Achieving trustworthy Homomorphic Encryption by combining it
with a Trusted Execution Environment

Nir Drucker!? and Shay Gueron!?*

YUniversity of Haifa, Haifa, Israel
2Amazon Web Services, Seattle, WA, USA
drucker.nir@gmail.com, shay @math.haifa.ac.il

Abstract

Cloud database services become very appealing solutions. They offer performance and storage capa-
bilities that client platforms do not have. However, in order to protect the users’ confidentiality and
to ensure the integrity of their computations, solutions often use one of three approaches: a) Encrypt-
ing the data prior to uploading it with some symmetric encryption; b) Using a [Trusted Execution|
[Environments (TEE)|such as OS containers, Virtual Machines or Intel’s [Software Guard Extension|
¢) using [Homomorphic Encryption (HE)| schemes. A newer approach, which we call the
“combined model” uses a[TEE]to guarantee the integrity and correctness of the database code and
data, while the data itself is encrypted with some scheme. In this paper, we explain the com-
bined model and we show how to use it in the context of modern [Multi Party Computations (MPC)|
schemes. In addition, we demonstrate how to construct a voting system that leverages its capabilities.

Keywords: Secure Guard Extension, Homomorphic Encryption, Trusted Execution Environment,
Paillier cryptosystem, Cloud database, Multi Party Computations

1 Introduction

Cloud database services become an appealing solution for handling large amounts of data and computa-
tions on behalf of their users. Obviously, a solution to the privacy concerns is required before uploading
private data to a remote (untrusted) server. Different types of adversaries are considered: a) attackers
from outside the server’s [Trusted Computing Base (TCB)| who can potentially exploit some vulnerabil-
ities in the OS or even in the hypervisor; b) attackers from within the server’s typically having
administrator privileges, who can potentially access or modify users’ data. Under this model, an insider
adversary can craft some manipulations on the computations done on the user’s data, and cause incorrect
results to be returned.

Isolation solutions that are based on secure software can address some threats from attackers from
outside the cloud (e.g., OS, hypervisors, BIOS loaders). Examples include [[1} [2, 3 4} 5, 16} [7, [8].
Solutions based on secure hardware are [9, (10, [11]], and [[12] (TrustedDB), have also been demonstrated.
Other systems [13}, 4] allow users to verify computation results, but do not protect code and data confi-
dentiality.

A different approach was taken in [14]], where privacy is achieved by leveraging the power of[HE] [15]],
and multiparty computations. In general, there are two types of a) [Fully Homomorphic Encryption|
which allows to perform general-purpose computations over encrypted data. Currently known
schemes are too inefficient to be considered practical; b) [Partially Homomorphic Encryption (PHE)|
which is restricted to supports only one type of operation (e. g., addition or multiplication). These can be
practical from the performance viewpoint.

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), 9:1 (March 2018), pp. 86
*Corresponding author : University of Haifa, Haifa, Israel and Amazon Web Services, Seattle, Washington, USA, Tel:
+972-4-8324858 (This work was done prior to joining Amazon.)

86

Trustworthy Homomorphic Encryption Drucker and Gueron

An example for a usage where supporting only addition operation suffices, is a rating system where
the participants’ votes are encrypted with a that supports addition, and uploaded to a database.
The ratings can be subsequently determined from the database, without exposing the individual votes to
observers who can view it. CryptDB [16]], is an example for an SQL database that uses (Paillier
cryptosystem) for performing queries of the type "SELECT SUM ...” and "UPDATE X=X+1 ...”. One
of the case studies in [[16] is HotCRP, a popular conference review application. MrCrypt [[17] is a client
side static analysis tool that analyzes user data, before a database exists and identifies what type of
scheme should be use and where. Both, CryptDB and MrCrypt protect data confidentiality, but do not
guarantee code and data integrity.

Some recent database implementations combine and isolation solutions. Monomi [18] allows the
untrusted server to handle non-sensitive data, which was encrypted with some [HE| while the computa-
tions over this data are left for the client. Cipherbase [19] takes the same approach of using (when
possible) on an untrusted servers, but uses a for computations over sensitive data. These solutions
protect data confidentiality, but do not guarantee code and data integrity.

VC3 [20], M2R [21]] and [22], offer a distributed MapReduce cloud system solution (a framework
for processing problems across large datasets, using a large number of computers). It keeps the code and
data confidential while providing code and data integrity, by leveraging the capabilities of

While various solutions handle data privacy, it seems that guaranteeing code and data integrity re-
quires the user to add a third party component to its For example, solutions that rely on
[Platform Module (TPM)] devices or secure CPUs (e. g., TrustedDB and Cipherbase) require the users to
trust the hardware manufacturer. The VC3 and M’R implementations that use require the users to
trust Intel (currently, it is the only attestation service for [SGX).

