device
certificate) and even return the generated credentials public key.

Such an analysis and assessment of the request parameters can instantly pinpoint any invalid im-
plementation of configuration and also give an insight into what exactly the web application is going
to request from the WebAuthn method. The Analyzer modules are not only helpful for inspecting the
request parameters, as they can also play an even more essential role in analyzing the request responses.
Through the analysis of responses, they could process the packed information and decode them into a
human-readable form. This allows developers to deep inspect the WebAuthn traffic without editing their
application code, in an easy and fast way. Moreover, these modules provide an automated advanced
analysis (e.g., values decoding and unpacking) and assessment of the request (e.g., conformance testing
of the parameters) available for almost every WebAuthn application, which otherwise was not available

108

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

to the developers and penetration testers.

3.3.1 Credentials Creation Analyzer module

The Credentials Creation Analyzer module presents a friendly user interface, featuring commonly used
interface elements such as text inputs, drop-downs, tabs etc., through which users can craft custom We-
bAuthn credentials creation request options. The crafted request options are printed on the page and
could be analyzed before forwarding them through the WebAuthn navigation.credentials.create

method invocation. After the successful execution of the credential’s creation method, the credentials re-
sponse object returned is analyzed by the tool and it is presented to the user. The analysis of the response
includes the unpacking and decoding of packed and encoded fields respectively, to human readable for-
mats. The analysis of both the credentials creation options and the credentials response object can be
used by developers to understand how FIDO2/WebAuthn credentials creation and authenticator device
registration works internally. Additionally, developers can craft specific creation options for testing a
particular authenticator or how a particular system handles the requests. In this concept, developers may
also inspect the analyzed response of a specific authenticator and possibly identify problems or incom-
patibilities (e.g., identify authenticator’s attestation format that may not be supported by their backend
FIDO2/WebAuthn implementation).

In collaboration with the Hijacker, the module can also let developers analyse request coming from
3rd party websites. During this process, the module is able to conduct automatic conformance testing on
the given request options to identify implementation problems such as invalid use of the API, insecure
configurations and private information leakage.

3.3.2 Credentials Get Analyzer module

The Credentials Get Analyzer module follows the same approach to the credential’s creation page, as
shown in Figure 8 for both modules. This module features a similar interface through which users may
craft custom WebAuthn credentials get request options according to their needs. Similarly to Credentials
Creation module, the generated options are printed on the web page in a human friendly format for in-
spection by the user. These options can then be used to invoke the WebAuthn navigation.credentials.get
method. The credentials response object returned by the browser is analyzed by the tool and it is pre-
sented to the user, following the successful retrieval of the credentials get assertion. The in-depth analysis
of the response includes the unpacking and decoding of packed and encoded fields into human readable
formats for ease of use (e.g., expose the authenticator counter).

The proposed tool’s credentials get module’s functionalities can be used by developers to understand
the FIDO2/WebAuthn credential possession assertion and user authentication process, as the proposed
tool exposes all the information exchanged between a relying party and an authenticator device. Addi-
tionally, the tool lets developers tweak the credentials get options and live test their authenticator devices
as well as the underlying client system’s behaviour.

3.4 Credentials Manager

The Credentials Manager module is responsible for the storage, retrieves and management of credentials
between the analyzer’s modules. It lets the user view the information of the credentials generated through
the tool and allows the user to delete information of credentials that are not needed any more. Further-
more, it gives access and shows the information of the resident keys stored inside the virtual authenticator
device, which can be used for debugging purposes.

The tool stores various credentials-related information, as shown in Table 1. The User Handle is
the identifier linked to the user’s account, defined by the relying party server on the passed parameters.

109

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Table 1: Authenticator registered key-pair information logged by Credentials Manager

Key Value Type
User Handle bNb6OCv3o8PCgq-HtHHxp2ssYlCQw8ttgLi1e0ElpPs Base64

KeyID

GramThanos_aDFQfGhSwubOsvkKfvE_ebfbho-XhO_MirRuDsuNxB5mSAkTGGcSxu8FD5Z

x8fOjPPWrFYP7SCXz-Y2ahcTKK_MrwyCqeuJcCAmokC8GbqePUttNSR9hFUnsT_oateG1v

x0x5iyLDtHtTv5B-8ps-DVPcQsIcr9GMRZw3slzjFFvs_Ipwr_enkOYSKLXU0GW2UOUes_

3FPcqEggMZ4AQ5qHMkGpBhAL1VkSRidlYyeVDqToICaBzwVHW3rPkow3ObmrKYzcBnHeci

XVr-eN1E-_uS1Yy11vhv2d55sAA5NXMzBKsPUU1TE-ySNfamK3C0FBtPpUHML73uw34S5h

Vt3s0mQW68kZL6FbxWgedFlNbJutGcIOo

Base64

Origin https://webauthn.ddns.net URL
Date Created 2021-09-19T18:44:10.547Z Date
Authenticator virtual Text

Code 1: Decrypted credentials information wrapped inside a KeyID value

{
” v ” : 1 , / / V e r s i o n
” r ” : ” webauthn . ddns . n e t ” , / / O r i g i n
” u ” : ”bNb6OCv3o8PCgq−HtHHxp2ssYlCQw8ttgLi1e0ElpPs ” , / / User Handle
” c ” : ” k t r k j b t b ” , / / Date (encoded)
” a ” : −7 , / / A lgo r i t hm code
” k ” : { / / F o r m a t t e d P r i v a t e Key

” x ” : ”−XzBP4uT5P−iXMDgUCtFtJVfw4VB6ZYzERYyINnDqU8 ” ,
” y ” : ” DZ709D2ovj8G2rB5dVTpZp8XBE4v9jA1TKTLa7NIlbk ” ,
” c r v ” : ”P −256” ,
” e x t ” : t r u e ,
” k t y ” : ”EC” ,
” k e y o p s ” : [” v e r i f y ”]

}
}

The KeyID, is the identifier of the created public-private key pair, returned by the authenticator, and
depending on the authenticator implementation, it may be need to be included for the credentials get
options generation. The manager also saves the Origin value so that the credentials can be retrieved
based on the request origin. Furthermore, the credentials creation date is saved of helping the user
distinguish them. This credential information is saved on the browser’s local Storage and are retrieved
by JavaScript when needed.

For credentials generated by the virtual authenticator, the Credentials Manager module also allows
for the decryption of the KeyID values and thus the recovery of the public-private key pair info secure
wrapped inside, as shown in Code 1.

3.5 Virtual Authenticator

We developed on novel virtual (software-based) authenticator device scripted in Javascript, embedded
inside our tool, in order to allow the creation of custom credentials and WebAuthn response for requests
originating outside the domain of our tool. In this way, we bypassed the security restrictions set up by
the browser and the underlining system, both at the software (e.g., the Operating System) and hardware
level (e.g., a USB authenticator) by simulating all the process from WebAuthn browser API down to the
FIDO authenticator. Furthermore, our software authenticator gives us full control of its functionalities,
and access to all the information generated, stored, or transmitted (e.g., public-private key pairs) allowing
us to tamper with them and conduct custom tests.

We developed the authenticator to take as generate valid WebAuthn responses so that it could be used

110

https://webauthn.ddns.net

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Options Selection by the user

Options Generation

Options Analysis

Analyse Response

User Invoke Credentials

Create/Get

Credentials Create/Get

Response Handler

options

response

Virtual Authenticator Handle

Request & Return Response

Receive Options from

External Applications

External

Application Code
Analyser Code

Virtual Authenticator

WebAuthn API Code

Figure 9: Analyzer’s code flow for handling credentials create & get modules
using an embedded virtual authenticator

with 3rd party FIDO2/WebAuthn services (password-less registration and/or authentication services) as
if they were crafted by a WebAuthn compatible web browser and a compliant FIDO authenticator device.
Such a flow of information sourced from a 3rd party service is shown in Figure 9 where our tool’s virtual
authenticator is used to reply to the WebAuthn requests.

The virtual authenticator device runs seemingly on our analyzer’s web page context provided that the
browser supported the Web Cryptography API [30] used to conduct most of its cryptographic operations,
and thus, the proposed implementation can run on any modern browser. The use of the web browser’s
cryptography API allows the fast and secure operation of the authenticator without any noticeable delay.

Our virtual authenticator was primary developed to facilitate the conduction of tests using custom
WebAuthn responses, though due to its portability, it can also be used to extend the FIDO2 attack vector
as it can be used for malicious purposes. For example, our implementation can be used as a proof-of-
concept (PoC) to generate and bind additional custom authenticator devices under a victim’s account,
after exploiting a cross-site-scripting (XSS) vulnerability on a web application, essential setting up a
backdoor to the account.

In the following sections, we will give insights in the features supported by the latest version of our
virtual WebAuthn authenticator device. We will start by listing the cryptography algorithms supported,
then move to the mechanics used by the authenticator to generate, handle and store public-private key
pairs (credentials) and then analyse the attestation formats that it can generate and return to the server.

3.5.1 Credentials

In terms of public key pairs generation, our virtual authentication implementation is currently able to
generate and use various popular public private key signature algorithms. Specifically, the following
algorithms and schemes are supported (codes in parentheses are based on the IANA COSE Algorithms
[31] registry):

• Elliptic Curve Digital Signature Algorithm (ECDSA) with SHA-256 (-7), SHA-384 (-35) and

111

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

SHA-512 (-36);

• RSA Probabilistic Signature Scheme (RSASSA-PSS) with SHA-256 (-37), SHA-384 (-38) and
SHA-512 (-39);

• Signature Scheme with Appendix as first standardized in version 1.5 of PKCS #1 (RSASSA-
PKCS1-v1 5) with SHA-1 (-65535), SHA-256 (-257), SHA-384 (-258) and SHA-512 (-259);

• Fast-Fourier Lattice-based Compact Signatures over NTRU (FALCON) with 256, 512 and 1024
variants (custom implementation);

The virtual authenticator can be upgraded to support more public private key algorithms and schemes
by extending the appropriate section of the code. This can be achieved by using algorithms or schemes
already supported by a browser’s Web Cryptography API implementation, or extending it to support
more using Javascript libraries. Specifically, to demonstrate the possible applications of this and also to
kick start the discussion on quantum resistant algorithms on FIDO and WebAuthn, we implemented the
above mentioned FALCON [32] algorithm using Emscripten and the source code submitted on the Post
Quantum NIST competition round 3 [33]. We used the virtual authenticator’s FALCON implementation
to test and develop our open-source quantum resistant FIDO2 server [34] implementation and our FIDO2
SDK kit [35]. To our knowledge this is the first working implementation of quantum resistant FIDO2
password-less authentication.

3.5.2 Key wrapping

Through a key wrapping process where private key information is securely encrypted and wrapped inside
a value, authenticators can store the generated credentials at the FIDO2/WebAuthn server by passing
that value as a KeyID (credentials ID). This method, known as server-side credential storage modality
strategy, allow the authenticator to support an unlimited number of keys and also eliminate the need for
large storage resources.

Instead of requesting authentication with any credentials generated for that particular relying party,
authentication could also be deployed by having the server supply the user’s credentials ids in a list (list of
wrapped keys values). This method resembles the older U2F functionality of FIDO, where the account
for which we are authenticating against, must be known prior to the initiation of the process, so that
the list of associated credentials ids can be recovered, hence working as a second-factor authentication.
When the server has no knowledge of the account to be authenticated, and starts the authentication
process, the authenticator would have to provide this information (as the user handle parameter) through
the use of a resident key (also known as discoverable credentials).

Many security FIDO2/FIDOU2F key manufacturers are using the key wrapping approach so that
their keys do not run out of storage. We can assume that this also reduce the cost of the authenticator
device as it may reduce the hardware and software requirements needed to store and manage credential
information. To support an unlimited number of keys without the need for storage, our virtual authenti-
cator implementation, wraps the private key (along with other authenticator data) in an AES-GSM with
a 256-bit key size. In this way, our implementation can be used across different machines or browsers
without the need to copy data. To ensure not only the the recovery of the private key, but also the recov-
ery of its state and the future compatibility of the generated credentials, the following information are
wrapped to generate the a credentials ID:

• Authenticator Format Version (currently 1);

• Relying Party ID (the id given during credentials creation);

112

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

• User Handle (the user id given during credentials creation);

• Credentials Creation Date;

• Key Pair Data (depending on the algorithm);

In case the key wrapping is not adequately secure it may be easier for an attacker that knows its schema
to crack it (and recover the private key of the credentials) instead of cracking one of our public-private
keys. Thus, the key wrapping schemes deployed on production implementation of secure authenticator
devices should always be of the same or greater security strength compared to the public-private scheme
that it is protecting. Furthermore, manufactures should not assume their implementation’s security is
based upon the obscurity of their wrapping schema. To add more on the discussion, depending on the
relying party server implementation, there may be a limit on the size of a credential id and thus limitations
may be applied on the amount of information that can be wrapped inside it, which may increase as the
public-private schema’s key size increases.

A master key is used by the authenticator as a key to the AES-GSM for the key wrapping. A cus-
tom secret is given to the authenticator during initialization that is used to generate the its master key.
To generate a strong master key, the given secret is passed through the Password-Based Key Derivation
Function 2 (PBKD2) using SHA-256 and enough iterations. As a result, even if the credentials informa-
tion is stored on the browser’s local storage, our virtual authenticator is able to decrypt and retrieve only
the credentials wrapped using the appropriate secret supplied. Users are able to set a new master key
secret or be asked for one on the fly, upon an authenticator action. As this secret is protecting not only
the keys stored on the local storage but also the wrapped keys stored on the server side, it is suggested
to use a long and complex password. Depending on the use case, this may not be of high concern as our
authenticator is supported to be used only for development and testing reasons.

We have to note though that our virtual authenticator don’t only supports server-side public key
credential sources (also known as non-resident keys) with wrapped credentials information inside, but
also client-side discoverable credentials (also known as resident keys).