In [23]], we introduced a new combined model that decouples the properties for trust and for privacy.
This model uses a (e.g., Intel to secure the code and data integrity, and a scheme
(e. g., Paillier cryptosystem) for encrypting the data. In this way, an adversary that tries to exploit the
malleability of[PHE]is blocked by the[TEE] At the same time, the[PHE| guarantees the data confidentiality
independently of the trustworthiness of the [TEE]

To show that this model has practical performance, we constructed a demonstration that uses [SGX]
as the and Paillier cryptosystem as the The results indicate that the performance costs of such
combined solution are sufficiently reasonable to make it practical. In addition, this paper extends the
previous examples by explaining how this model can be used in the context of modern [MPC]| schemes,
furthermore, we demonstrate how to construct a voting system that leverages the capabilities of the
combined model.

The paper is organized as follows. Section [2] briefly describes Paillier and Intel’s We
describe our combined model in Section[3] and present the implementation and some performance mea-
surements, in Section[d] Section [5]describe some modern usages of our model and Section [7] concludes
the paper.

2 Preliminaries and notation

2.1 Paillier cryptosystem

Paillier cryptosystem [24] is a scheme that supports addition. Let n = pg be a modulus with two
equal size prime factors p and ¢, and let k € Z and m;,m, € Z,,. Then,

DEC(ENC (m;)-ENC (mp) (mod n*)) =
my+my (mod n) (1)
DEC(ENC (m1)* (mod n*)) =m; -k (mod n) 2)

87

Trustworthy Homomorphic Encryption Drucker and Gueron

This property can be expressed as follows: given only the public key and the encryptions ENC(m;),
ENC(m,) of the messages mj, my, respectively, it is possible to compute ENC(m; +mjy). It is also
possible to compute ENC (k - my), for some constant k. For completeness, we briefly describe the Paillier
cryptosystem.

Key generation: denote the Euler totient function by ¢ (n) = (p —1)(g — 1) and the Charmichael func-
tion by A(n) =Ilem(p — 1,4 — 1), verify that gcd(n, ¢ (n)) = 1 else choose a different modulus. Choose
an integer g € Z*, uniformly at random, such that n divides the order of g in Z~,. Verify this condition

with g = [L(¢*™ (mod n?))] ! (mod n), where L(1) = (1 — 1) div n. Set the Paillier public (en-
cryption) key to (n,g), and the private (decryption) key to (A(n),u). If g =n+1, then A(n) = ¢(n), and
@ =¢(n)~" (mod n), and the key generation is simplified.

Encryption: to encrypt a message m € Z,, select a random value r € Z;, and compute the ciphertext

ENC(m)=c=g"-/" (mod n?).

Decryption: to decrypt the ciphertext ¢ € Z, computed
DEC(c) =m=L(*" (mod n?))-u (mod n).

A typical implementation of Paillier encryption, which is considered secure, uses 1024-bit primes, and
therefore a 4096-bit modulus ().

2.2 SGX

Intel’s [25] 26| 27, 28], 29] is a [TEE] that protects an implementation from software threats at any
privilege level (BIOS, OS, Hypervisor, and user level applications). Moreover, SGX assumes that the
system memory is outside its [[CB] all the memory reads and writes are encrypted, and integrity and
replay protected, using a dedicate hardware unit. We describe briefly.

The basic primitive of is called an “enclave”. It is a “container” holding some code, data,
and metadata, which realizes some (software) functionality. When shipped, the content of the enclave
is in the clear, and can therefore be audited publicly. technology can instantiate an enclave by
loading it securely, verifying its cryptographic identity, and locking it in a protected memory region.
It also guarantees the isolation of the enclave, during run-time, from any other software on the system
(including other enclaves), at any privilege level.

A user audits some piece of code (enclave) and determines that it is crafted to execute what he
desires. Then, in order to trust an instance of that enclave that runs on a remote platform (and hand it
secret information), the user carries out the following protocol. He first communicates with the enclave,
still without trusting it. Both parties run a key exchange protocol (e. g., a Diffie-Hellman key exchange),
and agree on a shared secret key Kgq.q. Next, the user needs to verify the authenticity of the enclave
instance, and that its running environment is a legitimate platform. To this end, he challenges
the enclave to prove its trustworthiness, using a "Remote Attestation” protocol that is supported by
[SGX| and some trusted attestation servers (currently, only Intel has and maintains such a server, but
this will change in future versions of [SGX)). The enclave dispatches the instruction EREPORT
that generates an authenticated "REPORT”. This REPORT is some data structure with information that
uniquely identifies the enclave. It also includes a 64 bytes field for arbitrary user data (defined below)
that the enclave provides as part of the input to the EREPORT instruction. To complete the attestation, the
server application uses two dedicated enclaves (currently provided and signed by Intel) that have special
capabilities and purposes, as follows.

88

Trustworthy Homomorphic Encryption Drucker and Gueron

e The[Provisioning Enclave (PE)l It generates a private signing key Kfi;f in a special way that enables

some external service (currently provided via an Intel server) to sign the matching public key

KS;Z, and return a signed certificate. This procedure is called ”platform provisioning”. Using

Kgg,;v, together with the certificate (on Kggﬁ), the platform can subsequently prove its cryptographic

identity to an external entity. The proof is facilitated by the [Quoting Enclave (QE)| For privacy
reasons, the signing key is generated by the and is not embedded in the processor hardware.

e The |Qu0ting Enclave (QE)l It is the only entity that can access and use KS’Z,;V, to sign a "TREPORT”
of any other enclave that runs on the same platform.

The enclave fills the reserved bytes with a hash of K04, generates the authenticated REPORT. It sends it
to the|QE]that verifies it and signs it (only if it is valid). Finally, the signed REPORT is sent by the enclave
application to the user, who can establish trust in the (signed) REPORT by contacting [Intel Attestation|
(that can verify the signature) and validating the hash of K,.4. This verification chain
proves to the user that the enclave instance that runs on the remote platform is indeed the vetted software,
and that it is running under the supervision.

3 Combined Trusted Model

schemes are considered malleable, in the following sense: by applying the homomorphic operation,
an adversary can modify a ciphertext in a way that it would still decrypt into a valid plaintext. To
illustrate the problem, we provide a simplified (fictional) example. A company Comp uses cloud service
CloudDB to store a database that consists a table:

Salaries(ID,department ,Ek,, . (salary))

The table stores employee ID’s, and their respective department, as plaintext, while their respective
(confidential) salary is encrypted with the Paillier scheme. CloudDB can carry out computations on the
database, using the public modulus n on behalf of Comp . An employee at CloudDB (with the right
privileges) can modify any row in that table, say R = (id,dep,c). An arbitrary change in ¢ will most
likely decrypt into an illegitimate plaintext. However, by squaring ¢/ = ¢> (mod n?) and replacing R by
R = (id,dep,c), it is possible to double the salary of employee id.

This type of threat is not mitigated by adding authentication tags to the database on the remote
platform. Only the user who owns the authentication key can generate new authentication tags. Thus,
the untrusted server will not be able to execute modification queries (e. g., UPDATE, INSERT, DELETE)
and complex math queries (such as SUM or AVEREGE) while keeping the data authenticated. In order
to solve this problem, the user should hand the authentication key to the server, and for that, he must trust
it. It follows that every solution that involve [HE|on cloud servers, should include also a[TEE]or a[Trusted|
as defined in [30].

We now address a different threat. The CEO of Comp wishes to check the total costs of the dif-
ferent departments, and queries the server for the total salaries of the members in each department.
The summation is computed on the cloud, using the properties. An attacker on the remote server
environment can change the encrypted results Ek,,, (dep_sum) that the CEO would see. For exam-
ple, by first reading a random row R = (id,dep,c), where ¢ = Ek,,, (s) is the encryption of a valid
salary s, and then, manipulate the code (or the network traffic) to modify the summation result into
Ex,,; (dep_sum+k-s) = ck-Ex,, (dep_sum) (mod n?) which is higher than the real total value. Note
that the CEO cannot validate the correctness of the result, which would be valid and also pass integrity
checks.

&9

Trustworthy Homomorphic Encryption Drucker and Gueron

The malleability problem of can be mitigated by using a However, solutions that use a
[TEE] currently rely totally on that [TEE] for both integrity and confidentiality. Here, we suggest a new
combined model that leverages the capabilities of both[TEE|and [PHE] In this model, the [TEE] guarantees
the code and data integrity, and privacy is protected by This approach decouples the integrity
from the confidentiality. Although this seems like a very slow solution, we show later that the resulting
performance is still reasonable. We chose here a specific combination of a and namely
and Paillier encryption.

Our goal was to choose a [TEE] with the smallest possible user’s [TCB| and to this end, [SGX]is a
suitable candidate. It includes only Intel in the user’s but excludes the OS, hypervisor, BIOS,
and physical devices. Note that Intel has recently announced [31]] that[SGX] will be available for server
platforms and not only for the client platforms as it is currently. Our combined model considers four
entities:

1. A user, who is the owner of the confidential data.

2. An application (an enclave in our case) that the user can audit and vet. Then, the user can trust the
enclave if it is securely loaded on the remote platform, and the user receives an attestation to that
fact (see Section[2.2).

3. An untrusted application (uApp) whose role is only to launch the enclave, and connect it to the
server’s OS.

4. A database that holds confidential information.

Untrusted Cloud
App

Trusted Enclave Client

O"r. 1. Key exchange 0”»
2.C=E (Data)
o] 3.C =E, (C)
5.4 C'=t, (0.(C)) T

"~ Write C”

Figure 1: Adding data to a cloud DB. The user establishes a secure channel with the enclave, where both
parties agree on the common network key (blue). Subsequently, the user encrypts his data with some
[PHE (yellow key), and re-encrypts it with the network key. The enclave decrypts the received messages,
using the network encryption key, re-encrypts it (purple key) and stores the data in the DB.

Figures [T and [2] illustrate the flows of uploading data and querying it from a cloud database. The
flows use the untrusted application uApp , only to launch the (already vetted) enclave that exchanges

90

Trustworthy Homomorphic Encryption Drucker and Gueron

a network key (Kerwork). Note that the user does not need to trust uApp to handle his data, or even to
correctly pass it to the trusted enclave (a demonstration of a [Iransport Layer Security (TLS)| protocol
that runs from an enclave is shown in [32]). Finally, the user follows the Remote Attestation protocol
(Section[2.2)) to determine the trustworthiness of the specific enclave instantiation.