3.5.3 Authenticator attestation

Many WebAuthn services opt to request from authenticators to return the device’s attestation object
(direct attestation) rather than no attestation (none attestation). Authenticators that do not satisfy the
server’s attestation dependencies are rejected and their registration process is aborted. Hence, to extend
the implemented virtual authenticator’s compatibility, as well as to broaden the testing functionalities
of the proposed solution, a packed self-signed attestation (named surrogate basic attestation) has been
developed. It is using the generated private key which is returned when indirect or direct attestation is
requested. In self-signed attestation, the authenticator signs the returned authenticator data using the
newly generated private key, proving its possession to the server.

Furthermore, especially for direct attestation, a custom authenticator certificate is also generated and
is included in the attestation object, though this functionality is currently only supported for ECDSA
keys. To achieve this, since such operations are not currently supported by WebCrypto, parts of the
Abstract Syntax Notation One (ASN.1) encoding and the Distinguished Encoding Rules (DER) were
implemented in JavaScript, so that our authenticator’s responses featured correct formatting and encod-
ing.

Whichever the attestation format, to generate a valid response, our authenticator should be able to
generate signature counter values, each one always greater than the last one, otherwise the relying party
server may flag the authenticator device as cloned. Since our virtual authenticator does not feature a
storage to save its state, the signature counter had to be implemented in another way. For this reason, our

113

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

implementation calculates the signature counter based on the client’s machine time. Specifically, we set
as a point of reference the credentials creation date (therefore wrapped inside the credentials id value)
and we assume that the counter increases by a value of 1 every 250 milliseconds (arbitrarily chosen),
thus the counter will overflow (and consequently be invalidated) about 34 years after its creation, which
we found to be reasonable.

4 Testing and evaluation of proposed tool

To test and evaluate the performance our WebDevAuthn tool, a set of use-cases have been meticulously
defined to showcase the entire range of capabilities offered to application and service developers. The
sections describes the use cases and presents the evaluation results, emphasizing on the benefits of the
proposed tool. Our tool is publicly available on GitHub [8], where someone can get the code and/or
experiment with it through GitHub pages functionality.

4.1 Use Case A: Educating on the WebAuthn API

In order to facilitate the faster and smoother adoption of WebAuthn, we have get people familiar with
it and educate the developers on how to correctly leverage the technology to build secure WebAuthn
services. To achieve that it is important to provide demos which let the interested parties understand
what is WebAuthn, experience where they can use it and experiment with it testing their authenticator
devices. Furthermore, it is important to provide to developers the appropriate material and tools not only
to educate them efficiently on WebAuthn but also to let them debug their services.

Our tool can be used as a playground for individuals (developers and/or stakeholders) interested in
password-less authentication using WebAuthn. The users are able to craft custom WebAuthn requests,
both credentials creation and credentials get requests, by picking their preferred options through a graph-
ical interface, as shown in Figure 10. The tool provides a description (based on the WebAuthn standard)
for each option, explaining its purpose, usage and indicating whether it is required or optional.

Following the selection of the preferred options, the user can generate the corresponding WebAuthn
request API call code [6] with those exact selected options. Figure 11 shows the generated Javascript
code of the selected options presented on Figure 10. The generated code is fully functional and can be
used to launch a WebAuthn request right on the browser.

The user can then invoke the generated WebAuthn code launching a request which will be handled
by the browser. The user will then be able to use his authenticator device to respond to the request. Since
our tool features a virtual authenticator, it can also be used by users without the possession of a FIDO2,
FIDO U2F or any platform authenticators (e.g., Windows Hello).

The tool is then able to analyse the return response. The analysis includes decoding of the embedded
parts of the report and analysis of the returned attestation assuming that it is supported. Figure 12 shows
the decoded response of a custom request handled by our tool’s virtual authenticator.

We leveraged the our implementation’s playground to showcase how FIDO works internally so by
showcasing all the mechanics working underneath. Users was able to create custom requests, test them
on their available platforms and explore their devices FIDO capabilities (e.g., availability of biometric
authentication). The playground was particular helpful for developers looking into learning how to use
WebAuthn, as it was easier to get them familiar with the API through the practical approach to introduce
them to the code defined WebAuthn specification. Finally, we used the tool’s as a WebAuthn traffic
analyser during the development of WebAuthn services for resolving bugs in the implementation through
the inspection of the decoded data.

Based on our observations, we found our tool’s playground to be helpful in familiarising interested

114

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Figure 10: Credential’s creation options selection user interface

parties with WebAuthn where other simpler demos fail due to the lack of deep analysis of the WebAuthn
API the developers seek or due to the user’s lack of a FIDO authenticator. The virtualisation our tool
offers through the virtual authenticator allow the user’s experimentation with WebAuthn independent of
the platform they use (even if their platform does not support WebAuthn). Furthermore, the simple yet
descriptive interface, fulfills the requirements of both technical and non-technical users.

4.2 Use Case B: Compatibility with 3rd party implementations

In order for our tool to operate at its full potential and enable the conformance and security assessment,
including the emulation of the WebAuthn authenticator responses, it has to work seemingly with the 3rd
any party service targeted for analysis. For this to be achieved, our tool has to support all the dependen-
cies set by the relying party server and generate valid (for the server) WebAuthn responses. Furthermore,
the relying party itself will have to support the attestation formats return by our authenticator.

We used our tool as a debugging mechanism during the development of in-house experimental FIDO2
web applications. Specifically, we deployed the tools while working with the certified StrongKey FIDO2
server [36] and an experimental FIDO2 server based on Yubico’s FIDO2 python library [37]. In this
way we were able to test and improve our tool (and the underlined virtual authenticator) with various

115

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Figure 11: Credential’s creation generated WebAuthn API call code

configurations as we had control over the relying party servers.
To further assess our authenticator’s compatibility, we searched for services and/or additional soft-

ware featuring WebAuthn authentication and compiled a list of 29 WebAuthn services 1 (listed on Ta-
ble 2) that we could analyse using our tool. The list is composed by various WebAuthn implementations
including WebAuthn demos, open-source and commercial solutions and identity management servers.
For each WebAuthn service on the list, we tested the compatibility of our tool with the 3rd party ser-
vice, by first registering our virtual authenticator device and then, assuming that the registration was
successful, executing a password-less or second-factor authentication.

As shown on Table 2, we found our tool’s features where compatible with all the services that we
tested it against. Specifically, all features worked including the virtual authenticator and the WebAuthn
requests analysis. Although in our tests we found our tool compatible will all the services, an incompat-
ibility of our virtual authenticator may exists with a services which may reject our virtual authenticator’s
attestation, considering our authenticator as not trustworthy or insecure. The later maybe an intended
security measure based on the usage of the FIDO attestation metadata service or a white-listing function-
ality allowing only popular authenticator devices.