Uploading data. The user encrypts the data with a scheme, obtaining the ciphertext ¢ = Ek,,,, (data).
He encrypts it to ¢/ = Ek,, . (c), and sends over the network. Only the enclave (but not to uApp) can
decrypt ¢’ into ¢. At this point, the enclave needs to store the data (which encrypted with in the
database. It re-encrypts it (or at least adds an authentication tag), in order to address the malleability of

the ciphertext.

Summation queries. The procedure to request a summation query to the DB is explained in Figure[2]

Untrusted Cloud App

Trusted Enclave
1. Exch k)
@g% xchange keys 4;5%5

Client

2. Query the DB

DB
N3 Read [T, (E)
R = SUM(C)

D 4, Return R’ R=D;: (R)
K= R Res D" (R)

Figure 2: A summation query to the DB. The user and the enclave establish a secure channel (blue key).
The user submits a query request to the enclave. The enclave reads from the DB, and authenticates this
data. It then performs the required calculations by means of homomorphic operations (on the
encrypted entries). The result is re-encrypted the results with the network key, and sent back. The user
can decrypt with the network key and the homomorphic private key, to obtain the result.

4 Demonstration and results

The combined model uses both a [TEE| and a [PHE] and this affects the performance. To estimate the
cost, we implemented three different models that use as the and/or Paillier cryptosystem as
the [PHE] as follows.

o A model. The user encrypts the data with Paillier encryption, prior to uploading it to the
server. The server does not use a

e An model. The server uses for isolation and for code integrity. The user uploads his
data to an enclave, using a secure/confidential channel.

91

Trustworthy Homomorphic Encryption Drucker and Gueron

e The combined model. The user encrypts the data with Paillier encryption prior to uploading it to
the server. The server uses [SGX]to ensure isolation and code integrity.

The experiment. We simulated two different users. They operate similarly, except that one uses homo-
morphic encryption, and the other does not. We also developed a simulation of three types of servers, as
described above. To simplify our demonstration, we skipped the [TLS|implementation inside the enclave
(as done in [32]]), which would provide the enclave with a network key and after attestation, a database
key. We simply embedded these two keys in the user and the enclave simulators. Data authentication with
the database key uses the sgx_rijndaell128_cmac_msg API of the SDK [33]]. The database was
a file that holds a table with the information (no compression or optimization was used). A CMAC tag
was appended to each row of the table, to protect it from unauthorized modification. Furthermore, to
protect the whole database from an attacker who deletes or injects (e. g., duplicates) rows, we added
an index table and stored it in the enclave. Since has limits on the overall size of an enclave, we
used an appropriately sized index table (a larger index table could be stored outside the enclave, but with
additional complication). We used a database with 1000 IDs. By the architectural definitions, an
enclave cannot read an external file, and it must use an external API of an assisting application (uApp).
When a desired row is fetched, the enclave verifies its ID and the validity of the authentication tag.
We designed our demonstration to support summation queries of the from

SELECT SUM(salary) FROM Salaries
WHERE id BETWEEN low AND high

Paillier encryption allows such queries to be carried out on the ciphertext (this property can be easily
extended to support queries that request an average or a standard deviation). We also leveraged the
method of [34], where the ciphertext that is stored on the server is already converted to a Montgomery
friendly format. To query the database, the user provides a range [low,high] of IDs, and the server
accumulates the entries in this range (the code can skip IDs in the specified range, which do not exist in
the database).

We note that Paillier ciphertext has twice the size of the corresponding plaintext. This is different
from symmetric encryption where the ciphertext and the plaintext have the same size. To properly scale
the comparison, we set the same plaintext size in all three models. Specifically, each row of the tale was
represented by a vector of 64-bit integers, stored in a 2048-bit container.

In our experiments, we queried the database with different ID ranges, starting from low = 0 up to
high € (0,1000], incremented in steps of 25. We used an Intel®desktop of the 7" Intel® Core”™ Genera-
tion (Micro-architecture Codename “Kaby Lake”), where the Intel® Turbo Boost Technology was turned
off (i.e., , the frequency was fixed). The Intel®Hyper-Threading Technology, and the Enhanced Intel
Speedstep®Technology were disabled. The operating system was Ubuntu 64 bits. Each measurement
was run 100 times (warm-up), followed by 50 iterations that were clocked (using the RDTSC instruc-
tion) and averaged. To minimize the effect of background tasks running on the system, we repeated each
measurement and record the average result.

Figure [shows the querying performance, measured in millions of processor cycles. As seen, it
grows linearly with the number of summed entries. The model and the model have roughly
the same performance. The combined model is (only) 1.7x slower.