For some of the services (flagged as partially compatible), due to a credentials id size limit set by the

1Note that a number of FIDO services (such as Google’s authentication services using security keys) were excluded from the
list as they are still using the deprecated and not standardized U2F Javascript API and not WebAuthn

116

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Figure 12: Credentials creation response generated from our virtual authenticator and decoded by the
credentials analyser

relying party server, our virtual authenticator registration response was rejected. To bypass the problem,
we triggered the ”force resident key” testing functionality on our authenticator which reduced the size
of the credentials id dramatically, as there is no need to wrap the credentials information inside the
credentials id, and thus our authenticator’s response was accepted by the server.

We found our tool analysis capabilities to be compatible with all the WebAuthn services we tested,
which is essential for assisting developers in conducting conformance and security assessments of We-
bAuthn services regarding the front-end and the back-end environment. Furthermore we found our tool’s
virtualisation capabilities to be compatible with the majority of the services we tested, which is important
to facilitate extensive testing to the relying party’s server back-end.

4.3 Use Case C: Assessing implementations

To assess the performance of the tool various WebAuthn implementation were selected, as shown pre-
viously. During these testings and assessment sessions of various websites supporting WebAuthn for
password-less or second factor authentication, a number of problems replicated in the majority of the
servers were observed.

The features of the our tool are not limited only in inspecting the WebAuthn traffic and generating
response. It is extended to include assessment functionalities so that we can easily conduct test on 3rd
party implementations. Since the tool is able to interact with the services (through the Hijacker), just like
any other authenticator, it is able to perform blind tests handling the WebAuthn server as a black box.

4.3.1 Analyser’s assessment functionalities

The first assessment the implemented tool is performing automatically upon receiving a WebAuthn re-
quest (supported for both credentials creation and get) is a conformance review on the given options
supplied by the WebAuthn service. It checks the correct usage of the options both in terms of data types

117

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Table 2: Compatibility of our virtual authenticator with FIDO2/WebAuthn implementations

Compatibility Implementation Type
PARTIAL 1password.com Commercial
YES boxcryptor.com Commercial
YES cedarcode.com Demo
YES cloudflare.com Commercial
YES debauthn.tic.udc.es Demo
YES demo.yubico.com Demo
PARTIAL dropbox.com Commercial
YES EU Login Commercial
PARTIAL ebay.com Commercial
YES github.com Commercial
YES Gluu IDM Open-Source Server
YES Hanko Apple-Passkey Demo Demo
YES KeyCloak IDM Server Open-Source Server
YES magicauth.net Demo
YES microsoft.com Commercial
YES Microsoft WebAuthn Sample Demo
YES Nextcloud Open-Source Server
YES passwordless.dev Demo & Service
YES quado.io Demo
PARTIAL Singular Key WebAuthn Demo Demo
YES StrongKey Fido2 Server Open-Source Server
YES token2.com Demo
YES web-auth-n-demo.herokuapp.com Demo
YES webauthn.bin.coffee Demo
YES webauthn.io Demo
YES webauthn.lubu.ch Demo
YES webauthn.me Demo
YES webauthn.org Demo

given and by validating the assigned values. Furthermore, it tries to identify problems on the selected
parameters and reports them back to the user. All the automated generated comments are available under
the tool’s notes section.

• Report options schema deviations from the specification;

The analyser automatically detects unknown parameters or missing parameters defined as required
by the specification. For example, the analyser will detect and warn user about misspelled param-
eters passed on the options object.

• Report invalid options value types;

The analyser automatically detects parameters whose value type is not the same as the one defined
by the WebAuthn standard. For example, the analyser will detect and warn user about values that
where expected to be integers but strings where given.

• Report invalid option values (e.g. values outside range or dictionaries);

118

https://1password.com/
https://www.boxcryptor.com/
https://webauthn.cedarcode.com/
https://cloudflare.com/
https://debauthn.tic.udc.es/
https://demo.yubico.com/webauthn
https://dropbox.com/
https://webgate.ec.europa.eu/cas/login
https://ebay.com/
https://github.com/
https://gluu.org/
https://apple-passkey.demo.hanko.io/
https://github.com/keycloak/keycloak
https://magicauth.net/
https://microsoft.com/
https://webauthnsample.azurewebsites.net/
https://nextcloud.com/
https://www.passwordless.dev/
https://demo.quado.io/
https://webauthn.singularkey.com/
https://github.com/StrongKey/fido2
https://www.token2.com/tools/fido2-test/
https://web-auth-n-demo.herokuapp.com/
https://webauthn.bin.coffee/
https://webauthn.io/
https://webauthn.lubu.ch/
https://webauthn.me/
https://webauthn.org/

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

The analyser automatically detects parameters whose value is not inside the accepted values de-
fined by the WebAuthn standard. For example, the analyser will detect and warn user about ”time-
out” values that deviate from the suggested ones.

• Report default values for options that are not defined;

The analyser automatically reports default values of parameters not specified. For example, the
analyser will report the default value of the ”pubKeyCredParams” parameter if it was not specified
on the request.

• Report usage of insecure options;

The analyser automatically detects parameters whose value may leave the service vulnerable to
attacks. For example, the analyser will detect and warn user about not setting ”userVerification”
parameter to ”required”.

• Report usage of not recommended, deprecated or unknown signature algorithms;

The analyser automatically detects ”deprecated” or ”not-recommended” public-private signature
algorithms reported by the WebAuthn service (based on the recommendations by IANA [31]).
For example, the analyser will detect suggestion to use the ”RSASSA-PKCS1-v1 5 using SHA-1”
scheme and warn the user.

• Suggest priority ordering of signature algorithms based on strength;

The analyser automatically detects if the server prefers the usage of algorithms with lower security
level over other with higher security level. Furthermore a suggestion to change the order based on
the security level will be given. For example, the analyser will detect if the relying server prefers
the usage of ”RSAES-OAEP w/ SHA-256” over ”RSASSA-PSS w/ SHA-512” and suggest a new
order2.

• Check id values for personal info leakage;

The analyser automatically detects any possible usage of private data such as email, telephone or
name used as a user identifier, to avoid any leakage of personal information. For example, the tool
will detect if a service is trying to use a telephone number as a user account identifier.

• Check challenge randomness and security level;

The analyser automatically try to detect whether the challenge supplied is secure enough, by check-
ing its bits length and conducting a number of randomness tests. For example, the analyser will
detect challenges that is not at-least 16 bytes long as suggested by the WebAuthn specification.

To assess the randomness of challenges passed from the server, our tool uses a random bitstream
tester [38] and passes them through a number of tests. It needs to be underlined that some WebAuthn
server implementations use big ASCII values as challenges that may fail to pass randomness tests, but
they seem encoded (e.g. in base64) and thus the random value used to generate them may be wrapped
inside. In the same way, other implementations may concatenate additional not random pieces of infor-
mation on the challenge (e.g. a session, a state). No matter the format of the challenge, the initial random
value used should be at-least 16 bytes long.

2Note that the suggestions are comparing the security level of the hash functions used by the scheme and assumes that the
schemes are secure

119

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

4.3.2 Virtual authenticator’s assessment functionalities

For more advance testing a number of manual enabled options that manipulate the behaviour of the
virtual authenticator have been implemented. Through these advance testing options, developers are able
to test functionalities of their service that otherwise are not easily triggered.