5 Multi Party Homomorphic Encryption (MPHE)

This section presents additional use cases that can benefit from our combined approach. These are
cryptosystems that use [FHE]in a secure setting. An[MPC]|scheme involves n parties p;, i = 1,...,n,

92

Trustworthy Homomorphic Encryption Drucker and Gueron

| HNT_SERVER: NHT_SERVER HT_SERVER:

w w
o O

Million cycles

M
[¥]

20]
15 -
10

5 : ‘ ‘

100 200 300 400 500 600 700 800 900 925 1,000
Number of entries

Figure 3: Comparison of a the performance of summation queries in the different cloud database ap-
proaches: a) Using only b) Using only ¢) Using both and The horizontal axis
shows the number of summed entries. The vertical axis shows the number of millions of cycles, required
to perform the query (lower is better). See explanation in the text.

each one holds a private input x;, and they wish to compute a given function y = f(xj,...,x,). An
protocol is considered secure if it ends with exposing y, nothing more than y, and only to the honest
parties. In addition, no subset of the parties can collude to obtain the value of y, without agreement
of the majority of the participants. The problem was initially studied by Yao [35, [36]] for the case of
two honest-but-curious parties, who follow the protocol but try to get some extra information from the
execution flow. Later, this protocol was extended [37] to an arbitrary number of malicious parties, who
do not necessarily follow the protocol. This family of problems has received a significant amount of
study.

The efficiency of an protocol can be improved by combining it with some scheme [13].
For example, consider the case where the protocol involves only two honest-but-curious parties pp, pa.
Here, p; can encrypt x; with his secret key, and send the ciphertext to p,. Subsequently, p, can use|FHE
to evaluate the function using his own data and the ciphertext received from p;. The final results are sent
back to p;. This protocol reduces the communication complexity, and also benefits from the asymmetric
computation (the evaluation of y is done only by p»). A more significant improvement is achieved when
this technique is applied to a protocol with an arbitrary number of parties, where a cloud service is used
for performing the (heavy) homomorphic calculations. In both cases, the computational complexity for
each party depends only on the encryption/decryption complexity, and is independent of the complexity
of the function’s evaluation (which is carried out on the server on the cloud provider’s side).

The examples below are based on the following two[MPC|variants called[Threshold Fully Homomor-|
[phic Encryption (TFHE)| [38]] and [Multi-Key Fully Homomorphic Encryption (MFHE)| [39]. They deal
with an arbitrary number of malicious participants. The[TFHE]protocol is as follow: a) The parties agree
on a common public key and a secret key. Each party gets only a (secret) share of the secret key. Here,
all the shares are required in order to recover the secret key; b) Each party p; uploads the encryption of
x;, using the public key. Subsequently, each party can evaluate y (using [FHE)); ¢) The parties collaborate

93

Trustworthy Homomorphic Encryption Drucker and Gueron

to decrypt the result. The[MFHE|protocol improves the protocol by reducing the number of steps.
This is done by replacing steps a,b with the following step: party p; chooses (individually) public and
secret keys, encrypts x; with its public key, and uploads the results. An example for based on
[Cearning With Errors (LWE)] is shown in [40].

Although, schemes can help in reducing the bandwidth required by an protocol, they are
still not very practical due to the associated computational overheads. Reduced schemes such as
PHE]| support only one operation, and may therefore be less relevant in some usages. Fortunately, recent
research suggests a third family of schemes, called [Somewhat Homomorphic Encryption (SHE)|
These cryptosystems are the same as schemes, but are limited by the number of steps they can
perform (it is possible to overcome this limitation by adopting some bootstrapping techniques). An[MPC|
protocol that uses is reported in [41]].

Examples|[I] and 2] propose two scenarios where MPC] protocol (equipped with can be used. We
argue that both examples can benefit, security-wise, from the combined model presented above.

Example 1 (Modern voting systems). Electronic voting systems must protect the anonymity of the voters
and their votes, assure that each voter votes at most once, and protect the integrity of the final results. A
cloud based voting system can be implemented efficiently by using an protocol. Here, each voter
chooses a public and a secret key, encrypts his vote and uploads it to the cloud. All votes are stored in
a trusted (and auditable) database. This trustworthiness protects against elimination and duplication of
votes, as described in Section |3} The @ scheme, which is used for evaluating the accumulated results,
can also be used for enforcing legitimate inputs.

Note that, the protocol that is outlined in Example |1} can be similarly used for other purposes such
as public auctions.

Example 2 (An online purchasing scenario). The CEO of Comp rewards his employees with a coupon for
some online purchases. Each employee is limited to a total of T; dollars, and the total budget allocated
for this activity is T (L T; < T). The CEO wishes to monitor this activity without compromising the
privacy of his employees. The protocol described above can be used as an instantiation.

6 A voting system protocol based on combined model

Example [I] outlines a voting system protocol, which is based on An inherent drawbakc of this
protocol is that the results must be decrypted by all the participants (or at least the majority of them).
Here, we suggest a different protocol that is based on our combined model, and involves only [PHE](e. g.,
Paillier). Our model has four entities: a) a voting committee (%); b) voting centers (v;, 0 < i < |v| where
|v| denotes the number of voting centers); ¢) voters (v; j» 0 < j < n;, where n; is the number of voters in
the voting center v;); d) a cloud server (). It includes three protocols, Init, CollectVotes and Validate.

Init The committee chooses randomly a public (pk;) private (sk;) key pair for each voting center v;.
It initializes a special device d; with pk;, and hands it to v;. In addition, it communicates with an
enclave ¢”, found on .#. This enclave receives pk; from ¢, and seals the value acc; = E (0) on .”’s
hard drive.