• Swap Challenge

This option allows the alternation of the challenge passed to the authenticator device. Developers
can use this options to observe a service’s behaviour when an invalid challenge was returned.

• Swap User ID

This option allows one to change the User ID passed to the authenticator device. Developers can
use this options to bind the generated credentials with another account (inside the authenticator).

• Freeze User Verification Flag;

This option allows the manipulation of the user verification flag. Developers can use it to simulate
man-in-the-middle attacks where the attacker removes the requirement of user presence from the
request. This option can test whether a WebAuthn service implementation validates the response
flags when it requires the user presence.

• Swap Relay Party ID

This option allows the alternation of the Relay Party ID (website’s domain name) passed to the
authenticator device. Developers can use this options to simulate man-in-the-middle attacks where
the authenticator device generated credentials for another Relying Party, thus for another website.

• Override Signature Algorithm

This option can be used to force the virtual authenticator to select a specific algorithm to generate
credentials with. This testing option can be deployed to test the behaviour of the server for different
signature algorithms, or to return credentials based on an algorithm that the server is not supposed
to accept. For the later case, such a testing could simulate security downgrade attacks where the
attacker is trying to generate credentials using weaker or deprecated algorithms.

• Clone AAGUID

This option will clone the AAGUID of other (maybe more popular) authenticators. Using this
option, the effectiveness of AAGUID whitelist or blacklist filters could be tested. Note that since
we don’t poses the private keys required to generate valid attestation objects for other authenticator
devices, this option will not trick servers that uses the FIDO Alliance’s Metadata Service.

• Force Resident Key

This option forces the authenticator to generate a resident key. This reduce the size of the creden-
tials id generated by the authenticator device as the credentials information are saved in the virtual
authenticator (inside the browser’s local storage). This is often helpful in case the Relying Party
service has a limit in the credentials id size.

• Freeze Signature Counter

120

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Table 3: Tests Conducted on FIDO2/WebAuthn services registration.

Tests on Registration Flow

N
ot

R
ec

om
m

en
de

d
or

D
ep

re
ca

te
d

al
go

ri
th

m
s

N
o

us
er

ve
ri

fic
at

io
n

B
ad

al
go

ri
th

m
or

de
ri

ng

Sw
ap

C
ha

lle
ng

e

Fr
ee

ze
U

se
rV

er
ifi

ca
tio

n
Fl

ag

Sw
ap

R
el

ay
Pa

rt
y

ID

Sw
ap

O
ri

gi
n

Sw
ap

H
T

T
P

O
ri

gi
n

Sw
ap

Su
bd

om
ai

n
O

ri
gi

n

O
ve

rr
id

e
Si

gn
at

ur
e

A
lg

or
ith

m

1password.com
boxcryptor.com
cedarcode.com
cloudflare.com
debauthn.tic.udc.es
demo.yubico.com
dropbox.com
EU Login
ebay.com
github.com
Hanko Apple-Passkey Demo
KeyCloak IDM Server
magicauth.net
microsoft.com
Microsoft WebAuthn Sample

Se
rv

ic
es

StrongKey Fido2 Server

Affected Unhanded Not Affected empty Not Applicable

This option gives you full control of the signature counter. By enabling this option one can set the
signature counter to any value and simulate clone authenticator attacks. We found this useful for
testing the server’s incident handling behaviour.

• Swap User Handle

This option allows one to overwrite the returned user handle value. By using this option, one can
impersonate another user and trick poorly implemented WebAuthn services.

4.3.3 Assessments findings

We analysed the assessment results for a number of service and listed the issues identified for the regis-
tration and the authentication flow at the Table 3 and Table 4 accordingly. At the tables one can see for
each service the issues that affect it as well as the issues that the services is not handling correctly (bad
response the the issues or bad handling of the problem).

121

https://1password.com/
https://www.boxcryptor.com/
https://webauthn.cedarcode.com/
https://cloudflare.com/
https://debauthn.tic.udc.es/
https://demo.yubico.com/webauthn
https://dropbox.com/
https://webgate.ec.europa.eu/cas/login
https://ebay.com/
https://github.com/
https://apple-passkey.demo.hanko.io/
https://github.com/keycloak/keycloak
https://magicauth.net/
https://microsoft.com/
https://webauthnsample.azurewebsites.net/
https://github.com/StrongKey/fido2

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Table 4: Tests Conducted on FIDO2/WebAuthn services authentication.

Tests on Authentication Flow

N
o

us
er

ve
ri

fic
at

io
n

Fr
ee

ze
U

se
rV

er
ifi

ca
tio

n
Fl

ag

Sw
ap

C
ha

lle
ng

e

Fr
ee

ze
Si

gn
at

ur
e

C
ou

nt
er

Sw
ap

O
ri

gi
n

Sw
ap

H
T

T
P

O
ri

gi
n

Sw
ap

Su
bd

om
ai

n
O

ri
gi

n

Sw
ap

U
se

rH
an

dl
e

1password.com
boxcryptor.com
cedarcode.com
cloudflare.com
debauthn.tic.udc.es
demo.yubico.com
dropbox.com
EU Login
ebay.com
github.com
Hanko Apple-Passkey Demo
KeyCloak IDM Server
magicauth.net
microsoft.com
Microsoft WebAuthn Sample

Se
rv

ic
es

StrongKey Fido2 Server

Affected Unhanded Not Affected empty Not Applicable

One of the first showcased FIDO2/WebAuthn attacks was that of the ”unaware user presence”.
Specifically, the scenario for this attack is the following: The victim possesses an NFC authenticator,
which is placed on his/her pocket. The attacker passes by and scans the authenticator and logs into a
service without the victim noticing it. This attack can be mitigated, if the service indicates on the request
that a user action is required to prove the user’s presence, through setting the “userVerification” option
to “required”. Throughout our testing sessions, the majority of the servers do not have this option set.
This results in setting the default value of “preferred”, thus they are unable to reject authentications per-
formed without an interaction between the user and the server. The problem escalates further due to the
fact that the WebAuthn specification assumes that the scanning of an NFC authenticator is considered an
interaction with the user, which may solve practical implementation problems, at the expense of reduce
security of the security keys of the NFC user. The developed Credentials Creation Analyser detects this
problem and automatically informs the user throwing a warning, as shown in Figure 13. We recommend
all implementation (especially the once that use WebAuthn as single factor authentication) to set the user
verification as ”required” by default in order to mitigate this attack. As the support for FIDO2 increases,

122

https://1password.com/
https://www.boxcryptor.com/
https://webauthn.cedarcode.com/
https://cloudflare.com/
https://debauthn.tic.udc.es/
https://demo.yubico.com/webauthn
https://dropbox.com/
https://webgate.ec.europa.eu/cas/login
https://ebay.com/
https://github.com/
https://apple-passkey.demo.hanko.io/
https://github.com/keycloak/keycloak
https://magicauth.net/
https://microsoft.com/
https://webauthnsample.azurewebsites.net/
https://github.com/StrongKey/fido2

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Figure 13: Notes raised by the credentials analysers after assessing the given WebAuthn options

and the authenticator devices became common, the risk of such attack will also increase. As a user, avoid
using authenticator devices that do not require an action (e.g. a press of a button or a touch with your
fingerprint) to complete the authentication.

An additional implementation problem identified during the evaluation sessions is due to the wide
adoption and use of algorithms which are considered by IANA as “deprecated” and “not recommended”
[31]. Most of the servers allow authenticators to register using the ”not recommended” algorithm
“RSASSA-PKCS1-v1 5 using SHA-256” (number code -257) to support backwards compatibility with
older authenticator devices. Furthermore, several servers allow the use of the deprecated “RSASSA-
PKCS1-v1 5 using SHA-1”. Our tool manages to detect the usage of such algorithms and warns the
user about the issue. This functionality is illustrated in Figure 13. Although this may break compati-
bility with old FIDO authenticators, all FIDO implementations should remove or disable the support for
”deprecated” and ”not recomended” algorithms. Furthermore, configuration options should be given to
the service administrators so that any algorithm could be disabled manually if needed in the future. It is
recommended to the users to use relative new authenticator devices which will most probably make use
of the newer recommended algorithms, or check your authenticator’s specifications to ensure that only
strong and recommended are supported.

Various minor problems were identified during the evaluation that, to this time, have not been re-
ported in the past. In particular, one of the most prominent is the wrong ordering of algorithms on the
credentials creation options. It can be assumed that since the algorithms are supposed to be ordered
based on the server’s preference, most servers would list the algorithms based on their cryptographic
strength. It has been found during the testing that this is not the case, since in most implementations the
order that the algorithms are listed is random or grouped based on the family that the algorithm belongs
to. This may force an authenticator device which support multiple algorithms, to generate and regis-
ter credentials with lower cryptographic strength, hence essentially downgrading the security. Our tool
achieves in identifying this problem and proposing a better ordering of the algorithms when algorithms
with lower security level are set by the sever on the top of the preference order. It is suggested that all the
WebAuthn implementations order their supported algorithms based on their security and not randomly.
This problem highlights again the importance of removing deprecated and not recommended algorithms
from the supported algorithms list to avoid downgrading the security of an autheticator that opts to use a
less secure algorithm while a stronger one is supported.

During this use case a more through testing was performed leveraging the virtual authenticator’s
testing options. Therefore the behaviour of services on unusual input were able to be tested. A significant
finding involves the emulation of attacks and the observation of the relying party’s server behaviour. In
particular, the scenario of a cloned authenticator device trying to authenticate to a WebAuthn service,
was tested. To perform the attack the virtual authenticator’s signature was set to a lower value (from the
one the server was expected to see) and was instructed to authenticate with the service. The detection of
a lower value on the signature counter, most probably indicates that a cloned authenticator attack is been

123

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

conducted, thus the server should not only reject the authentication, but also disable the authenticator
device inform the user, as well. During the tests, most servers just blocked the authentication without
performing any other action and only one service removed the device from the account’s authenticators,
without informing the user by any means about the incident.

Assuming that the next years we may see TPM and TEE attacks, also affecting FIDO2 authenticator
devices (such as the Samsung’s TrustZone attack on android [39] which can be used to recover FIDO2
private keys), cloned authenticator attacks may cause a big problem and thus preparing our systems to
detect and report such attacks to security key manufactures may be essential for identifying problems
and blacklisting vulnerable authenticator devices. We should look into how in the future such a reporting
functionality could be established, maybe through the FIDO Alliance Metadata Service, so that vulner-
able authenticators (either new ones during registration or already registered ones) can be detected by
all systems. It is recommended that FIDO implementations monitor and pay more attention to failed
authentication attempts as, unlike to the password authentication method where the human factor may
introduce errors, with FIDO all the authenticator errors may be attributed to timeouts, incompatibilities
or attacks.

It is evident through the presented test results (and other observations such as unhandled server
errors) that although the deployed WebAuthn services are quite secure, the developers lack the tools to
test them appropriately.

5 Conclusion

The paper presented a methodology to analyze WebAuthn requests and responses by injecting JavaScript
code into the web application to be debugged, hijacking the WebAuthn methods and forwarding it to
our analyzer, in a non-invasive way without affecting the application code flow. Our implementation,
can be used by developers to analyze the WebAuthn traffic of their applications and possibly speed up
the debugging process, since the proposed tool will provide direct insight into the information which
is packed inside the WebAuthn requests and responses. One of the key objectives of the developed
solution is that it lays the foundation for aiding developers to familiarise with and deeply understand
the FIDO2/WebAuthn JavaScript requests and responses. The proposed tool and the evaluation sessions
performed with it proved that it is compatible with a large number of FIDO2/WebAuthn implementation
available on the market. While the prototype virtual authenticator implementation proved to be working
seamlessly with many FIDO2/WebAuthn back-ends. Furthermore, the assessment capabilities of the
proposed analysers were successfully tested and proved very helpful in validating implementations and
identifying configuration problems.

The work of this study is not exhausted with these use cases. The modular architecture and the exten-
sibility of our tool, allow us to enhance it further and introduce new functionalities. Future developments
and testing will be focused on improving the assessment functionalities of the analysers and expanding
the testing and assessment sessions of WebAuthn implementations, particularly from the open-source
projects. Thus, positively affecting their maturity by indicating vulnerabilities and improving their secu-
rity, correct implementation and appropriate configuration. Towards this end, the upgrading of the virtual
authenticator implementation is currently an ongoing project that would extend the testing options, en-
abling it to support more innovating attack simulations.

Acknowledgments

This research has been partially funded by the European Union’s Horizon 2020 Stimulating innovation
by means of cross-fertilisation of knowledge program under the Grant Agreement No 824015 (H2020-

124

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

MSCA-RISE-2018-INCOGNITO) and the Greek state funded Operational Programme Competitive-
ness, Entrepreneurship and Innovation 2014-2020 (EPAnEK) under the Grant Agreements NetPHISH-
T 1E∆K − 05112. Furthermore, we would like to extend our thanks to the members of the Systems
Security Laboratory (SSL) of the University of Piraeus, Greece, for their participation in the testing
sessions and the valuable feedback on improving the technical implementations featured in this paper.

References

[1] M. Bromiley. Bye bye passwords: New ways to authenticate. https://

query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE3y9UJ, June 2019.
[2] A. Angelogianni, I. Politis, F. Mohammadi, and C. Xenakis. On identifying threats and quantifying cyberse-

curity risks of mnos deploying heterogeneous rats. IEEE Access, 8:224677–224701, December 2020.
[3] C. Ntantogian, S. Malliaros, and C. Xenakis. Evaluation of password hashing schemes in open source web

platforms. Computers & Security, 84:206–224, July 2019.
[4] FIDO Alliance. Open authentication standards more secure than passwords. https://fidoalliance.org.