CollectVotes Each voter v;; uses the device d; to vote. Device d; triggers a different enclave
(€"”'¢), sends it the Paillier encrypted vote (¢; = E,,(v;;)) and waits for a final confirmation to increment
its internal counter n;. €"”'¢ unseals acc;, validates its authenticity, and multiplies it with ¢;. The result,
acc;, is then resealed. Finally, the server send a confirmation to d;.

94

Trustworthy Homomorphic Encryption Drucker and Gueron

Validate After all the votes are collected, . sends % the accumulated results acc;, for each v; from
. The devices d; provide ¥ with the number of voters n; of d;. Subsequently, € decrypts the results,
and compares the number of votes to n;. If the numbers match, it approves the votes of v;.

Remark 1. 7o enable votes accumulation, d; creates a plaintext m that is formatted as a row, where each
cell represents one of the choices. Thus, when voting for x candidates, we have |m| > x x max (n;) (|m|
is the length of the message).

Remark 2. The Validate functionality can be further improved by handing sk; and n; to a third enclave
(e"*) that runs on .. This enclave can validate the result of each voting center, accumulate them, and
post them online. We note that providing the secret key to . does not violate the privacy of the voters,
because at this stage, the voting is already finished, and . that uses a vetted enclave, is trusted to not
store any intermediate results.

7 Conclusion

This paper presents a combined model for handling information on remote servers. The model leverages
the capabilities of a[TEE for code and data integrity, and the capabilities of for data privacy. Other
existing solutions choose one of these methods, or use both of them as orthogonal components: e.g.,
using only on non-sensitive data. Our approach decouples the privacy and the integrity consid-
erations. It allows for solving the problem of malleability of [PHE] by using the features of [TEE] Data
confidentiality is protected by (homomorphic) encryption, while the system enjoys the advantages of the
homomorphic properties.

We designed an experiment that is based on[SGXas the instantiation of the [TEE] and Paillier cryp-
tosystem as the instantiation of the Our results compare the runtime of the combined model to: a)
only [SGX| where integrity and privacy are bundled under the same b) only where data pri-
vacy is protected, but malleability can be an attack vector. Our numbers show that the combined model
is only 1.7x slower than #a and #b, and can be therefore considered a practical solution.

EXI Committee il

e

Figure 4: Voting system based on our combined model.

95

Trustworthy Homomorphic Encryption Drucker and Gueron

Finally, we reported on several other examples such as and voting systems, where is used,
and therefore our combined model can enhance their overall security. Our future research directions
include performance comparison of different implementations of the combined model, by using different
types of or solutions. We plan to explore various software/hardware optimizations that can
accelerate cryptographic protocols, such as, for example, auctions.

Acknowledgments

This research was supported by the Israel Science Foundation (grant No. 1018/16), the BIU Center for
Research in Applied Cryptography and Cyber Security, in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office, and the Center for Cyber Law and Policy at the University of
Haifa.

References

[1] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D. Boneh, J. Dwoskin, and
D. R. Ports, “Overshadow: A virtualization-based approach to retrofitting protection in commodity operating
systems,” SIGARCH Computer Architecture News, vol. 36, no. 1, pp. 2—13, March 2008.

[2] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig, “Trustvisor: Efficient tcb reduction
and attestation,” in Proc. of the 2010 IEEE Symposium on Security and Privacy (SP’10), Berkeley/Oakland,
California, USA. 1EEE, May 2010, pp. 143-158.

[3] F. Zhang, J. Chen, H. Chen, and B. Zang, “Cloudvisor: Retrofitting protection of virtual machines in multi-
tenant cloud with nested virtualization,” in Proc. of the 23rd ACM Symposium on Operating Systems Princi-
ples (SOSP’11), Cascais, Portugal. ACM, October 2011, pp. 203-216.

[4] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu, “Policy-sealed data: A new abstraction for building
trusted cloud services,” in Proc of the 21st USENIX Security Symposium (USENIX Security’12), Belleve,
Washington, USA. USENIX, August 2012, pp. 175-188.

[5] R. Strackx and F. Piessens, “Fides: Selectively hardening software application components against kernel-
level or process-level malware,” in Proc. of the 2012 ACM Conference on Computer and Communications
Security (CCS’12), Raleigh, North Carolina, USA. ACM, October 2012, pp. 2—-13.

[6] O.S.Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel, “Inktag: Secure applications on an untrusted
operating system,” in Proc. of the 18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’13), Houston, Texas, USA. ACM, March 2013, pp. 265-278.

[7] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: Protecting applications from hostile operating
systems,” SIGPLAN Notices, vol. 49, no. 4, pp. 81-96, Februray 2014.

[8] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry, “Minibox: A two-way sandbox for x86
native code,” in Proc. of the 2014 USENIX Annual Technical Conference (USENIX ATC’14), Philadelphia,
Pennsylvania, USA. USENIX Association, June 2014, pp. 409-420.