[Online; Accessed on Dec. 2, 2021].
[5] K. Papadamou, S. Zannettou, B. Chifor, S. Teican, G. Gugulea, A. Caponi, A. Recupero, C. Pisa, G. Bianchi,

S. Gevers, C. Xenakis, and M. Sirivianos. Killing the password and preserving privacy with device-centric
and attribute-based authentication. IEEE Transactions on Information Forensics and Security, 15:2183–2193,
December 2020.

[6] D. Balfanz, J. Hodges, E. Lundberg, M. Jones, H. Liao, J. C. Jones, A. Czeskis, A. Kumar, and R. Lindemann.
Web authentication: An api for accessing public key credentials level 1, w3c recommendation. https://

www.w3.org/TR/2019/REC-webauthn-1-20190304/, March 2019. [Online; Accessed on Nov. 17, 2021].
[7] A. Alam, k. Krombholz, and S. Bugiel. Poster: Let history not repeat itself (this time) – tackling webauthn

developer issues early on. In Proc. of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS’19), New York, NY, USA, pages 2669––2671. ACM, November 2019.

[8] A.V. Grammatopoulos, I. Politis, and C. Xenakis. Webdevauthn: A tool to test & analyze fido2/webauthn
requests and responses. https://gramthanos.github.io/WebDevAuthn/, 2022.

[9] A.V. Grammatopoulos, I. Politis, and C. Xenakis. A web tool for analyzing fido2/webauthn requests and
responses. In Proc. of 16th International Conference on Availability, Reliability and Security (ARES’21),
Vienna, Austria, pages 1–10. ACM, August 2021.

[10] M. West. Credential management level 1, w3c working draft. https://www.w3.org/TR/2019/WD-
credential-management-1-20190117/, 2019. [Online; Accessed on Nov. 17, 2021].

[11] J. Bradley, J. Hodges, M. Jones, A. Kumar, R. Lindemann, and J. Verrept. Client to authentica-
tor protocol (ctap). https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-
authenticator-protocol-v2.1-ps-20210615.html, January 2021. [Online; Accessed on Oct. 24,
2021].

[12] Google. Fido2 api for android. https://developers.google.com/identity/fido/android/native-
apps, February 2020. [Online; Accessed on Oct. 24, 2021].

[13] Microsoft. Webauthn: Win32 apis for webauthn standard. https://github.com/microsoft/webauthn/,
2018.

[14] FIDO Alliance. Fido alliance metadata service. https://fidoalliance.org/metadata/. [Online; Ac-
cessed on Oct. 24, 2021].

[15] FIDO Alliance. Fido metadata statement. https://fidoalliance.org/specs/mds/fido-metadata-
statement-v3.0-ps-20210518.html, May 2021. [Online; Accessed on Oct. 24, 2021].

[16] J. Hodges, A. Kumar, E. Lundberg, M. Jones, and J. C. Jones. Web authentication: An api for accessing
public key credentials - level 2. https://www.w3.org/TR/webauthn-2/, April 2021. [Online; Accessed
on Oct. 24, 2021].

[17] J. Hodges, M. Jones, and G. Mandyam. Web authentication (webauthn), iana. https://www.iana.org/
assignments/webauthn/webauthn.xhtml, August 2020. [Online; Accessed on Oct. 24, 2021].

125

https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE3y9UJ
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE3y9UJ
https://fidoalliance.org
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://gramthanos.github.io/WebDevAuthn/
https://www.w3.org/TR/2019/WD-credential-management-1-20190117/
https://www.w3.org/TR/2019/WD-credential-management-1-20190117/
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://developers.google.com/identity/fido/android/native-apps
https://developers.google.com/identity/fido/android/native-apps
https://github.com/microsoft/webauthn/
https://fidoalliance.org/metadata/
https://fidoalliance.org/specs/mds/fido-metadata-statement-v3.0-ps-20210518.html
https://fidoalliance.org/specs/mds/fido-metadata-statement-v3.0-ps-20210518.html
https://www.w3.org/TR/webauthn-2/
https://www.iana.org/assignments/webauthn/webauthn.xhtml
https://www.iana.org/assignments/webauthn/webauthn.xhtml

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

[18] FIDO Alliance. Functional certification. https://fidoalliance.org/certification/functional-
certification/, March 2022. [Online; Accessed on Mar.. 1, 2021].

[19] FIDO Alliance. Certified authenticator levels. https://fidoalliance.org/certification/
authenticator-certification-levels/, March 2022. [Online; Accessed on Mar. 1, 2022].

[20] A. Simons. A breakthrough year for passwordless technology. https://www.microsoft.com/security/
blog/2020/12/17/a-breakthrough-year-for-passwordless-technology/, December 2020. [On-
line; Accessed on Nov. 17, 2021].

[21] Auth0 Inc. See your webauthn config in action. https://webauthn.me/debugger. [Online; Accessed on
Nov. 17, 2021].

[22] M.R. Dourado, M. Gestal, and J.M. Vázquez-Naya. Implementing a web application for w3c webauthn
protocol testing. Multidisciplinary Digital Publishing Institute Proceedings, 54(1):1–3, August 2020.

[23] M.R. Dourado. Debauthn: Webauthn authenticator debugging tool, debauthn. https://

debauthn.tic.udc.es. [Online; Accessed on Nov. 17, 2021].
[24] M. Miller. Masterkale/webauthn-previewer: A simple website for previewing webauthn attestations and as-

sertions, github repository. https://github.com/MasterKale/webauthn-previewer, September 2020.
[Online; Accessed on Nov. 17, 2021].

[25] M. Miller. Webauthn debugger, simplewebauthn. https://debugger.simplewebauthn.dev. [Online;
Accessed on Nov. 17, 2021].

[26] S. Weeden. sbweeden/fido2viewer, github repository. https://github.com/sbweeden/fido2viewer,
2019. [Online; Accessed on Nov. 17, 2021].

[27] Mozilla. Window.postmessage() - web apis — mdn. https://developer.mozilla.org/en-US/docs/
Web/API/Window/postMessage, 2018.

[28] MDN Web Docs. Credentialscontainer.create() - web apis mdn. https://developer.mozilla.org/en-
US/docs/Web/API/CredentialsContainer/create[Online; Accessed on Oct. 24, 2021].

[29] MDN Web Docs. Credentialscontainer.get() - web apis mdn. https://developer.mozilla.org/en-US/
docs/Web/API/CredentialsContainer/get. [Online; Accessed on Oct. 24, 2021].

[30] M. Watson. Web cryptography api, w3c recommendation. https://www.w3.org/TR/2017/REC-
WebCryptoAPI-20170126/, January 2017. [Online; Accessed on Oct. 24, 2021].

[31] F. Palombini, M. Miller, J. Richer, and C. Bormann. Cbor object signing and encryption (cose), iana. https:
//www.iana.org/assignments/cose/cose.xhtml. [Online; Accessed on Oct. 24, 2021].

[32] P.A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset, G. Seiler, W. Whyte,
and Z. Zhang. Falcon: Fast-fourier lattice-based compact signatures over ntru. Technical Report 5, Submis-
sion to the NIST’s post-quantum cryptography standardization process, 2018.

[33] NIST. Post-quantum cryptography - round 3 submissions. https://csrc.nist.gov/projects/post-
quantum-cryptography/round-3-submissions, October 2021. [Online; Accessed on Dec. 24, 2021].

[34] A.V. Grammatopoulos, I. Politis, and C. Xenakis. Strongbee: A python fido2/webauthn server (branch with
falcon support). https://github.com/GramThanos/StrongBee/tree/pq-falcon-support, 2022.

[35] A.V. Grammatopoulos, I. Politis, and C. Xenakis. Strongmonkey: Sdk for interacting with fido2 server api
v3.0.0. https://github.com/GramThanos/StrongMonkey/, 2022.

[36] StrongKey GitHub Repository. Open-source fido server, featuring the fido2 standard. https://

github.com/StrongKey/fido2, October 2019. [Online; Accessed on Nov. 24, 2021].
[37] Yubico GitHub Repository. Yubico/python-fido2: Provides library functionality for fido 2.0, including com-

munication with a device over usb. https://github.com/Yubico/python-fido2, October 2018. [Online;
Accessed on Nov. 24, 2021].

[38] Z. Molnar. Random bitstream tester. [Online; Accessed on Jan. 24, 2022], December 2020. https://

mzsoltmolnar.github.io/random-bitstream-tester/.
[39] A. Shakevsky, E. Ronen, and A. Wool. Trust dies in darkness: Shedding light on samsung’s trustzone

keymaster design. Cryptology ePrint Archive, Report 2022/208, 2022. https://ia.cr/2022/208[Online;
Accessed on Mar. 21, 2022].

——————————————————————————

126

https://fidoalliance.org/certification/functional-certification/
https://fidoalliance.org/certification/functional-certification/
https://fidoalliance.org/certification/authenticator-certification-levels/
https://fidoalliance.org/certification/authenticator-certification-levels/
https://www.microsoft.com/security/blog/2020/12/17/a-breakthrough-year-for-passwordless-technology/
https://www.microsoft.com/security/blog/2020/12/17/a-breakthrough-year-for-passwordless-technology/
https://webauthn.me/debugger
https://debauthn.tic.udc.es
https://debauthn.tic.udc.es
https://github.com/MasterKale/webauthn-previewer
https://debugger.simplewebauthn.dev
https://github.com/sbweeden/fido2viewer
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/create
https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/create
https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/get
https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/get
https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126/
https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126/
https://www.iana.org/assignments/cose/cose.xhtml
https://www.iana.org/assignments/cose/cose.xhtml
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://github.com/GramThanos/StrongBee/tree/pq-falcon-support
https://github.com/GramThanos/StrongMonkey/
https://github.com/StrongKey/fido2
https://github.com/StrongKey/fido2
https://github.com/Yubico/python-fido2
https://mzsoltmolnar.github.io/random-bitstream-tester/
https://mzsoltmolnar.github.io/random-bitstream-tester/
https://ia.cr/2022/208

Conformance & security assessment of WebAuthn implementations Grammatopoulos, et al.

Author Biography

Athanasios Vasileios Grammatopoulos received his joined B.S. and M.S. degree
in Electrical and Computer Engineering from Technical University of Crete in 2018,
and his M.S. degree in Digital Systems Security from University of Piraeus in 2022.
Currently he is conducting research in the cybersecurity field in collaboration with
the University of Piraeus. Since 2020 he is working as a Cybersecurity Operational
Assistant at the European Union Agency for Cybersecurity (ENISA). His research
interests include Web-related Technologies and Password-less Authentication.

Ilias Politis received his BSc in Electronic Engineering from Queen Marry College
London, UK in 2000, his MSc in Mobile and Personal Communications from King’s
College London, UK in 2001 and his PhD in Multimedia Communications from the
University of Patras Greece in 2009. Currently he is a Senior Researcher at InQbit In-
novations SRL. and the Secure Systems Labs of UPRC responsible for the Research
and Innovation activities. Dr Politis has previously been working as Senior Researcher
at the Wireless Telecommunications Lab. of the Electrical and Computer Engineering

at the University of Patras and the School of Science & Technology in the Hellenic Open University,
both in Greece. Dr. Politis has been actively involved in all phases of several H2020 projects (ERATOS-
THENIS, PHYSICS, 5G-EVOLVED, SPIDER, SECRET, SONNET, EMYNOS) and FP7 framework
projects (ROMEO, SALUS, FUTON), as well as several national funded research projects. His research
is focused on areas such as, Future Internet and Next Generation networks (5G and beyond), Access
management and Trust, where he has published more than 90 journals and conferences.He has been
awarded a post-doctoral scholarship under the SIEMENS ”Excellence” Program in the field of Telematic
Applications by the State Scholarship Foundation (IKY), Greece for his PhD Thesis. His is a member of
the IEEE and the National Technical Chamber of Greece.

Christos Xenakis received his B.Sc degree in computer science in 1993 and his M.Sc
degree in telecommunication and computer networks in 1996, both from the Depart-
ment of Informatics and Telecommunications, University of Athens, Greece. In 2004
he received his Ph.D. from the University of Athens (Department of Informatics and
Telecommunications). From 1998 – 2001 he was with a Greek telecoms system de-
velopment firm, where he was involved in the design and development of advanced
telecommunications subsystems. From 1996 to 2007 he was a member of the Com-

munication Networks Laboratory of the University of Athens. Since 2007 he is a faculty member of the
Department of Digital Systems of the University of Piraeus, Greece, where currently is a Professor, a
member of the Systems Security Laboratory, and the director of the Postgraduate Degree Programme,
on ”Digital Systems Security”. He has participated in numerous projects realized in the context of EU
Programs (ACTS, ESPRIT, IST, AAL, DGHOME, Marie Curie, Horizon2020) as well as, National Pro-
grams (Greek). He is the project manager the CUREX, SECONDO, INCOGNITO and SealedGRID
projects, funded by Horizon2020, while he was the project manager of the ReCRED project funded
by Horizon 2020 and the technical manager of the UINFC2 project funded by DGHOME/ISEC. He is
also a steering committee member of the European Cyber Security Challenge (ECSC) and the leader
of the Hellenic Cyber Security Team. His research interests are in the field of systems, networks and
applications security. He has authored more than 100 papers in peer-reviewed journals and international
conferences.

127

	Introduction
	Background
	FIDO2/WebAuthn overview
	FIDO2 in web applications
	Authentication flow
	Registration flow
	Security mechanics
	Types of authenticator devices
	Authenticator device attestation

	Related work

	WebAuthn Analyzer tool
	Hijacker
	Communication Manager
	Credentials Analyzers modules
	Credentials Creation Analyzer module
	Credentials Get Analyzer module

	Credentials Manager
	Virtual Authenticator
	Credentials
	Key wrapping
	Authenticator attestation

	Testing and evaluation of proposed tool
	Use Case A: Educating on the WebAuthn API
	Use Case B: Compatibility with 3rd party implementations
	Use Case C: Assessing implementations
	Analyser's assessment functionalities
	Virtual authenticator's assessment functionalities
	Assessments findings

	Conclusion