[9] E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Perrig, and A. Vasudevan, “Oasis: On achieving a
sanctuary for integrity and secrecy on untrusted platforms,” in Proc. of the 2013 ACM SIGSAC Conference
on Computer & Communications Security (CCS’13), Berlin, Germany. ACM, November 2013, pp. 13-24.

[10] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz, “Architectural support
for copy and tamper resistant software,” SIGPLAN Notices, vol. 35, no. 11, pp. 168—177, November 2000.

[11] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Aegis: Architecture for tamper-evident
and tamper-resistant processing,” in ACM International Conference on Supercomputing 25th Anniversary
Volume, Munich, Germany. ACM, June 2014, pp. 357-368.

[12] S. Bajaj and R. Sion, “Trusteddb: A trusted hardware-based database with privacy and data confidentiality,”
IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 3, pp. 752-765, March 2014.

96

Trustworthy Homomorphic Encryption Drucker and Gueron

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly practical verifiable computation,” in
Proc of the 2013 IEEE Symposium on Security and Privacy (S&P), Berkeley, California, USA. 1EEE, May
2013, pp. 238-252.

C. Fournet, M. Kohlweiss, G. Danezis, and Z. Luo, “ZQL: A compiler for privacy-preserving data process-
ing,” in Proc. of the 22nd USENIX Security Symposium (USENIX Security’l13), Washington, D.C., USA.
USENIX, August 2013, pp. 163-178.

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. of the 41st Annual ACM Symposium
on Theory of Computing (STOC’09), Bethesda, Maryland, USA. ACM, May 2009, pp. 169-178.

R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB: Protecting confidentiality
with encrypted query processing,” in Proc. of the 23rd ACM Symposium on Operating Systems Principles
(SOSP’11), Cascais, Portugal. ACM, October 2011, pp. 85-100.

S. D. Tetali, M. Lesani, R. Majumdar, and T. Millstein, “Mrcrypt: Static analysis for secure cloud compu-
tations,” in Proc. of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA’13), Indianapolis, Indiana, USA. ACM, October 2013, pp.
271-286.

S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing analytical queries over encrypted data,”
in Proc. of the 39th international conference on Very Large Data Bases (PVLDB’13), Trento, Italy. VLDB
Endowment, March 2013, pp. 289-300.

A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy, and R. Venkatesan, “Or-
thogonal security with cipherbase.” in Proc. of the 6th Conference on Innovative Data Systems Research
(CIDR’13),Asilomar, California, USA, January 2013, pp. 1-5.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and M. Russinovich, “Vc3:
Trustworthy data analytics in the cloud using sgx,” in Proc. of the 2015 IEEE Symposium on Security and
Privacy (SP’15), San Jose, California, USA. 1EEE, May 2015, pp. 38-54.

T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang, “M?r: Enabling stronger privacy in mapre-
duce computation,” in Proc. of the 24th USENIX Security Symposium (USENIX Security’15), Washington,
D.C., USA. USENIX Association, August 2015, pp. 447-462.

R. Pires, D. Gavril, P. Felber, E. Onica, and M. Pasin, “A lightweight mapreduce framework for secure
processing with SGX,” in Proc. of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID’17), Madrid, Spain. 1EEE Press, May 2017, pp. 1100-1107.

N. Drucker and S. Gueron, “Combining Homomorphic Encryption with Trusted Execution Environment: A
Demonstration with Paillier Encryption and SGX,” in Proc. of the 9th International Workshop on Managing
Insider Security Threats (MIST’17), Dallas, Texas, USA. ACM, October 2017, pp. 85-88.

P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in Proc. of the 1999
International Conference on the Theory and Application of Cryptographic Techniques (EUROCRYPT’99),
Prague, Czech Republic, ser. Lecture Notes in Computer Science, no. 1592. Springer Berlin Heidelberg,
May 1999, pp. 223-238.

Intel, “Intel ® Software Guard Extensions Programming Reference,” https://software.intel.com/sites/default/
files/managed/48/88/329298-002.pdf, [Online; Accessed on March 1, 2018], October 2014.

I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative technology for cpu based attestation
and sealing,” Intel Corporation, August 2013, https://software.intel.com/sites/default/files/article/4 13939/
hasp-2013-innovative-technology-for-attestation-and-sealing.pdf, [Online; Accessed on March 1, 2018].
M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo, “Using innovative instructions to create
trustworthy software solutions,” in Proc. of the 2nd International Workshop on Hardware and Architectural
Support for Security and Privacy (HASP’13), Tel-Aviv, Israel. ACM, June 2013, pp. 1-11.

S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel ®Software Guard Exten-
sions: EPID provisioning and attestation services,” |https://software.intel.com/en-us/blogs/2016/03/09/
intel-sgx-epid-provisioning-and-attestation-services, [Online; Accessed on March 1, 2018], March 2016.

F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and U. R. Savagaonkar,
“Innovative instructions and software model for isolated execution,” in Proc. of the 2nd International Work-
shop on Hardware and Architectural Support for Security and Privacy (HASP’13), Tel-Aviv, Israel. ACM,

97

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/article/413939/hasp-2013-innovative-technology-for-attestation-and-sealing.pdf
https://software.intel.com/sites/default/files/article/413939/hasp-2013-innovative-technology-for-attestation-and-sealing.pdf
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services

Trustworthy Homomorphic Encryption Drucker and Gueron

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

June 2013, pp. 1-10.

N. Drucker, S. Gueron, and B. Pinkas, “Faster secure cloud computations with a trusted proxy,” IEEE Security
& Privacy, vol. 15, no. 6, pp. 61-67, November 2017.

Intel, “Intel unveils data center security strategy at 2017 rsa conference,” https://newsroom.intel.com/news/
intel-unveils-data-center-security-strategy-2017-rsa-conference, [Online; Accessed on March 1, 2018],
February 2017.

P-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, C. Priebe, J. Lind, R. Krahn, C. Fetzer, D. Eyers,
and P. Pietzuch, “Talos: Secure and transparent tls termination inside sgx enclaves,” Imperial college London,
Tech. Rep. 2017/5, May 2017.

Intel, “Intel®sgx software stack,” https://github.com/01org/linux-sgx| [Online; Accessed on March 1, 2018],
July 2017.

N. Drucker and S. Gueron, “Paillier-encrypted databases with fast aggregated queries,” in Proc. of the 14th
IEEE Annual Consumer Communications Networking Conference (CCNC’17), Las Vegas, Nevada, USA.
IEEE, January 2017, pp. 848-853.

A. C. Yao, “Protocols for secure computations,” in Proc of the 23rd Annual Symposium on Foundations of
Computer Science (SFCS’82), Chicago, Illinois, USA. 1EEE, November 1982, pp. 160—-164.

A.C.C. Yao, “How to generate and exchange secrets,” in Proc. of the 27th Annual Symposium on Foundations
of Computer Science (SFCS’86), Toronto, Canada. 1EEE, October 1986, pp. 162-167.

S. Goldwasser, S. Micali, and A. Wigderson, “How to play any mental game, or a completeness theorem for
protocols with an honest majority,” in Proc. of the 19th Annual ACM Symposium on Theory of Computing
(STOC’87), New Tork, New York, USA, vol. 87, May 1987, pp. 218-229.

G. Asharov, A. Jain, and D. Wichs, “Multiparty computation with low communication, computation and inter-
action via threshold FHE,” http://eprint.iacr.org/2011/613| [Online; Accessed on March 1, 2018], November
2011, cryptology ePrint Archive, Report 2011/613.

A. Lépez-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty computation on the cloud via mul-
tikey fully homomorphic encryption,” in Proc. of the 44th Annual ACM Symposium on Theory of Computing
(STOC’12), New York, New York, USA. ACM, May 2012, pp. 1219-1234.

P. Mukherjee and D. Wichs, “Two Round Multiparty Computation via Multi-key FHE,” in Proc. of the
35th Annual International Conference on the Theory and Applications of Cryptographic Techniques (EU-
ROCRYPT’16), Vienna, Austria. Springer Berlin Heidelberg, May 2016, pp. 735-763.

I. Damgérd, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation from somewhat homomorphic en-
cryption,” in Advances in Cryptology - Proc. of the 2012 International Cryptology Conference (CRYPTO’12),
Santa Barbara, California, USA, ser. Lecture Notes in Computer Science, no. 7417. Springer Berlin Hei-
delberg, August 2012, pp. 643-662.

98

https://newsroom.intel.com/news/intel-unveils-data-center-security-strategy-2017-rsa-conference
https://newsroom.intel.com/news/intel-unveils-data-center-security-strategy-2017-rsa-conference
https://github.com/01org/linux-sgx
http://eprint.iacr.org/2011/613

Trustworthy Homomorphic Encryption Drucker and Gueron

Author Biography

Drucker Nir is an applied scientist at Amazon Web Services and a PhD student at
the University of Haifa. He also worked (2009-2017) at Intel Corporation as a senior
software engineer as a member of the SGX team. His research focuses on software
and hardware acceleration of cryptographic algorithms and protocols.

Gueron Shay is an associate professor at the University of Haifa. He also worked
(2005-2017) at Intel Corporation as a Senior Principal Engineer, and served as the
Chief Core Cryptography Architect of the CPU Architecture Group. He is now a Se-
nior Principal Engineer at Amazon Web Services. His interests include cryptography,
security, and algorithms. Shay is responsible for some of the recent CPU instruc-
tions that speed up cryptographic algorithms, such as the AES-NI and the carry-less
: multiplier instruction (PCLMULQDQ), the coming VPMADDS52 instructions, and
for various micro-architectural enhancements through the generations of the Core. He has contributed
software to open source libraries, such as OpenSSL and NSS, offering significant performance gains to
encryption, authenticated encryption, public key algorithms, and hashing. Shay was one of the architects
of Intel Software Guard Extensions (SGX), in charge of its cryptographic definition and implementation,
and the inventor of the Memory Encryption Engine. He is a co-author of the nonce misuse resistant mode
AES-GCM-SIV, which is currently a CFRG draft.

99

	Introduction
	Preliminaries and notation
	Paillier cryptosystem
	SGX

	Combined Trusted Model
	Demonstration and results
	MPHE
	A voting system protocol based on combined model
	Conclusion

